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Abstract

In medical image analysis, it is typical to collect multiple

annotations, each from a different clinical expert or rater,

in the expectation that possible diagnostic errors could be

mitigated. Meanwhile, from the computer vision practi-

tioner viewpoint, it has been a common practice to adopt

the ground-truth labels obtained via either the majority-

vote or simply one annotation from a preferred rater. This

process, however, tends to overlook the rich information

of agreement or disagreement ingrained in the raw multi-

rater annotations. To address this issue, we propose to ex-

plicitly model the multi-rater (dis-)agreement, dubbed MR-

Net, which has two main contributions. First, an expertise-

aware inferring module or EIM is devised to embed the

expertise level of individual raters as prior knowledge, to

form high-level semantic features. Second, our approach is

capable of reconstructing multi-rater gradings from coarse

predictions, with the multi-rater (dis-)agreement cues being

further exploited to improve the segmentation performance.

To our knowledge, our work is the first in producing cali-

brated predictions under different expertise levels for med-

ical image segmentation. Extensive empirical experiments

are conducted across five medical segmentation tasks of di-

verse imaging modalities. In these experiments, superior

performance of our MRNet is observed comparing to the

state-of-the-arts, indicating the effectiveness and applica-

bility of our MRNet toward a wide range of medical seg-

mentation tasks. Source code is publicly available.

1. Introduction

Accurate anatomy and lesion segmentation is crucial in

clinical assessment of various diseases, including for exam-
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Figure 1. Top: an exemplar medical image grading scenario con-

ducted by multiple raters with different expertise levels. Bottom:

visualization of optic cup and disc annotations of the above raters.

ple glaucoma [28, 36, 43], prostate diseases [30, 52], and

brain tumors [11, 17, 44]. It has been increasingly pop-

ular to develop automated segmentation systems, to facil-

itate a reliable reference for the quantification of disease

progression, which is especially accelerated by the excit-

ing breakthroughs of deep convolutional neural networks

(CNNs) [7, 20, 34, 35, 49, 55, 56, 59] over the past decade.

Different from labelling natural images, medical images

are often independently annotated by a group of experts or

raters, to mitigate the subjective bias of a particular rater

due to factors such as the level of expertise, or possible neg-

ligence of subtle symptoms [13, 39, 23, 28]. Inter-observer

variability, as frequently reported by relevant research in

the clinical field, often leads to challenges in segmenting

highly uncertain regions [3, 23, 37]. Fig. 1 provides a rep-

resentative illustration of the multi-rater grading process in
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annotating optic cups and discs from fundus images, with

notable uncertainties or disputed regions presented among

graders. It is thus necessary for automated systems to con-

sider a proper segmentation strategy that reflects the un-

derlying (dis-)agreement among multiple experts. Existing

works typically require unique ground-truth annotations,

each pairing with one of the input images to train the deep

learning models. It is a common practice to take majority

vote, STAPLE [50] or other label fusion strategies to obtain

the ground-truth labels [5, 29, 30, 34, 57, 59]. Being sim-

ple and easy to implement, this strategy, however, comes

at the cost of ignoring altogether the underlying uncertainty

information among multiple experts. Very recently, several

efforts start to explore the influence of multi-rater labels by

label sampling [19, 24] or multi-head [16] strategies. It

is reported that models trained with multi-rater labels are

better calibrated than those with the typical ground-truth

label via, e.g. majority vote, which are prone to be over-

confident [19, 24].

Meanwhile, there still lacks a principled approach to in-

corporate in training the rich uncertainty information from

multiple raters. Specifically, we focus on the following

questions: 1) how to integrate varied expertise-level, or ex-

pertness, of individual raters into the network architecture?

2) how to exploit the uncertainty information among differ-

ent experts to produce probability maps that better reflect

the underlying graders’ (dis-)agreement? This inspires us to

propose a multi-rater agreement modeling framework, MR-

Net. To our knowledge, it is the first in explicitly addressing

the above-mentioned questions. Our framework has the fol-

lowing three main contributions:

• The notion of expertness is explicitly introduced as

prior knowledge about the expertise levels of the in-

volved multi-raters. It is embedded in the high-level

semantic features through the proposed Expertise-

aware Inferring Module (EIM), enabling the represen-

tation capability to accommodate the multi-rater set-

tings.

• A Multi-rater Reconstruction Module (MRM) is de-

signed to reconstruct the raw multi-rater gradings from

the the expertness prior and the soft prediction of the

model. This enables the estimation of an uncertainty

map that reflects the inter-rater variability, by exploit-

ing the intrinsic correlations between the fused soft la-

bel and the raw multi-rater annotations.
• To better utilize the rich cues among multi-rater (dis-

)agreements, we further incorporate in our framework

a Multi-rater Perception Module (MPM), which em-

pirically leads to noticeable performance boost.

Extensive experiments are performed on five different med-

ical image segmentation tasks of diverse image modali-

ties, including color fundus imaging, computed tomogra-

phy (CT), and magnetic resonance imaging (MRI). Overall,

our MRNet framework consistently outperforms the state-

of-the-art methods as well as existing multi-rater strategies.

In addition, our MRNet runs in real-time (29 frame per sec-

ond) at inference stage, making it practically appealing for

many real-world applications.

2. Related Work

Medical Image Segmentation. With the advancement of

CNNs, an increasing number of deep learning architectures

have been proposed for medical segmentation tasks such as

optic disc/cup segmentation [60, 29, 57, 12] in fundus im-

ages, prostate segmentation [21, 30, 48] and brain tumor

segmentation [4, 6]. These methods have obtained superior

performance comparing to traditional feature engineering

based methods [8, 9, 10]. Taking optic disc/cup segmenta-

tion as an example, Fu et al. [12] proposed a U-shaped net-

work with multi-scale supervision strategy for polar trans-

formed fundus images to produce the segmentation maps.

Gu et al. [15] integrated dense atrous convolution block

and residual multi-kernel pooling to U-Net structure to cap-

ture high-level features with context information. Zhang

et al. [58] presented an attention guided network using

guided filter to preserve the structural information and re-

duce the negative influence of background. Meanwhile, Li

et al. [29] integrated detection and multi-class segmenta-

tion into a unified architecture for segmenting the optic cup

and disc regions. Wang et al. [45] attempted to utilize the

designed domain adaptation frameworks for fundus image

segmentation, in order to increase the cross-domain predic-

tion accuracy.

A common practice adopted by the above-mentioned

methods, as well as most existing CNNs based learning

methods, is to construct training examples by retaining

unique ground-truth labels for each of the training instances.

In this manner, the valuable multi-rater labels obtained in

the grading procedure with inter-rater variability are unfor-

tunately not well-exploited.

Multi-rater Strategies. Very recently, the problems of

the multi-rater labels and inter-rater variability start to at-

tract research attentions [16, 19, 2, 24, 42, 54]. Jensen et al.

[19] adopted a label sampling strategy for skin disease clas-

sification, by sampling labels randomly from the multi-rater

labeling pool during each training iteration. It was observed

that model trained with the traditional unique ground-truths

would be over-confident, meanwhile model trained with la-

bel sampling strategy was better calibrated. Similar obser-

vation was also reported by [24] for segmentation task. La-

bel sampling strategy was also utilized by [26] to train a

probabilistic model based on a combined U-Net with con-

ditional variational autoencoder to obtain multiple plausible

hypotheses. Similarly, Baumgartner et al. [2] employed la-

bel sampling strategy as well to train the hierarchical prob-

abilistic model with multi-scale latent variables when using
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Figure 2. An illustration of our MRNet framework, which starts from (a) an overview of the processing pipeline, and continues with

zoomed-in diagrams of individual modules, including (b) the Expertise-aware Inferring Module (EIM), and (c) the Multi-rater Agreement

Modeling (MAM) that consists of the Multi-rater Reconstruction Module (MRM), and the Multi-rater Perception Module (MPM).

labels from multiple annotators. Guan et al. [16] predicted

the gradings of each rater individually and learned the cor-

responding weights for final prediction. Yu et al. [54] pro-

posed a multi-branch structure to generate three predictions

under different sensitivity settings, to leverage multi-rater

consensus information for glaucoma classification.

With the existing multi-rater strategies of label sampling

[19, 2, 24] and multiple-head/branch architecture [16, 54],

there still lacks a principled research investigation on ex-

ploiting the rich (dis-)agreement information among raters

in model training and predictions.

3. Methodology

3.1. Motivation

As aforementioned, the inter-grader variability is a well-

known issue in the medical image annotation process, since

experts differ from each other in their grading preferences

and levels of expertise [13, 39, 23, 28]. In order to quan-

titatively demonstrate such difference, a preliminary exper-

iment is performed with an optic cup segmentation setting

on the RIGA benchmark dataset [1].

We train a U-Net [38] using individual rater’s annota-

tions for the optic cup segmentation task, and thus obtain six

different models (named Model 1-6) corresponding to six

raters (named Rater 1-6). The performance of each model

against each rater’s grading as well as the final consensus

label from majority vote is listed in Table 1. It is obvi-

ous that all the models have the optimal performance when

trained and evaluated with the same rater’s annotations but

much worse when evaluated by others’ annotations. More-

over, when evaluated with the consensus labels obtained

with majority vote, Model 1 achieves the best result, fol-

lowed by Model 2, which is consistent with the database

and grader analysis reported in [1]. Two findings can there-

fore be drawn from here and possibly generalized to med-

ical analysis tasks beyond optic cup segmentation: 1) in-

dividual expert has specific and consistent grading patterns

and 2) the expertise levels among a group of graders are

usually different from one to the other. This preliminary

study and subsequent findings motivate us to propose our

MRNet framework to be discussed next.

Table 1. A preliminary test in examining the grading consistency

and expertise level of individual raters, conducted for the optic cup

segmentation task on RIGA test set [1] (measured by Dice coeffi-

cient). Models 1-6 denote the U-Net models supervised by indi-

vidual rater’s grading. The Raters 1-6 and Majority Vote indicate

the labels based on which the model performance is evaluated.

Rater1 Rater2 Rater3 Rater4 Rater5 Rater6 Majority Vote

Model1 0.852 0.823 0.815 0.832 0.795 0.755 0.866

Model2 0.834 0.836 0.785 0.823 0.784 0.764 0.854

Model3 0.829 0.800 0.833 0.786 0.813 0.765 0.851

Model4 0.798 0.809 0.770 0.875 0.725 0.691 0.818

Model5 0.803 0.775 0.790 0.731 0.817 0.774 0.817

Model6 0.790 0.764 0.763 0.704 0.799 0.803 0.797

3.2. Overall Framework

In this work, we propose a novel medical image seg-

mentation framework, named as MRNet, that takes under-
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Figure 3. Intermediate visual results in the processing pipeline of

our MRNet framework. (a) Input fundus image. (b) Heat map of

the initial cup prediction P
1. (c) Heat map of the final refined cup

prediction M. (d) Segmentation boundary of the cup prediction

(green) and ground-truth (black).

lying agreement/disagreement information among multiple

raters into consideration. Fig. 2 illustrates the overall frame-

work of the proposed MRNet, which contains a coarse to

fine two-stage processing pipeline. The first stage adopts

the widely used U-Net architecture [38] with a ResNet34

[18] backbone pretrained from ImageNet as the encoder

part. Then an Expertise-aware Inferring Module (EIM) is

inserted at the bottleneck layer to embed the expertise in-

formation of individual raters, named as expertness vector,

into the extracted high-level semantic features of the net-

work. The enhanced feature f5 is further passed to the de-

coder blocks of U-Net to generate multi-level decoder fea-

tures {F i}5i=1. The final decoded feature F 1 is processed

by a 1 × 1 convolutional operation followed by a sigmoid

activation function to generate the coarse prediction P 1.

The second stage, aiming to refine the coarse prediction

results from the first stage to get better predictions, is com-

posed of two modules arranged in a sequential order. The

Multi-rater Reconstruction Module (MRM) is designed to

reconstruct the raw multi-rater’s gradings, based on which

to estimate the pixel-wise uncertainty map that represents

the inter-observer variability across different regions. Fur-

thermore, the Multi-rater Perception Module (MPM) with

soft attention mechanism is proposed to utilize the uncer-

tainty map to refine the coarse prediction. For simplicity,

we use Multi-rater Agreement Modeling (MAM) to repre-

sent the combination of the two sequential modules. A sim-

plified illustration of the pipeline with intermediate results

is also shown in Fig. 3.

3.3. Expertise­aware Inferring Module

Considering that different experts have different levels of

clinical expertise and thus should be assigned with different

weights during the model training procedure, we propose an

Expertise-aware Inferring Module (EIM) to take advantage

of the expertise levels of individual raters as prior knowl-

edge, which is embedded into the segmentation network in

the format of conditional information to increase the dy-

namical representation capability of the extracted features.

In the EIM module, the expertise level cues of mul-

tiple raters are formed as a normalized expertness vector

V ∈ R
1×1×N , where N represents the total number of

raters and
∑N

i=1 Vi = 1. It is fed to the network as prior

knowledge and determines the actual soft GT labels that are

set as the network’s target. Specifically, the soft GT label

used in the training is determined by the annotations of in-

dividual raters multiplied by their corresponding weight in

the expertness vector V , which is denoted as:

GT soft =

N
∑

i=1

SiVi → ϕ(x, V ), (1)

where ϕ denotes the model parameters; x is the input image;

and Si means the annotation mask by the ith expert.

During each training iteration, the expertness vector V is

dynamically set with three different strategies alternatively,

including the majority vote mode (i.e., uniform weight

among all raters), single rater mode (i.e., assign weight of 1

to single random rater and suppress the rest raters to 0), and

random weight assignment (i.e., assign each rater’s weight

randomly and then normalize to a unit vector). By using dif-

ferent strategies to assign the expertness vector, the model

learns to associate the influence/weight of individual raters

on the final soft predictions. In addition, the dynamic ex-

pertness vector together with the adaptively changing GT

label works as an effective data augmentation strategy that

increases the data variability and input-output data pairs be-

ing fed to the model. In the inference stage, only the major-

ity vote mode is used by default to set the expertness vector,

making it easily applicable for clinical applications.

In order to integrate the multi-rater expertise cues into

the semantic feature representation effectively, we utilize

a ConvLSTM module [40] to generate the enhanced fea-

tures embedded with the expertness vector as hidden state,

as shown in Fig. 2(b). ConvLSTM is a powerful recurrent

model that not only captures the correlation between fea-

tures and different expertise levels (i.e., the hidden state),

but also summarizes the discriminative dynamic features.

To be more specific, we take the feature map from the bot-

tleneck layer (i.e., f5) as input to the proposed EIM and

use the normalized expertness vector V ∈ R
1×1×N as ini-

tial hidden state h0. To transfer the expertness vector into

a proper format for ConvLSTM, we expand V to the same

dimension as that of f5. The procedure can be defined as:

ht =
t
	 ConvLSTM(f5, ht−1), t = 1, 2, ..., T, (2)

where t denotes the time step in ConvLSTM and
t
	 indi-

cates the iteration process at time t. After T steps, which
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is empirically set as two in this work, an enhanced feature

f5e = hT embedded with expertise cues is generated. The

enhanced f5e is further sent to the U-Net decoder to obtain

the coarse calibrated prediction P 1 and decoded feature F 1.

3.4. Multi­rater Reconstruction Module

In order to further enhance the association between the

expertness vector with the model prediction, and to capture

the valuable inter-rater disagreement cues, a Multi-rater Re-

construction Module (MRM) is proposed to reconstruct the

individual rater’s annotation from the corresponding soft

prediction P 1 and the given expertness vector V . Based

on the reconstructed multi-rater’s annotation, an uncertainty

map that reflects the inter-rater variability is generated.

Specifically, as shown in Fig. 2(c), the initial prediction

P 1 and the input image are concatenated and fed into an

encoder-decoder network with VGG16 [41] as the feature

encoder, since VGG architecture is well known for its supe-

rior capability that preserves the topological and perceptual

features of the input image [22, 33]. The corresponding ex-

pertness vector V is applied at the bottleneck layer of the

MRM via another EIM module. The decoder of MRM tries

to reconstruct the annotations of individual raters via multi-

ple 1×1 convolution layers (i.e.,Conv1×1) in the last layer.

Here, we employ a reconstruction loss, lossrec, to mea-

sure the extent to which the reconstructed multi-raters’

grading is similar to that of the real annotation marked

by individual raters, which is defined as lossrec =
1
N

∑N

i=1 LBCE(Si, S̄i). Here LBCE denotes the binary

cross entropy loss; N is the total number of experts; Si and

S̄i ∈ R
W×H×C denote the annotation marked by the ith

expert and the corresponding reconstructed prediction; W ,

H , and C denote the image width, height, and the number

of channels, respectively.

To further improve the reconstruction performance of the

MRM module, the fused soft label GT soft =
∑N

i (Vi · Si),
together with the given expertness vector, is also fed into the

network to reconstruct the individual rater’s grading. A con-

sistency loss, losscon, is proposed to enhance the coherence

between the features extracted from the soft prediction P 1

and GT soft, as losscon = 1
K

∑K

i=1
1
2

∥

∥Di − D̄i

∥

∥

2
. Here

{D̄i}
K
i=1 and {Di}

K
i=1 represent feature sets extracted from

the encoder by using P 1 and GT soft as input, respectively;

K indicates the number of convolutional blocks where the

features are extracted from and for the VGG16 backbone

K = 5.

After reconstructing the individual rater’s grading via the

MRM, the uncertainty map of grading inconsistency can be

estimated via the pixel-wise standard deviation of the mul-

tiple rater’s predictions, using:

Umap =

√

1
N

∑N

i=1

(

S̄i −
1
N

∑N

i=1 S̄i

)2

. (3)

The obtained uncertainty map is sent to the next module to

further refine the initial coarse prediction P 1.

3.5. Multi­rater Perception Module

The grading inconsistency among multiple experts, i.e.,

the inter-rater variability, reflects the uncertainty or diffi-

culty levels of different regions across the medical image.

Thus, how to better take advantage of this information to

further improve the segmentation performance is an impor-

tant research problem. In this paper, we innovatively design

a Multi-rater Perception Module (MPM), which can better

capture and emphasize ambiguous regions by using the de-

signed multi-branch soft attention mechanism.

Given the feature map F 1 obtained by the U-Net back-

bone and the estimated uncertainty map Umap obtained by

the MRM, we use a spatial attention strategy [51] to empha-

size the highly uncertain regions. However, the estimated

uncertainty map might contain potential inaccuracy or in-

completeness near the object boundaries, which may nega-

tively affect the model performance if a ‘hard’ spatial atten-

tion is used. Therefore, we employ a ‘soft’ attention which

aims to enlarge the coverage area of the uncertain regions,

so as to effectively perceive and capture the disagreement

cues among multiple raters. The soften operation can be

formulated by:

Soft(Umap) = Ωmax(FGauss(Umap, k), Umap), (4)

where FGauss indicates a convolution operation with a

Gaussian kernel k and zero bias, and Ωmax indicates a

maximum function to preserve the higher values between

the Gaussian filtered map and the original uncertainty map

Umap. In this paper, the size and standard deviation of the

Gaussian kernel k are learnable through the model training

procedure and initialized with 32 and 4, respectively.

Apart from the highly uncertain regions, the soft atten-

tion mechanism is applied on the initial coarse prediction

map P 1 as well to enhance the highly certain regions for

feature map F 1. In other words, both highly uncertain and

certain regions are strengthened for F 1. For joint optic

cup and disc segmentation task, F 1 is sent to four parallel

branches with soft spatial attentions obtained from Aj = {
U cup
map, Udisc

map, P 1
cup, P 1

disc}
4
j=1, as shown in Fig. 2(c). A skip

connection is adopted between the original feature F 1 and

the spatially enhanced features, so as to alleviate potential

errors in the attention map being propagated to the network.

The procedure is described as:

F̃ j = F 1 + Soft(Aj)⊗ F 1, (5)

where ⊗ denotes the pixel-wise multiplication operation

and F̃ j represents the refined feature from the jth branch

using the soft attention operation. The refined feature sets

are further concatenated and fed to a Conv1×1 layer to ob-
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tain the final segmentation prediction M, as in:

M = Conv1×1

(

Concat(F̃ 1, F̃ 2, F̃ 3, F̃ 4)
)

. (6)

Finally, the total training loss L for the proposed MRNet

framework is the combination of losses for the U-Net back-

bone, the MRM module and the MPM module, which can

be represented as:

L =LBCE(P
1, GT soft) + LBCE(M, GT soft)

+ α losscon + (1− α) lossrec, (7)

where LBCE denotes the binary cross entropy loss; α is a

hyper-parameter that balances the weight of reconstruction

loss lossrec and consistency loss losscon in the MRM mod-

ule and empirically set as 0.7 in this work.

4. Experiments

4.1. Datasets

Extensive experiments are conducted to verify the effec-

tiveness of the proposed framework on five different types

of medical segmentation tasks with data from varied image

modalities, including color fundus images, CT and MRI.

RIGA benchmark [1] is a publicly available dataset for

retinal cup and disc segmentation, which contains in total

of 750 color fundus images from three sources, including

460 images from MESSIDOR, 195 images from BinRushed

and 95 images from Magrabia. Six glaucoma experts from

different organizations labeled the optic cup and disc con-

tour masks manually for the RIGA benchmark [1]. During

model training, we select 195 samples from BinRushed and

460 samples from MESSIDOR as the training set, follow-

ing [53]. The Magrabia set with 95 samples is selected as

the test set to evaluate the model, which is not homologous

to the training dataset. Parameters of the U-Net encoder are

initialized with the model pre-trained on ImageNet [27].

QUBIQ benchmark [32], namely Quantification of Un-

certainties in Biomedical Image Quantification Challenge,

is a recently available challenge dataset specifically for the

evaluation of inter-rater variability. QUBIQ contains four

different segmentation datasets with CT and MRI modali-

ties, including brain growth (one task, MRI, seven raters, 34

cases for training and 5 cases for testing), brain tumor (one

task, MRI, three raters, 28 cases for training and 4 cases for

testing), prostate (two subtasks, MRI, six raters, 33 cases

for training and 15 cases for testing), kidney (one task, CT,

three raters, 20 cases for training and 4 cases for testing).

4.2. Experimental Setup

4.2.1 Implementation Details

In our experiments, the main framework utilizes the U-Net

architecture with ResNet34 as the backbone, and the MRM

module utilizes the DeepLab-V3+ architecture with VGG-

16 as the backbone. The network is implemented with the

PyTorch platform and trained/tested on a Tesla P40 GPU

with 24GB of memory. All training and test images are

uniformly resized to the dimension of 256×256 pixels. The

proposed network is trained in an end-to-end manner using

the Adam optimizer [25], and it takes about 4 hours to train

our model with a mini-batch size of 8 for 60 epochs. The

initial learning rate is set to 1× 10−4.

4.2.2 Evaluation Metric

The target of the proposed network is to produce probabil-

ity map M that can reflect the underlying inter-rater agree-

ment/disagreement, i.e., calibrated predictions, for medical

image segmentation. In order to better evaluate the cali-

brated model predictions, we use soft dice coefficient(D)

/ Intersection Over Union (IoU ) metrics through multiple

threshold levels, set as (0.1, 0.3, 0.5, 0.7, 0.9) in this pa-

per, instead of using a single threshold (e.g., 0.5). At each

threshold level, the predicted probability map M and soft

GT GT soft are binarized with the given threshold and then

the D and IoU metrics are computed. The D and IoU

scores obtained at multiple thresholds are averaged and then

we obtain the soft metrics, denoted as Ds and IoU s, respec-

tively. The higher the soft scores, the better calibrated the

model performance.

4.3. Experimental Results

4.3.1 Performance of the Multi-rater Strategy

In order to verify that our multi-rater strategy can generate

better calibrated segmentation maps under different given

expertness conditions, we conduct quantitative experiments

with different expertness setups on the RIGA test set in Ta-

ble 2. Here, M1-M6 refer to the U-Net baseline model

trained with the corresponding labels graded by Raters 1-

6, respectively. In addition, three commonly used multi-

rater strategies are employed to train the U-Net baseline

model, including majority vote (i.e., U-Net baseline model

[38] trained with the GT labels obtained by majority vote),

label sampling [19] and multi-head strategies [16], denoted

as MV-UNet, LS-UNet and MH-UNet, respectively, in Ta-

ble 2. The performance of the comparison models is evalu-

ated against various GT labels generated from different ex-

pertness vectors, including single rater condition (Raters1-6

raw gradings), random condition, average weight condition

and STAPLE [50]. For the random condition, we randomly

select three groups of results under different random expert-

ness and report the average performance.

As listed in Table 2, the proposed MRNet consistently

achieves superior performance under different conditions,

reflecting the dynamic representation capability of the MR-

Net by incorporating the expertise cues of individual raters.

In addition, it is worth noting that our approach achieves the
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Table 2. Quantitative results with different strategies on the RIGA test set under various expertise levels and ground-truths. The GTs are set

as individual rater mode (Rater1-6), fused using random conditions, majority vote of average weight and STAPLE strategy [50]. Here, we

use soft metrics (Ds
disc (%), Ds

cup (%)) to evaluate these results, where the best three results are shown in bold, red and blue, respectively.

Final Label Rater 1 Rater 2 Rater 3 Rater 4 Rater 5 Rater 6 Random Average STAPLE

Expertness [1,0,0,0,0,0] [0,1,0,0,0,0] [0,0,1,0,0,0] [0,0,0,1,0,0] [0,0,0,0,1,0] [0,0,0,0,0,1] [-,-,-,-,-,-] [1,1,1,1,1,1] [1,1,1,1,1,1]

M1 (Rater1) (95.11, 78.96) (93.88, 76.68) (95.24, 77.52) (95.15, 75.75) (95.60, 77.83) (95.55, 74.13) (96.94, 82.16) (97.10, 83.48) (96.01, 83.43)

M2 (Rater2) (95.74, 78.82) (95.48, 80.65) (95.38, 77.12) (95.12, 77.42) (95.01, 78.00) (95.27, 73.80) (96.85, 82.41) (96.77, 83.10) (95.80, 82.96)

M3 (Rater3) (95.30, 77.02) (94.63, 77.31) (96.21, 82.49) (94.73, 76.14) (94.14, 76.40) (95.09, 74.85) (96.57, 81.24) (96.66, 82.04) (95.49, 80.97)

M4 (Rater4) (95.20, 76.47) (94.38, 80.42) (94.81, 76.69) (96.58, 86.88) (95.52, 72.31) (95.39, 68.95) (96.99, 77.45) (97.01, 78.68) (96.12, 85.49)

M5 (Rater5) (95.18, 78.37) (94.82, 76.73) (95.05, 78.13) (95.18, 72.67) (95.34, 80.53) (95.97, 74.44) (96.60, 79.13) (96.68, 79.58) (95.64, 75.22)

M6 (Rater6) (95.05, 77.72) (94.64, 75.35) (95.39, 75.10) (95.16, 69.90) (95.09, 78.31) (96.34, 78.60) (97.00, 79.42) (96.99, 79.01) (95.77, 72.73)

MV-UNet [38] (94.87, 78.68) (95.47, 77.62) (95.12, 76.67) (94.82, 76.75) (95.44, 77.76) (95.71, 78.54) (97.11, 82.42) (97.03, 82.88) (95.94, 84.22)

LS-UNet[19] (94.85, 76.92) (94.26, 76.03) (94.89, 75.73) (95.20, 77.77) (95.10, 74.02) (95.13, 71.02) (96.62, 80.95) (96.90, 82.41) (94.99, 81.24)

MH-UNet [16] (94.71, 81.25) (94.73, 80.27) (95.77, 78.97) (95.71, 83.89) (95.52, 78.91) (96.11, 76.78) (96.37, 83.31) (96.81, 82.17) (96.15, 81.52)

Ours (95.35, 81.77) (94.81, 81.18) (95.80, 79.23) (95.96, 84.46) (95.90, 79.04) (95.76, 76.20) (97.28, 85.65) (97.55, 87.20) (96.26, 86.37)

best performance under majority vote (i.e., average weight

condition), with a large performance margin over all the

other models, including the MV-UNet which is specifically

trained with the majority vote consensus labels. These

empirical experiments demonstrate the effectiveness of the

proposed framework which is tailored for medical image

segmentations with multi-rater annotations, by taking ad-

vantage of the proposed dynamic expertness inferring and

multi-rater agreement modeling.

4.3.2 Comparisons with State-of-the-arts

To demonstrate the advantage of the proposed MRNet, we

compare our method with the state-of-the-art (SOTA) meth-

ods for joint optic cup and disc segmentation task. We use

the publicly released code with default parameters to retrain

the SOTA methods, with the same training/test set as that of

ours for a fair comparison.

Table 3 quantitatively compares our framework with five

SOTA cup/disc segmentation methods, including ResUnet

[53], CENet [15], AGNet [58], BEAL [45] and pOSAL

[46] on the RIGA test set. As shown in Table 3, our pro-

posed MRNet consistently achieves superior performance

compared with SOTA optic cup/disc segmentation methods.

The performance improvement is especially prominent for

the retinal cup segmentation where the inter-observer vari-

ability is more significant, with an increase of 1.2% for soft

dice coefficient value over the current best method.

Fig. 4 shows two typical examples generated by our MR-

Net and other SOTA methods. It is obvious that the prob-

ability map generated by the proposed model is better cali-

brated compared with other methods, especially for the am-

biguous regions among different experts. Thus, the predic-

tions generated by the proposed MRNet is able to better re-

flect the underlying dis-/agreement among multiple experts.

4.3.3 Ablation Studies

In this section, ablation studies are performed over each

component of the proposed MRNet, including the EIM,

MRM and MPM, as listed in Table 4 and Table 5. All

experiments are evaluated using the soft GT obtained with

GTs Ours BEAL pOSAL AGNet CENet ResUnetImage

Figure 4. Visual comparisons of our MRNet with the state-of-the-

arts for joint optic cup and disc segmentation tasks.

Table 3. Quantitative comparisons with the state-of-the-art meth-

ods for optic cup and disc segmentation on the Magrabia dataset.

Ds
disc (%) Ds

cup (%) IoU s
disc (%) IoU s

cup (%)

AGNet [58] 96.31 72.05 92.93 59.44

CENet [15] 96.55 81.82 93.38 71.03

ResUnet [53] 96.75 85.38 93.75 75.76

pOSAL [46] 95.85 84.07 92.12 74.40

BEAL [45] 97.08 85.97 94.38 77.18

MRNet (ours) 97.55 87.20 95.24 78.62

majority vote, i.e., the average weight expertness condition.

In Table 4, as we sequentially adding the proposed mod-

ules on top of the U-Net baseline, the model performance

is gradually improved, especially for that of the optic cup.

Firstly, by integrating the EIM with ConvLSTM into the

UNet baseline, the Ds
cup value is increased by 1.0%. Com-

pared to the direct condition operation by concatenating ex-

pertness with feature maps, the EIM with ConvLSTM op-

eration achieves better performance (Table 4(b) vs. (c)).

This indicates that the introduction of multi-rater expertise

knowledge via EIM with ConvLSTM improves the dynamic

representation capability of the model and the exploitation

of multi-rater annotations can arrive at better calibrated pre-

dictions. Additionally, in order to effectively utilize the

multi-rater cues for calibrating the segmentation results, the

MRM and MPM modules are specifically designed to re-

construct the raw multi-rater gradings and further to utilize

the multi-rater (dis-)agreement cues, which boosts the Ds
cup

metric by 2.0% and 1.5%, respectively.

To further investigate the influence of individual losses

and operations in the MRM and MPM, i.e., the MAM mod-

ule, a set of ablation studies is conducted for the reconstruc-

tion loss (lossrec), consistency loss (losscon) and soft atten-
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tion operation (Softop). In Table 5, the reconstruction loss

significantly improves the Ds
cup by 1.2%, reflecting the ne-

cessity of reconstructing raw multi-rater’s grading from the

fused soft GT/prediction. By adding the consistency loss

to constrain the features extracted from soft GT and coarse

prediction, the Ds
cup is further improved by 0.8%. More-

over, comparing Table 5 (iv) and (v), the soft attention oper-

ation further boosts the Ds
cup by 1.2% compared with using

‘hard’ attention, achieving the final Ds
cup score of 87.2%.

This verifies that the proposed soft attention mechanism can

better emphasize both certain and uncertain regions and fur-

ther to improve the calibration performance of the model.

We also investigate the influence of different U-Net back-

bones and the α hyper-parameter. With a stronger backbone

(ResNet101 vs. ResNet34), the model performance can be

further improved (88.45% vs 87.20%), in terms of Ds
cup(%).

When α is set as 0.3, 0.7, 0.9, the corresponding Ds
cup(%)

is 86.17%, 87.20% and 86.87%, respectively.

Table 4. Ablation analysis on the RIGA test set.

Module Average Expertness

Index Baseline EIM ConvLSTM MRM MPM Ds
disc (%) Ds

cup (%)

(a) X 97.03 82.88

(b) X X × 97.07 83.19

(c) X X X 97.16 83.74

(d) X X X X 97.52 85.75

(e) X X X X X 97.55 87.20

Table 5. Ablation analysis of our MAM on the RIGA test set. Here,

all experiments are based on UNet baseline + EIM.

MAM Average Expertness

No. Table 4 (b) lossrec losscon MPM Softop Ds
disc (%) Ds

cup (%)

(i) X 97.16 83.74

(ii) X X 97.39 84.94

(iii) X X X 97.52 85.75

(iv) X X X X × 97.54 86.05

(v) X X X X X 97.55 87.20

4.3.4 Generalization Capability

To further verify the effectiveness and generalization ca-

pability of the proposed MRNet, a generalization experi-

ment is conducted on a recently released QUBIQ dataset

for four types of medical image segmentation tasks that

contain both CT and MRI modalities. Several commonly

used multi-rater strategies are adopted for comparison, in-

cluding U-Net [38] based on majority vote (MV-UNet), la-

bel sampling [19] (LS-UNet) and multiple head strategies

[16] (MH-UNet). As listed in Table 6, the proposed MRNet

achieves better calibrated performance compared with other

commonly used methods and multi-rater strategies. These

quantitative results again verify that the underlying agree-

ment/disagreement information among multiple experts re-

garding the pathological region are beneficial to improve

calibrated segmentation accuracy through our multi-rater

agreement modeling. Several representative examples of

the comparison methods for four different types of medical

image segmentation are visualized in Fig. 5.

GTs Ours MH-UNet LS-UNet MV-UNet
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Figure 5. Segmentation results of different strategies for four dif-

ferent medical segmentation tasks on the QUBIQ dataset.

Table 6. Quantitative evaluation of five medical segmentation sub-

tasks with multi-rater modeling on the QUBIQ dataset, including

the segmentation of kidney (Ds
kidney), brain growth (Ds

brain), brain

tumor (Ds
tumor) and two prostate tasks (Ds

pros1 and Ds
pros2).

(%) Ds
kidney Ds

brain Ds
tumor Ds

pros1 Ds
pros2

FCN [31] 70.03 80.99 83.12 84.55 67.81

MC Dropout [14] 72.93 82.91 86.17 86.40 70.95

FPM [61] 72.17 - - - -

DAF [47] - - - 85.98 72.87

MV-UNet [38] 70.65 81.77 84.03 85.18 68.39

LS-UNet [19] 72.31 82.79 85.85 86.23 69.05

MH-UNet [16] 73.44 83.54 86.74 87.03 75.61

MRNet (ours) 74.97 84.31 88.40 87.27 76.01

5. Conclusion
In this work, we focus on the utilization of rich annota-

tion information from multiple experts, which are relatively

less-explored but widely presented in the medical image

grading procedure. We proposed to incorporate the multi-

rater (dis-)agreement cues in our MRNet framework and

generate calibrated model predictions that better reflected

the underlying agreement among multiple experts. This was

achieved by the use of an expertise-aware inferring module

to explicitly integrate graders expertise cues into high-level

semantic features, as well as a multi-rater agreement model-

ing module to reconstruct gradings of individual raters and

refine the coarse prediction to form the final calibrated seg-

mentation maps. Extensive empirical experiments demon-

strated the overall superior performance of our MRNet on

a range of medical image segmentation tasks over diverse

image modalities.
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