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Abstract

Knowledge distillation is a method of transferring the

knowledge from a pretrained complex teacher model to a

student model, so a smaller network can replace a large

teacher network at the deployment stage. To reduce the ne-

cessity of training a large teacher model, the recent litera-

tures introduced a self-knowledge distillation, which trains

a student network progressively to distill its own knowl-

edge without a pretrained teacher network. While Self-

knowledge distillation is largely divided into a data aug-

mentation based approach and an auxiliary network based

approach, the data augmentation approach looses its lo-

cal information in the augmentation process, which hin-

ders its applicability to diverse vision tasks, such as se-

mantic segmentation. Moreover, these knowledge distilla-

tion approaches do not receive the refined feature maps,

which are prevalent in the object detection and seman-

tic segmentation community. This paper proposes a novel

self-knowledge distillation method, Feature Refinement via

Self-Knowledge Distillation (FRSKD), which utilizes an

auxiliary self-teacher network to transfer a refined knowl-

edge for the classifier network. Our proposed method,

FRSKD, can utilize both soft label and feature-map distilla-

tions for the self-knowledge distillation. Therefore, FRSKD

can be applied to classification, and semantic segmenta-

tion, which emphasize preserving the local information.

We demonstrate the effectiveness of FRSKD by enumer-

ating its performance improvements in diverse tasks and

benchmark datasets. The implemented code is available at

https://github.com/MingiJi/FRSKD.

1. Introduction

Deep neural networks (DNNs) have been applied to var-

ious fields of computer vision due to the exponential ad-

vancement of convolutional neural networks [7, 27, 12].

To distribute the success at the mobile devices, the vi-

sion task needs to overcome the limited computing re-

Augmentation 

Parameter 

Shared 

(a) Knowledge Distillation 
(b) Self-Knowledge Distillation via 

Data-augmentation 

(d) Feature Refinement  

via Self-Knowledge Distillation  
(c) Self-Knowledge Distillation 

via Auxiliary Classifiers 

Figure 1: Comparison of various distillation methods. The

black line is the forward path; the green line is the soft la-

bel distillation; and the orange line is the feature distilla-

tion. (a) Conventional knowledge distillation method with

pretrained teacher [9, 26, 36, 14, 1]. (b) Self-knowledge

distillation method via data augmentation [32, 35, 18]. (c)

Auxiliary weak classifier based self-knowledge distillation,

which creates a set of layer-wise classifiers to generate a

backpropagation signal at each layer, and the layer-wise

classifier produce its estimation from the layer’s feature dis-

tillations of the orange line and the logit distillations of the

green line [39]. (d) Our proposed method. The original

classifier provides original feature as an input to the aux-

iliary self-teacher network (blue blocks). Afterwards, the

self-teacher network distills the refined feature-map to the

original classifier (orange lines).

sources [11, 41]. To solve this problem, the model com-

pression has been a crucial research task, and knowledge

distillation has been a prominent technology with a good

compression and equivalent performances [9].

Knowledge distillation is a method of transferring the

knowledge from a pretrained teacher network to a student

network, so a smaller network can replace a large teacher

network at the deployment stage. Knowledge distillation

utilizes the teacher’s knowledge through receiving either 1)

class predictions as soft labels [9]; 2) penultimate layer out-

puts [29, 21, 23], or 3) feature-maps including spatial in-
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formation at the intermediate layer [26, 2, 8]. Whereas the

knowledge distillation enables utilizing the larger network

in a condensed manner, the inference on such large network,

a.k.a. the teacher network, becomes an ultimate burden of

its practical usages. In addition, pretraining the large net-

work requires substantial computational resources to pre-

pare the teacher network.

To reduce such necessity of training a large network, the

recent literatures introduce an alternative knowledge dis-

tillation [6, 42]; which is a distillation from a pretrained

network with the same architecture of the student network.

This knowledge distillation is still known to be informative

to the student network with the same scale. Moreover, there

are literatures on a self-knowledge distillation, which trains

the student network progressively to distill and to regular-

ize its own knowledge without the pretrained teacher net-

work [43, 35, 18, 32, 39]. The self-knowledge distillation is

different from the previous knowledge distillation because it

does not require a prior preparation of the teacher network.

Self-knowledge distillation is largely divided into a

data augmentation based approach and an auxiliary net-

work based approach. The data augmentation based self-

knowledge distillation induces a consistent prediction of

relevant data, i.e. the different distorted versions of a sin-

gle instance or a pair of instances from the same class [32,

35, 18]. The auxiliary network based approach utilizes ad-

ditional branches in the middle of the classifier network, and

the additional branches are induced to make similar outputs

via knowledge transfer [43, 39]. However, these approaches

depend on the auxiliary network, which has the same or less

complexity than classifier network; so it is hard to generate

a refined knowledge, either by features, which are the output

of the convolutional layers, or soft labels, for the classifier

network [32, 35, 18, 43, 39]. Furthermore, the data aug-

mentation based approaches are vulnerable to lose the local

information between instances, such as differently distorted

instances or rotated instances. Therefore, it is hard to utilize

the feature distillation, which is well known technique for

improving the performances in general knowledge distilla-

tions [32, 35, 18].

To deal with the limitation of existing self-knowledge

distillation, this paper proposes a novel self-knowledge dis-

tillation method, Feature Refinement via Self-Knowledge

Distillation (FRSKD), which introduces an auxiliary self-

teacher network to enable the transfer of a refined knowl-

edge to the classifier network. Figure 1 shows the difference

between FRSKD and existing knowledge distillation meth-

ods. Our proposed method, FRSKD, can utilize both soft

label and feature-map distillations for the self-knowledge

distillation.

Therefore, FRSKD can be applied to classification and

semantic segmentation, which emphasize preservation of

the local information. FRSKD shows the state-of-the-

art performances in image classification task on various

datasets, compared to other self-knowledge distillation

methods. In addition, FRSKD improves the performances

on semantic segmentation. Besides, FRSKD is compati-

ble with other self-knowledge distillation methods as well

as data augmentation. We demonstrate the compatibility of

FRSKD with large performance improvements through var-

ious experiments.

2. Related Work

Knowledge distillation The goal of knowledge distilla-

tion is to effectively train a simpler network, a.k.a. a stu-

dent network, by transferring the knowledge of a pretrained

complex network, a.k.a. teacher network. Here, knowl-

edge includes the features at the hidden layers or the log-

its at the final layer, etc. Hinton et al. proposed a method

of knowledge distillation by transferring the teacher net-

work’s output logit to the student network [9]. The in-

termediate layer distillation methods were then introduced,

so such methods utilize the teacher network’s knowledge

from either the convolutional layer with feature-map level

preserving localities [26, 36, 14, 34, 16]; or penultimate

layer [24, 29, 21, 23, 30]. For the feature-map distilla-

tions, the prior works induced the student to imitate 1) fea-

ture of the teacher network [26], 2) abstracted attention

map of the teacher network [36], or 3) FSP matrix of the

teacher network [34]. For the penultimate layer distilla-

tions, the existing literature utilized the relation between

instances as knowledge, i.e. the cosine similarity between

feature sets at the same penultimate layer from pair of in-

stances [24, 29, 21, 23, 30]. In addition, prior experiments

concluded that these distillation methods on different lay-

ers perform better when different distillations are jointly ap-

plied. However, there are two distinct limitations: 1) knowl-

edge distillation requires pretraining of the complex teacher

model, and 2) variation of the teacher networks will result

in different performances with the same student network.

Self-knowledge distillation Self-knowledge distillation

enhances the effectiveness of training a student network

by utilizing its own knowledge without a teacher network.

First, some approaches utilize an auxiliary network for self-

knowledge distillation. For example, BYOT introduced a

set of auxiliary weak classifier networks that classify the

output with the features from the middle hidden layers [39].

The weak classifier networks of BYOT are trained by the

joint supervision of estimated logit values and true supervi-

sion. ONE utilized additional branches to diversify model

parameters and estimated features at the middle layer. This

diversification is aggregated through the ensemble method,

and the ensembled output creates the joint back-propagation

signal shared by the branches [43]. The commonality of

these auxiliary network approaches is the utilization of Ad-

hoc structure at the same level or weak classifier network
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at the middle layer. Hence, these approaches without en-

hanced network may suffer from a lack of more refined

knowledge.

Secondly, data augmentation was used for self-

knowledge distillation as well. DDGSD induced the con-

sistent prediction by providing differently augmented in-

stances, so the classifier network would face variations of

instances [32]. CSKD used logits of other instances belong-

ing to the same class for regularization purposes, so the clas-

sifier network would predict similar outcomes for the same

classes [35]. However, the data augmentations do not nec-

essarily preserve the spatial information, i.e. simple flipping

would ruin the feature locality, so the feature-map distilla-

tion is difficult to be applied in the line of data augmenta-

tions. SLA proposed augmenting the data label by combin-

ing the self-supervision task with the original classification

task. The self-supervision takes augmentations such as in-

put rotations, and the ensembled output of the augmented

instances provides additional supervision for the backprop-

agation [18].

Ideally, the feature-map distillation can be improved by

extracting the refined knowledge from a complex model.

However, the auxiliary structure of the prior works did not

provide such a method to make feature more complex. On

the contrary, the data augmentation may increase data vari-

ations or refinements in some cases, but their variability

can hinder the feature-map distillation because the varia-

tion will prevent consistent locality modelling from the pa-

rameter side. Therefore, we conjecture that supplying the

refinements to the feature-map distillation can be a break-

through in the auxiliary network-based self-knowledge dis-

tillation. Hence, we suggest the auxiliary self-teacher net-

work to generate a refined feature-map as well as its soft

label. To our knowledge, this paper is the first work on

a self-teacher network to generate a refined feature-maps

from a single instance.

Feature networks Our suggested structure of the auxil-

iary self-teacher network is developed from the feature net-

works used in the object detection field. The aggregation

of feature with various scales is one of key for processing

multi-scaled features, and the object detection field has in-

vestigated this scale variations in [19, 15, 40, 20, 28]. Our

auxiliary self-teacher network generates a refined feature-

map by adapting the network that deals with multi scaled

features to the knowledge distillation purpose. While we

will explain the adaptation of this structure in Section 3.1,

this subsection enumerates the recent developments of the

feature networks. FPN utilized a top-down network to si-

multaneously exploit 1) abstract information from the up-

per layers and 2) information on small objects at the lower

layers of the backbone network [19]. PANet introduced

additional bottom-up network for FPN to enable a short

path connection between a layer for detection and a layer

of backbone [20]. BiFPN proposed a more efficient net-

work structure, using top-down and bottom-up networks

as same as PANet [28]. This paper proposes an auxiliary

self-teacher network, which is altered from the structure

of BiFPN to be appropriate for the classification task. In

addition, the feature-map distillation has become efficient

by the alteration of the network structure because the self-

teacher network requires fewer computations than BiFPN

by varying the channel dimension according to the depth of

the feature-maps.

3. Method

This section introduces a feature refinement self-knowledge

distillation (FRSKD). Figure 2 shows the overview of our

distillation method, which is further discussed in Sec-

tion 3.1 from the perspective of the self-teacher net-

work. Then, we review the training procedure of our self-

knowledge distillation in Section 3.2.

Notations Let D = {(x1, y1), (x2, y2)), ..., (xN , yN ))}
be a set of labeled instances where N is its size; let Fi,j be

a feature map of the j-th block of the classifier network for

the i-th sample; and let cj be a channel dimension of the

j-th block of the classifier network. For notation simplicity,

we omit the index i in the rest of this paper.

3.1. Self-Teacher Network

The main purpose of the self-teacher network is provid-

ing a refined feature-map and its soft label for the classifier

network to itself. The inputs of the self-teacher network

are the feature-maps of the classifier network, F1, ..., Fn,

which assumes the n blocks of the classifier network. We

model the self-teacher network by modifying the structure

of BiFPN for the classification task. Specifically, we adapt

the top-down path and the bottom-up path from PANet and

BiFPN [28, 20]. Before the top-down path, we utilize the

lateral convolutional layers as following:

Li = Conv(Fi; di) (1)

Conv is a convolutional operation with an output dimen-

sion of di. Unlike the existing lateral convolutional layers

with di dimensions that is fixed at the network setup, we

design di that depends upon the channel dimension of the

feature map, ci. We set di as di = w × ci with a channel

width parameter, w. For the classification task, it is natu-

ral to set a higher channel dimension for the deeper layers.

Therefore, we adjust the channel dimension of each layer

to contain information of its feature-map depth. Also, this

design reduces the computation of the lateral layers.

The top-down path and the bottom-up path aggregate dif-

ferent features as the below:

Pi = Conv(wP
i,1 · Li + wP

i,2 ·Resize(Pi+1); di) (2)

Ti = Conv(wT
i,1 · Li + wT

i,2 · Pi + wT
i,3 ·Resize(Ti−1); di)
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Figure 2: Overview of our proposed self-knowledge distillation method, Feature Refinement via Self-Knowledge Distillation

(FRSKD). The top-down path and the bottom-up path aggregates different sized features and provide the refined feature-map

to the original classifier network. Exploiting feature-map of the self-teacher network, FRSKD performs distillation on refined

feature-map and soft label.

Pi represents the i-th layer of the top-down path; and Ti is

the i-th layer of the bottom-up path. Similar to BiFPN [28],

the forward pass connection has a different structure de-

pending on the depth of the layers. In Figure 2, in the case

of the shallowest bottom-up path layer T1 and the deepest

bottom-up path layer T4, each directly utilizes the lateral

layer L1 and L4 as inputs respectively for efficiency, in-

stead of using the features of the top-down path. In these

settings, to create a top-down structure that connects all the

shallowest layer, middle layer and deepest layer, the two di-

agonal connections for forward propagations are added: 1)

the connection from the last lateral layer, L4, to the penulti-

mate layer of the top-down path, P3; and 2) the connection

from the P2, to the first layer of the bottom-up path, T1.

We apply a fast normalized fusion with parameters, such

as wP and wT [28]. We use a bilinear interpolation for

the up-sampling, and we use the max-pooling for the down-

sampling, as Resize operator. For efficient calculations,

we use a depth-wise convolution for convolutional opera-

tions [11]. We conduct various experiments, and we ana-

lyze the results, according to the self-teacher network struc-

ture in Section 4.3. Finally, we attach the fully connected

layer on the top of the bottom-up path to predict the output

class, and the self-teacher network provides its soft label,

p̂t = softmax(ft(x; θt)) where ft denotes the self-teacher

network, parameterized by θt.

3.2. Self-Feature Distillation

Our proposed model, FRSKD, utilizes the output of the

self-teacher network, the refined feature-map, Ti, and the

soft label, p̂t. Firstly, we add the feature distillation, which

induces the classifier network to mimic the refined feature-

map. For feature distillations, we adapt the attention trans-

fer [36]. Equation 3 defines the feature distillation loss, LF :

LF (T, F ; θc, θt) = Σn
i=1||φ(Ti)− φ(Fi)||2 (3)

where φ is a combination of channel-wise pooling func-

tion with L2 normalization [36]; and θc is parameter of

the classifier network. φ abstracts the spatial informa-

tion of the feature-map. Therefore, LF makes the classi-

fier network learn the locality of the refined feature-map

from the self-teacher network. In addition, it is possible

to train a classifier network to mimic the refined feature-

map exactly [26, 8]; or utilize the transformation of the

feature-map [34]. Unless noted, this paper utilizes the atten-

tion transfer-based feature distillation, and we discuss the

methodology of the feature distillation in Section 4.3.

Similar to other self-knowledge distillation methods,

FRSKD also performs the distillation through the soft la-

bel, p̂t, as following:

LKD(x; θc, θt,K) (4)

= DKL(softmax(
fc(x; θc)

K
)||softmax(

ft(x; θt)

K
)

where fc is the classifier network; and K is the temperature

scaling parameter. Also, the classifier network and the self-

teacher network learn a ground-truth label using a cross-

entropy loss, LCE . By integrating the loss functions above,
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we construct the following optimization objective:

LFRSKD(x, y; θc, θt,K) (5)

= LCE(x, y; θc) + LCE(x, y; θt)

+ α · LKD(x; θc, θt,K) + β · LF (T, F ; θc, θt)

where α and β are hyperparameters; and we choose α ∈
[1, 2, 3] and β ∈ [100, 200]; further details are explained in

Appendix Sensitivity Analysis. Optimization is initiated by

backpropagations at the same time for both classifier and

self-teacher networks. To prevent the model collapse is-

sue [22], FRSKD updates the parameters by the distillation

loss, LKD and LF , which is only applied to the student net-

work.

4. Experiments

We evaluate our self-knowledge distillation method on

various tasks: classification and semantic segmentation.

Throughout this section, we mainly use three settings; uti-

lizing the distillation of soft label only (FRSKD\F); opti-

mizing by LFRSKD with the distillation of refined feature-

map and its soft label (FRSKD); and attaching the data aug-

mentation based on the self-knowledge distillation, SLA-

SD, with our method (FRSKD+SLA) [18].

4.1. Classification

Datasets We demonstrate the effectiveness of FRSKD

on various classification datasets: CIFAR-100 [17], Tiny-

ImageNet, Caltech-UCSD Bird (CUB200) [31], MIT In-

door Scene Recognition (MIT67) [25], Stanford 40 Actions

(Stanford40) [33], Stanford Dogs (Dogs) [13], and Ima-

geNet [3]. Cifar-100 and TinyImageNet consist of small

scaled images, and we resized TinyImageNet images to

meet the same size of CIFAR-100 (32×32). CUB200,

MIT67, Stanford40 and Dogs are datasets for the fine-

grained visual recognition (FGVR) tasks. FGVR contains

fewer data instances per class compared to CIFAR-100 and

ImageNet. ImageNet is a large scaled dataset to validate our

method to practically test the model.

Implementation details We use ResNet18 and WRN-

16-2 [7, 37] for CIFAR-100 and TinyImageNet. To adapt

ResNet18 to small sized datasets, we modify the first con-

volution layer of ResNet18 as a kernel size of 3×3, a single

stride, and a single padding. We remove a max-pooling op-

eration, as well. We use the standard ResNet18 for FGVR

tasks; and we apply both ResNet18 and ResNet34 to Ima-

geNet.

For all classification experiments, we use stochastic gra-

dient descents (SGD) with an initial learning rate of 0.1 and

weight decay as 0.0001. We set total epochs as 200, and

we divide the learning rate by 10 at epoch 100 and 150

for CIFAR-100, TinyImageNet and FGVR. For ImageNet,

we set total epochs as 90, and we divide the learning rate

by 10 at epoch 30 and 60. We set the batch size as 128

for CIFAR-100 and TinyImageNet; 32 for FGVR; and 256

for ImageNet. We use standard data augmentation methods

for all experiments, i.e. random cropping and flipping. In

terms of hyperparameters, we set α as two and β as 100 for

CIFAR-100; α as three and β as 100 for TinyImageNet; and

α as one and β as 200 for FGVR and ImageNet. Addition-

ally, we set the temperature scaling parameter, K, as four;

and we set the channel width parameter, w, as two for all

experiments. Further details are enumerated in Appendix

Implementation Details.

Baselines We compare FRSKD to a standard classifier

(named as Baseline), which doesn’t utilize the distillation,

with cross entropy based loss and six self-knowledge distil-

lation methods, which make a total of seven baselines.

• ONE [43] exploits an ensembled prediction of addi-

tional branches as the soft label.

• DDGSD [32] generates different distorted versions of

a single instance, and DDGSD trains to produce con-

sistent prediction for the distorted data.

• BYOT [39] applies auxiliary classifiers utilizing the

outputs of intermediate layers, and BYOT trains aux-

iliary classifiers by ground-truth labels and signals

from network itself, such as the predicted logit or the

feature-map.

• SAD [10] focuses on a lane detection by a layer-wise

attention distillation in network itself.

• CS-KD [35] forces a consistent prediction for the same

class by utilizing the prediction of other instances

within the same class as the soft label.

• SLA-SD [18] trains a network with an original classi-

fication task and a self-supervised task jointly by uti-

lizing the label augmentation. SLA-SD exploits an ag-

gregated prediction as the soft label.

We utilize the available official code for implementation

[35, 18, 43]. Otherwise, we implement models according to

the corresponding papers. We apply same training setting

according to the dataset, and we tune the hyperparameters

of baseline models.

Performance comparison Table 1 shows the classifica-

tion accuracy on CIFAR-100 and TinyImageNet with two

different classifier network structures. Most of the self-

knowledge distillation methods improve the performance

of the standard classifier. Compared to baselines, FRSKD

consistently shows better performance than other self-

knowledge distillation methods. Furthermore, FRSKD\F,

which does not utilize the feature distillation, shows bet-

ter performance than other baselines. This result shows

that the soft label of the self-teacher network outperforms
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Methods
CIFAR100 TinyImageNet

WRN-16-2 ResNet18 WRN-16-2 ResNet18

Baseline 70.42±0.08 73.80±0.60 51.05±0.20 54.60±0.33

ONE 73.01±0.23 76.67±0.66 52.10±0.20 57.53±0.39

DDGSD 71.96±0.05 76.61±0.47 51.07±0.24 56.46±0.24

BYOT 70.22±0.26 76.68±0.07 50.33±0.03 56.61±0.30

SAD 70.31±0.45 74.65±0.33 51.26±0.39 54.45±0.06

CS-KD 71.79±0.68 77.19±0.05 50.08±0.18 56.46±0.10

SLA-SD 73.00±0.45 77.52±0.30 50.77±0.33 58.48±0.44

FRSKD\F 73.12±0.06 77.64±0.12 52.91±0.30 59.50±0.15

FRSKD 73.27±0.45 77.71±0.14 53.08±0.33 59.61±0.31

FRSKD+SLA 75.43±0.21 82.04±0.16 51.83±0.37 63.58±0.04

Table 1: Performance comparison on CIFAR-100 and Tiny-

ImageNet. Experiments are repeated three times, and we

report average and standard deviation of the accuracy of the

last epoch. The best performing model is indicated as bold-

face. The second-best model is indicated as underline.

the data augmentation based methods. Additionally, the ef-

fect of the feature distillation is demonstrated by the out-

performance of FRSKD compared to FRSKD\F. Our pro-

posed model, FRSKD, is not dependent on the data aug-

mentation, so FRSKD is compatible with other data aug-

mentation based self-knowledge distillation methods, such

as SLA-SD. Hence, we conduct experiments by integrating

FRSKD and SLA-SD (FRSKD+SLA), and FRSKD+SLA

shows performance improvements with large margins on

most experiments.

Methods CUB200 MIT67 Dogs Stanford40

Baseline 51.72±1.17 55.00±0.97 63.38±0.04 42.97±0.66

ONE 54.71±0.42 56.77±0.76 65.39±0.59 45.35±0.53

DDGSD 58.49±0.55 59.00±0.77 69.00±0.28 45.81±1.79

BYOT 58.66±0.51 58.41±0.71 68.82±0.15 48.51±1.02

SAD 52.76±0.57 54.48±1.30 63.17±0.56 43.52±0.06

CS-KD 64.34±0.08 57.36±0.37 68.91±0.40 47.23±0.22

SLA-SD 56.17±0.71 61.57±1.06 67.30±0.21 54.07±0.38

FRSKD\F 62.29±1.65 61.32±0.67 69.48±0.84 53.16±0.44

FRSKD 65.39±0.13 61.74±0.67 70.77±0.20 56.00±1.19

FRSKD+SLA 67.80±1.24 66.04±0.31 72.48±0.34 61.96±0.57

Table 2: Performance comparison on FGVR. Experiments

are repeated three times, and we report average and stan-

dard deviation of the accuracy of the last epoch. The best

performing model is indicated as boldface. The second-best

model is indicated as underline.

Table 2 shows the classification accuracy on FGVR

tasks. Similar to the result of Table 1, FRSKD shows

better performance than other self-knowledge distillation

methods. The superior performance of FRSKD against

FRSKD\F indicates that the effect of feature distillation is

greater when using a larger image. Also, FRSKD+SLA out-

performs all of the other methods with large margins, so

the compatibility of FRSKD with data augmentation based

self-knowledge distillation methods provides a significant

advantage in FGVR tasks.

Model Method Top-1 Top-5

ResNet18
Baseline 69.76 89.08

FRSKD 70.17 89.78

ResNet34
Baseline 73.31 91.42

FRSKD 73.75 92.11

Table 3: Performance comparison on ImageNet. The best

performing model is indicated as boldface.

To demonstrate FRSKD on large-scaled datasets, we

evaluate FRSKD on ImageNet with two backbone network

alternatives, ResNet18 and ResNet34. Table 3 shows that

FRSKD improves the performance on ImageNet.

4.2. Semantic Segmentation

We conduct an experiment on semantic segmentation to

verify the efficiency of FRSKD in various domains. We

follow the most of the experimental settings from [8]. We

use a combined dataset of VOC2007 and VOC2012 trainval

as a training set; and we use the test set of VOC2007 as a

validation set, which are widely used settings in semantic

segmentation [4, 5]. This experiment utilizes an Efficient-

Det with stacked BiFPN structure [28] as a baseline. For

our experiments, we stack three BiFPN layers, and we use

additional two BiFPN layer as the self-teacher network. We

set an initial learning rate as 0.01; we set the total epochs as

60; and we divide the learning rate by 10 at epoch 40. We

describe further details in Appendix Implementation De-

tails. Table 4 shows that FRSKD improves the performance

of the semantic segmentation models by utilizing the self-

knowledge distillation from the self-teacher network.

Model Method mIOU

EfficientDet-d0
Baseline 79.07

FRSKD 80.55

EfficientDet-d1
Baseline 81.95

FRSKD 83.88

Table 4: Performance comparison on semantic segmenta-

tion task. The best performing model is indicated as bold-

face.

4.3. Further Analyses on FRSKD

Qualitative Attention map comparison In order to check

whether the classifier network is receiving a meaningful dis-

tillation from the self-teacher network, we conduct qualita-

tive analyses by comparing the attention maps of each block

from the classifier network and the self-teacher network.
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Method CIFAR-100 TinyImageNet CUB200 MIT67 Dogs Stanford40

Baseline 73.80±0.60 54.60±0.33 51.72±1.17 55.00±0.97 63.38±0.04 42.97±0.66

Fit+SKD 77.03±0.05 59.06±0.20 61.05±1.05 57.69±0.28 67.50±0.32 51.66±1.32

OD+SKD 77.12±0.09 59.14±0.20 57.44±0.92 54.83±2.63 66.51±0.87 49.09±0.47

FRSKD 77.71±0.14 59.61±0.31 65.39±0.13 61.74±0.67 70.77±0.20 56.00±1.19

Table 5: Performance comparison according to feature distillation method of FRSKD. The feature distillation method of

Fit+SKD is based on FitNet [26]; OD+SKD is based on overhaul distillation [8]; and FRSKD is based on attention trans-

fer [36]. ResNet18 is used as classifier network. The best performing model is indicated as boldface. The second-best model

is indicated as underline.
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Figure 3: The block-wise attention map comparison be-

tween classifier network (first row from each data) and self-

teacher network (second row from each data). From above,

each data was taken from CUB200, Dogs and MIT67.

We obtain the attention map by applying a channel-wise

pooling to the feature map for each block from the vari-

ous datasets: CUB200, MIT67 and the Dogs dataset. We

select the attention maps at the 50-th epoch to observe the

distillation behaviors in the learning process.

Figure 3 shows the differences in the block-wise atten-

tion maps for the classifier network and the self-teacher

network. For the data from CUB200 dataset, which is de-

signed to distinguish the species of bird, the cases of Block

2 and 3 illustrate that the classifier network does not cap-

ture the proper attention on the main object (bird). In con-

trast, the cases of Block 2 and 3 in a self-teacher network

show coherent attention maps on the target object by utiliz-

Type #channel Parameters FLOPs CIFAR-100

BiFPN 128 × 0.30 × 0.67 72.64±0.12

BiFPN 256 × 0.97 × 2.38 73.54±0.41

BiFPNc 128 × 0.19 × 0.21 71.70±0.19

BiFPNc 256 × 0.59 × 0.68 73.27±0.45

Table 6: Performance and efficiency comparison between

the self-teacher network structures. WRN-16-2 is used as

classifier network on CIFAR-100. BiFPN is a structure with

the same channel dimension for each layer, and BiFPNc is

a structure in which the channel dimension is different de-

pending on the depth of the layer as proposed in Section 3.1.

#channel is the channel dimensionl of the deepest layer, i.e.

Ln, Pn, Tn, of the self-teacher network. #channel of BiF-

PNc depends on the channel width parameter, w. Parame-

ters and FLOPs are the ratio of those of the classifier net-

work.

ing the aggregated features. This trend can also be found

in the data from the Dogs dataset. The self-teacher’s atten-

tion map points to the main object (dog) relatively with a

concentration compared to the attention map of the classi-

fier that is biased toward the human, which is not the main

object. The attention map comparison is also conducted on

MIT67 dataset, which performs indoor scene recognition by

reflecting the overall context, not the task of concentrating

on a single object. In order to successfully recognize the

scene class (bakery) of the data, it is important to utilize the

contextual cues inside the data. From the case of block 3,

unlike the classifier network, the self-teacher network pays

more attention to the bread, which can be an important clue

to the scene class (bakery).

Ablation with the feature distillation methods FRSKD is

able to integrate diverse feature distillation methods, so we

experiment such variations of the integrated feature distil-

lations. To analyze the performance differences, we com-

pare 1) exact feature distillation methods, FitNet and Over-

haul distillation; and 2) attention transfer methods used in

FRSKD. Table 5 shows that the attention transfer of FRSKD

achieves better accuracy in various datasets than the accu-

10670



Method CIFAR-100 TinyImageNet CUB200 MIT67 Dogs Stanford40

Baseline 73.80±0.60 54.60±0.33 51.72±1.17 55.00±0.97 63.38±0.04 42.97±0.66

FitNet 76.65±0.25 59.38±0.10 58.97±0.07 59.15±0.41 67.18±0.10 46.64±0.24

ATT 77.16±0.15 59.83±0.28 59.21±0.34 59.33±0.22 67.54±0.18 47.04±0.17

Overhaul 74.59±0.32 59.50±0.09 58.82±0.12 58.81±0.58 66.43±0.08 47.06±0.26

FRSKD 77.71±0.14 59.61±0.31 65.39±0.13 61.74±0.67 70.77±0.20 56.00±1.19

Table 7: Performance comparison on knowledge distillation. ResNet18 is used as classifier network. The best performing

model is indicated as boldface. The second-best model is indicated as underline.

Method CIFAR-100 TinyImageNet CUB200 MIT67 Dogs Stanford40

Baseline 73.80±0.60 54.60±0.33 51.72±1.17 55.00±0.97 66.38±0.04 42.97±0.66

Mixup 76.26±0.41 56.28±0.24 57.60±0.42 56.77±1.45 65.96±0.03 47.15±0.60

FRSKD + Mixup 78.74±0.19 60.30±0.38 67.98±0.58 62.11±0.81 71.64±0.29 56.50±0.36

CutMix 79.23±0.23 58.97±0.29 51.54±1.12 60.87±0.30 67.71±0.14 46.90±0.29

FRSKD + CutMix 80.49±0.05 61.92±0.11 65.92±0.59 66.19±0.49 72.81±0.23 55.75±0.43

Table 8: Performance of data augmentation method with FRSKD. ResNet18 is used as classifier network. The best perform-

ing model is indicated as boldface. The second-best model is indicated as underline.

racy from the integration of exact feature distillations.

Structure of self-teacher network In order to show the

proposed self-teacher network efficiency, we experiment

various self-teacher network structures, and Table 6 shows

the experimented variations. BiFPN with high channel di-

mension (256) achieves the best performance, but the pa-

rameter and FLOPs of BiFPN are even larger or similar to

the classifier network. In terms of efficiency, while BiFPN

is an inadequate choice for the self-teacher network because

of its large parameter size, BiFPNc with high channel di-

mension (256) shows a compatible performance to BiFPN

with much less computations. Since the increased compu-

tation of BiFPNc is smaller than those of the classifier net-

work, FRSKD is more efficient than the data augmentation

based self-knowledge distillation methods, which use the

classifier network in duplicates.

Compare to knowledge distillation Knowledge distilla-

tion with a teacher network easily utilizes the refined

feature-map and its soft label. Therefore, we compare the

existing knowledge distillation and FRSKD, which play

similar roles. Under the assumption that we have a pre-

trained teacher network, we compare exact feature distilla-

tion methods, FitNet and overhaul distillation [26, 8]; and

attention transfer methods [36]. For knowledge distillation,

we set the teacher network as the pretrained ResNet34 on

each dataset, and we set the student network as an untrained

ResNet18. For fair comparisons, each knowledge distilla-

tion method exploits the feature distillation as well as the

soft label distillation. FRSKD utilizes ResNet18 as a classi-

fier network to meet the identical conditions. Table 7 shows

that FRSKD outperforms the experimented knowledge dis-

tillation method with a pretrained teacher network on most

datasets.

Training with data augmentation The method of data

augmentation is compatible with FRSKD. To verify this

compatibility of FRSKD, we experiment our proposed

method with recent data augmentation methods. Mixup uti-

lizes a convex combination between two images and their

labels [38]. Cutmix mixes a pair of images and labels by

cutting an image into patches and pasting a patch on the

other image. It is known that such data augmentations im-

prove the accuracy on the most datasets. Table 8 shows that

FRSKD has a large performance improvement when being

used with data augmentations.

5. Conclusion

This paper presents a specialized neural network struc-

ture for self-knowledge distillation with top-down and

bottom-up paths. The addition of these paths are expected

to provide refined feature-maps and their soft labels to the

classifier network. Moreover, the change of channel dimen-

sions is applied to reduce the parameters while maintain-

ing the feature-map refinement. Finally, FRSKD is able

to apply self-knowledge distillation to the vision tasks of

classification and semantic segmentation. We confirmed

the large performance improvements quantitatively, and we

show the efficiency of working mechanisms with various

ablation studies.
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