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Abstract

An image is worth a thousand words, conveying infor-

mation that goes beyond the mere visual content therein. In

this paper, we study the intent behind social media images

with an aim to analyze how visual information can facil-

itate recognition of human intent. Towards this goal, we

introduce an intent dataset, Intentonomy, comprising 14K

images covering a wide range of everyday scenes. These

images are manually annotated with 28 intent categories

derived from a social psychology taxonomy. We then sys-

tematically study whether, and to what extent, commonly

used visual information, i.e., object and context, contribute

to human motive understanding. Based on our findings, we

conduct further study to quantify the effect of attending to

object and context classes as well as textual information in

the form of hashtags when training an intent classifier. Our

results quantitatively and qualitatively shed light on how vi-

sual and textual information can produce observable effects

when predicting intent.1

1. Introduction

Why do we post images on social media platforms like

Facebook or Instagram? Are we expressing our feelings to

friends and family? Are we seeking to entertain a wide au-

dience? Or is it purely out of habit, or perhaps out of fear

of missing out? Images on social media embody more than

their explicit visual information, and they tend to be persua-

sive in commercial ads and even manipulative in the context

of political campaigns. Therefore, in the deluge of social

media, understanding the intent behind images is critical,

especially for tasks like fighting fake news and misinforma-

tion [16, 32] on social platforms.

However, understanding human intent behind images

from a computer vision point of view is particularly chal-

lenging, since it goes beyond standard visual recognition—

predicting a set of stuff and thing categories that physi-

cally exist in images such as objects [25, 12, 56, 51, 18]

and scenes [34, 58, 67]. Additionally, it is a psychological

task [41] inherent to human cognition and behavior. It is

1Intentonomy project page: github.com/kmnp/intentonomy
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Figure 1. Intent behind images: while (b) shows that the visual

motif of holding hands aligns with the common intent of “in love”,

(a) illustrates that similarity based on visual appearance alone of-

ten would lead to an incorrect match with respect to intent.

similar in spirit to visual commonsense reasoning [62, 43]

to derive an answer conditioned on the objects and scenes

present in images. In certain cases, intent can be inferred

rather directly from representative objects and scenes. For

example, a couple holding hands or making a heart symbol

clearly have the same motive “in love”(Fig. 1(b)). However,

the mapping from visual cue to intent is not always one-

to-one. Fig. 1(a) shows that two images with completely

different contents (a girl facing the ocean vs. a person relax-

ing on a rocky surface, with face covered) can represent the

same intent (“harmony”). This goes beyond the usual vari-

ability (pose, color, illumination, and other nuisances) tradi-

tionally addressed in object recognition pipelines [11, 37].

This brings us to the question: are objects and their image

context sufficient for recognizing the intent behind images?

In this paper, we introduce a human intent dataset, In-

tentonomy, containing 14K images that are manually an-

notated with 28 intent categories, organized in a hierar-

chy by psychology experts. To investigate the intangible

and subtle connection between visual content and intent,

we present a systematic study to evaluate how the perfor-
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mance of intent recognition changes as a a function of (a)

the amount of object/context information; (b) the properties

of object/context, including geometry, resolution and tex-

ture. Our study suggests that (1) different intent categories

rely on different sets of objects and scenes for recognition;

(2) however, for some classes that we observed to have

large intra-class variations, visual content provides negli-

gible boost to the performance. Furthermore, our study also

reveals that attending to relevant object and scene classes

brings beneficial effects for recognizing intent.

In light of this, we further study a multimodal frame-

work for intent recognition. In particular, given an intent

category, the framework localizes, in a weakly-supervised

manner, salient regions in images that are important for rec-

ognizing the class-of-interest. These discovered regions are

further reinforced during training using a localization loss

to guide the network to focus. In addition, we leverage

hashtags as a modality complementary to visual informa-

tion. We demonstrate through extensive evaluations that

properly ingesting visual and textual information helps to

boost the performance of intent prediction significantly.

Our work makes the following key contributions: (1) A

novel dataset of 14,455 high-quality images, each labeled

with one or more human perceived intent. This dataset,

which we call Intentonomy, offers a total of 28 intent la-

bels supported by a systematic social psychological taxon-

omy [41] proposed by experts; (2) A systematic study to

show how commonly used object and context information,

as well as textual information, contribute to intent recogni-

tion; (3) We introduce a framework with the help of weakly-

supervised localization and an auxiliary hashtag modality

that is able to narrow the gap between human and machine

understanding of images.

2. Related Work

Prior work on intent recognition has focused on com-

municative intents in different contexts. Joo et al. [19] de-

fine 9 dimensions of persuasive intents of a politician im-

plied through a photo (e.g., trustworthy). Other works [20,

38, 15, 45] also focus on persuasive intents in political im-

ages. Additional related work includes image and video

advertisement understanding including topics, sentiment

and intent [17, 64, 60], or the motivation behind the ac-

tions of people from images [31, 54]. Understanding in-

tent is also a key component in persuasive dialogue sys-

tems [35, 9, 61, 57]. In this work, we focus on the behavior

of the people who post on social media websites. While a

large body of work [23, 1, 24, 2, 42, 40] exists that study

the motivations behind the usage of social media, relatively

much fewer work exists in the area of computer vision.

The most similar work in terms of understanding human

motive in social media is from [22], which introduces a mul-

timodal dataset to understand the document intent in Insta-

gram posts. However, we differentiate our work in terms of

goals and methods: (1) we emphasize “visual intent” rather

than “textual intent”, meaning that we study human motive

mainly based on the perceived motives behind images rather

than textual data; (2) we systematically analyze how objects

and context contribute to the recognition of human motives

in the social media domain; (3) our dataset contains more

fine-grained categories (28 classes in total) with nine super-

categories compared to 8 categories from [22].

Our study on the relationship between intent and con-

tent is inspired by [65], which studied the effect of context

for object recognition. Other works also proposed context-

aware models in various tasks such as object recognition

and detection [48, 13, 49, 30, 6, 29, 14, 28, 3, 26, 4], scene

classification [59, 5], semantic segmentation [59, 29], scene

graph recognition [63], visual question answering [44]. Our

work utilizes both object- and scene-level information to

distinguish between different intent classes.

3. Intentonomy Dataset

Images Our dataset is built up of free-licensing high-

resolution photos from the website Unsplash2. We sample

images with common keywords that are similar to social

media hashtags, including “people”,“happy”, etc. The re-

sulting images cover a wide range of everyday life scenes

(e.g., from parties, vacations, and work).

Intent taxonomy The selection of intent labels is a non-

trivial exercise. The labels must form a representative set of

motives3 from social media posts, and it should occur with

high enough frequencies in the collection of the dataset.

Previous work on motive taxonomies [41] provide a solid

foundation for our study. However, not all of the 161 hu-

man motives presented in [41] are suitable in the context of

social media posts, or can be inferred from single-image

inputs. For example, one might need background infor-

mation about the person inside the image to judge if the

intent is “being spontaneous”, “to be efficient”, “to be on

time”. Some fine-grained motives in the taxonomy could be

merged. For instance, “social group” and “close friends”,

“making friends” and “having close friends”. Wherever

possible, we further divide certain motives into sub-motives

(“in love” and “in love with animal” for instance), for more

granularity. Fig. 2 illustrates our resulting ontology in full

with hierarchy information and annotated image examples.

Annotation details Amazon Mechanical Turk (MTurk) was

recruited to collect labels of perceived intent by employing a

similarity comparison task that we call “unsatisfactory sub-

stitutes”. We rely on the notion of “mental imagery” [46]

– a quasi-perceptual experience that maps example images

to a visual representation in one’s mind, along with games

2Unsplash Full Dataset 1.1.0
3We use intent and motive interchangeably
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Figure 2. Ontology visualization. We select 28 labels from a general human motive taxonomy used in psychology research [41]. There

are 9 super-categories in total (in black box), namely “virtues”, “self-fulfill”, “openness to experience”, “security and belonging”, “power”,

“health”, “family”, “ambition and ability”, ”financial and occupational success”. See the Appendix for dataset statistics.

• Attractive,

• Compete,
• Harmony,

• Close to parents’ family,

• Communicate,

• Creative and unique,

• Easy Life,
• Enjoy Life,

• Teach Others,

• Things In Order,

• WorkILike
• ...

(a) (b)

Figure 3. Annotation methods comparison. (a) A standard anno-

tation process: given a image, choose the desired labels from a

drop-down list; This approach is time-consuming and highly de-

pendent on the expertise of annotators. (b) Our approach: similar-

ity comparison using “unsatisfactory substitutes” so the annotators

can focus on the “swapabilities” of image pairs regarding the in-

tent. The task is to select all the images in the grid that clearly

have a different intent than the reference image on the left.

with a purpose [52, 53, 8, 50] as our overall annotation ap-

proach. Fig. 3 displays the differences between a standard

annotation process and ours. Due to space constraints, we

leave other details in the Appendix.

Although we have implemented strategies to ensure

quality (see the Appendix), we acknowledge that there are

inevitable inconsistencies in our training data. Different

people have different opinions of perceived intent. Prior

work [50] shows that there is at least 4% error rate in pop-

ular datasets like CUB-200-2011 [55] and ImageNet [7].

Yet these datasets are still effective for computer vision re-

search. Deep learning is robust to label noise in training

set [50, 36]. To this end, we create a highly curated test

set by enlisting a single domain-specific taxonomic expert

to provide the annotations for both validation (val) and test

sets. In our experiments, we regard this expert’s opinions

as the “gold standard,” which allows us to focus on self-

consistency in val and test sets, but we acknowledge that

challenges remain in terms of resolving matters of disagree-

ment among communities of experts. In the end, Intenton-

omy dataset has 12,740 training, 498 val, 1217 test images.

Each image contains one or multiple intent categories.

4. From Visual Content to Human Intent

Our goal is to investigate systematically how visual con-

tent within images contributes to the understanding of hu-

man intent. To this end, we disentangle the impact of vi-

sual content on intent classification by a series of controlled

experiments inspired by the methodology in [65]. More

specifically, we study the effect of visual content in terms

of object (O) and context (C), and focus on the following

fundamental aspects: (1) the amount of content informa-

tion; (2) three different content properties, including geom-

etry, resolution, and low-level texture. We then analyze the

relationships between intent classes and specific things and

stuff classes. Fig. 4 and 5 provide an overview of our study

under different control settings to analyze how visual infor-

mation affects intent recognition.

More formally, given an image I , we apply a perturba-

tion either to its objects or context to produce a modified

image: Itx = f(I, t, x), x ∈ X, t ∈ {O, C}, where f(·) in-

dicates a transformation function as will be introduced be-

low and X is a set of positive integers defining the level

of changes. The larger the value of index x, the closer the

Itx is to the original images. We now introduce different
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Figure 4. Example images with full content (far left), and image modifications used for the controlled conditions of our study.

Properties |X| Itx = f(·)

Geometry 6 jigsaw(g×g)(t) ,

g = 25−x , x ∈ [0, 5]

Resolution 6 blurσ(t),
σ = 25−x, x ∈ [0, 5]

Low-level 3
{

no t x = 0

✶{texture(t)} x = 1, 2
texture features

Table 1. Content properties investigation. t ∈ {O, C}.

transformation functions used to see how intent recognition

performance changes based on different visual contents.

Amount of content We control the amount of object or con-

textual information by expanding (or decreasing for context

experiments) the bounding boxes (bbox) of detected objects

by e pixels:

Itx =











bboxt x = 0

bboxt ± e x ∈ [1, 7] e = 2x

full image x = 8

where bbox(t∈O) denotes the image area within the bound-

ing box, and bbox(t∈C) is the area outside the bounding box

(see two images in Fig. 4 (the third column from the right)

for an example). A total of 9 variations for both objects and

context are included. The larger x indicates that the larger

the amount of objects or context are presented.

Content properties We also study how visual properties

impact intent recognition. We analyze the effect of the fol-

lowing properties of O and C, including:

1. geometry: regions of objects or context are broken

down to g × g tiles and randomly re-arranged (we call

this operation jigsaw), while the other content compo-

nent remains intact;

2. resolution: convolving the selected content com-

ponent with a Gaussian function (zero-mean and vari-

ous values of standard deviation σ);

3. low-level texture features: visual tex-

tures are constructed using image statistics [33] for the

selected content component.

For all three properties, we only modify the selected regions

and paste other intact content components to their original

locations. Table 1 describes our method in detail.

Analysis and discussion Given each transformation f , we

finetune a pretrained CNN model and obtain the macro F1

score on the modified validation set. Each model is run mul-

tiple times to reduce variance. Fig. 5 shows results of the

4 experiments focusing on content size and three proper-

ties. In general, we observe a positive correlation between

the amount of content and the macro F1 score. We can see

in Fig. 5(a) that recognition F1 score decreases when con-

text/object information is removed, for a majority of motive

labels (e.g. “BeatCompete” and “SocialLife*”), confirming

that context and objects clues are both important.

Interestingly, there are some exceptions to this trend

where either objects or context, on its own, yield compa-

rable results to the original images. For categories like “at-

tractive” or “in love”, object information alone offers com-

parable F1-scores to full images. In other cases, contextual

information achieves decent performance for motives like

“appreciate architecture”, “natural beauty”. Such motives

are usually associated with representative gestures that pro-

vide strong supervisory signals (e.g., see Fig. 1). These sig-

nals usually come from single content module, which we

further demonstrate in the next subsection.

In addition, Figs. 5(b)-5(d) demonstrate how content

properties affect intent recognition. We see that geome-

try, blurred effect, and texture features of the content com-

ponent decrease the intent recognition performance. See

macro F1 score and “beatCompete” in Figs. 5(b)-5(d) for

example. Similar to the content size experiment previously,

the impact of content properties is different for different

classes. The bottom plots of Figs. 5(b)-5(d) show that “At-

tractive” is sensitive to object manipulation. Motives like

“Art-Arch*”, on the other hand, have an opposite trend

where context contributes more than objects. The recog-

nition results are robust to object manipulation, yet sensi-

tive to context modulation overall. These observations are

further illustrative of the varying importance of objects or

contextual information for different classes.

Relationship between intent and object/context classes

The above analysis demonstrates different intent categories
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(a) Content size.

(b) Content geometry. (c) Content resolution. (d) Content texture.

Figure 5. A study on intent and content. Overall there are three trends among 28 classes, which are presented in Figs. 5(a)-5(d). F1 scores,

including average value and standard deviation over 5 runs, and random guess results, for selected classes and selected data variations are

displayed. Class names ends with “*” are abbreviated (e.g. “Art-Arch*” is short for “appreciate architecture”).
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Figure 6. A visualization of Π (Eq. 1), where each entry denotes

the correlation between a pair of intent and object/context class.

have different preferences on objects and/or context. We

now examine whether there exists relationships between in-

tent categories and specific objects/context classes.

More specifically, given an image I with a intent la-

bel m and a trained intent recognition model, we use

class activation mappings [66], to produce a binary mask

CAMb(I,m, τcam) (τcam is a threshold value) to represent

the discriminate image regions for class m in the image. We

also feed the image to a segmentation model pretrained on

the COCO Panoptic dataset [21] to obtain a binary mask

Pano(I, p, τp) ( τp is a threshold value) for the class p in

the COCO dataset. We use the COCO Panoptic dataset [21]

because it contains widely used thing and stuff categories.

We then define the correlation between p and m as:

Πp,m =
CAMb(I,m, τcam) ∩ Pano(I, p, τp)

Pano(I, p, τp)
. (1)

Here, objects with high scores tend to be semantically

meaningful for the corresponding intent categories. Fig. 6

further validates our findings in the content modulation ex-

periments. While there are intent classes requiring both ob-

ject and context, certain classes are object-oriented while

others are context-oriented. Further, it can be observed that

certain intent classes are also more dependent on particular

object or context classes. For example, “person” is seman-

tically meaningful for intent like “Attractive” and “inHar-

mony”. It is also consistent that stuff classes like “building”,

“bridge” can help discriminate classes like “Architecture”.

It is worth mentioning that some intent classes (e.g. “ea-

syLife”, “socialLife”) have no or few correlated thing or

stuff classes. Indeed, the F1 score for some motive classes

are comparable to random guessing (see Fig. 5(a)). We sus-

pect that visual information only is not enough to represent

the inherent visual and semantic diversity in those classes.

5. Multimodal Intent Recognition

The study in Sec. 4 demonstrates that different intent

classes have different correlation with context and objects,
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Figure 7. Method overview. Given an image I , we localize important object and context regions for an intent of interest and additionally

use hashtags to complement visual information. See texts for more details.

and so using a single “one-size-fits-all” network for intent

recognition is sub-optimal. To mitigate this issue, we in-

troduce a localization loss that identifies, for each class, re-

gions in images that are important (Sec. 5.1). In addition, as

shown, visual information alone is not sufficient for predict-

ing certain classes of intent. To compensate, we also pro-

pose to use an auxiliary channel to provide complementary

semantic information (Sec. 5.2). The overall framework is

presented in Fig. 7.

5.1. Object/Context localization

Since different intent classes rely on different visual con-

tent (either O or C), we wish to guide the network to attend

to these regions when recognizing a class of interest. In par-

ticular, we first split all intent categories into 3 groups based

on our study in Sec. 4: object-dependent (MO), context-

dependent (MC ), and others which depends on the entire

image. We then use CAM [66] to localize salient regions in

a weakly-supervised manner and minimize the overlap area

between CAM and the image area that is not a region of

interest (Fig. 7).

Formally, given a motive class m and an image

sample I , CAM(I,m) denotes the real-valued version

of CAMb(I,m, τcam) (see Sec.4). Let MaskC(I) and

MaskO(I) be the aggregated binary masks in image I that

represent all detected thing (PT ) and stuff classes (PS ), re-

spectively. See examples of MaskO(I) and MaskC(I) in

Fig. 7. The localization loss is then defined as:

LO =
∑

m∈MO

(

CAM(I,m)⊙ MaskC(I)
)

, (2)

LC =
∑

m∈MC

(

CAM(I,m)⊙ MaskO(I)
)

, (3)

where ⊙ is element-wise multiplication. The final loss Lloc

is the summation of all the entries in LO and LC .

Note that our approach is similar to previous work that

addresses contextual bias [39]. Both approaches use CAM

as weak annotations to guide training. However, our method

does not require a regularization term which grounds CAMs

of each category to be closer to the regions from a previ-

ously trained model. Therefore, our approach can be trained

with a single pass, in an end-to-end fashion.

5.2. Hashtags as an auxiliary modality

Visual information is not sufficient for recognizing cer-

tain intent categories (see “EasyLife” in Fig. 6). To fur-

ther improve intent recognition, we resort to language in-

formation as a complementary clue for improved perfor-

mance. Unfortunately, images from Unsplash are not as-

sociated with any text information. We instead leverage vi-

sual similarities of the Unsplash images to a larger set of

images, which do contain associated metadata that loosely

describe the semantics within the images. Instagram (IG)

is a social media platform that contains billions of publicly

available photos, often with user-provided hashtags. This

presents an opportunity to weakly relate images with vastly

different visual appearances that contains similar semantic

information, by means of hashtags.

In particular, we first compute regional maximum activa-

tions of convolutions features [10, 47] from the last activa-

tion map of a pretrained Resnext-50 (32x4) model (trained

on ImageNet-22k [7]) on 7-days of public photos from IG

as well as all the images from our intent dataset. Using

these embeddings, we then perform a KNN query for each

Unsplash image to retrieve the top k matching IG images

for each of the images in our intent dataset. Finally, for

each matching IG photo, we collect all of the associated

hashtags (additional details are in the supplemental mate-

rial). The collection of all matched hashtags for a given

Unsplash image are represented as an unordered set HT .

See Fig. 7 for examples of fetched hashtags. However,

directly using hashtags are challenging because: 1) hash-

tags can be noisy, much like web-scale data tends to be; 2)

a hashtag is usually a concatenation of several words, in-
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cluding multilingual phrases and emojis (e.g. #coffeme,

#landscapephotography). There are a large amount

of out of vocabulary words if one uses a pre-trained word

embedding for the entire hashtag. We thus first break the

hashtags down using a known dictionary of words (i.e.

#coffeeme → “coffee” “me”). Subsequently, unusual

and noisy tokens/hashtags are automatically filtered out.

Formally, given HT for one image sample and a dictio-

nary V , we first segment each hashtag hs into a list of tokens

based on the given vocabulary: WordBreak(hs,V) = [w],
w ∈ V , hs ∈ HT . Separated tokens of one hashtag are

mapped to a dense embedding individually, and aggregated

into a single representation. Next, all of the resulting hash-

tag representations are averaged to compute a unified fea-

ture for all hashtags associated with a single image. Finally,

the hashtag features are concatenated with image features

into an integrated representation for classification.

Loss function To capture the different opinions from crowd

annotators, we use cross-entropy loss with soft probability,

denoted as LCE , inspired by [27]4. More formally, our

model computes probabilities ŷ
intent

using a softmax ac-

tivation, and minimizes the cross-entropy between ŷ
intent

and the target distribution yintent. yintent is a target vec-

tor, where each position m contains the number of crowd

workers who labeled the associated image to motive class

m, normalized by the total number of crowd workers to in-

dicate a probability distribution.

6. Experiments

In this section, we conduct extensive experiments to

evaluate the effectiveness of different components of the

multimodal framework. More specifically, we report the

performance of the following approaches: (1) RANDOM,

which is the success rates by random guessing; (2) VISUAL,

which finetunes a standard ResNet50 model to classify mo-

tives; (3) HASHTAGS (HT), which only uses hashtags to

predict intent; (4) VISUAL + HT, which combines visual

information and hashtags; (5) VISUAL + Lloc, which aug-

ments a visual model with the proposed localization loss;

(6) VISUAL + Lloc + HT, which denotes our full model.

Among them, (2)-(4) are trained using the standard cross-

entropy loss only, LCE . When the localization loss Lloc is

applied, we sum both Lloc and LCE : L = λLloc +LCE . λ

is a scalar to determine the contribution of each loss term.

Performance are measured using Macro F1, Micro F1, and

Samples F1 scores. We repeat each experiment 5 times and

report the mean and standard deviation (std).

Table 2 summarizes the results. We can see that the full

model achieves a 31.12 macro F1 score, outperforming the

VISUAL baseline by +7.76% percent difference, as well as

4Similar to [27], we also tried sigmoid cross-entropy loss but obtained

worse results.

Method Macro F1 Micro F1 Samples F1

RANDOM 6.94 ± 0.09 7.18 ± 0.10 7.10 ± 0.10

VISUAL 28.88 ± 0.56 37.08 ± 1.07 36.06 ± 1.51

HT 19.72 ± 0.88 29.30 ± 1.62 31.47 ± 1.64

VISUAL + Lloc
30.37 ± 0.51 38.64 ± 0.95 37.41 ± 1.51

(+1.49) (+1.56 ) (+1.35)

VISUAL 30.32 ± 0.62 37.61 ± 0.85 38.98 ± 1.70

+ HT (+1.44) (+0.53) (+2.92)

VISUAL + Lloc 31.12 ± 0.63 38.49 ± 0.88 38.77 ± 1.74

+ HT (+2.24) (+1.41) (+2.71)

Table 2. Experimental results of different approaches for intent

recognition measured in Micro F1, Macro F1, Samples F1 scores.

(+ ·) indicate the difference comparing to VISUAL. (+ ·) in green

denotes that the difference is larger than the std.

the HT baseline by +57.81% percent difference. Further-

more, compared to the VISUAL only approach, adding the

localization loss improves macro F1 score by 5.16%. We

also observe that visual and text information are comple-

mentary, offering 4.99% and 53.75% gain compared to vi-

sual and text only, respectively.

To better understand why Lloc and HT improve visual

only model, we break down the intent classes into differ-

ent subsets based on their content dependency, i.e., object-

dependent (O-classes), context-dependent (C-classes), and

Others which depends on both foreground and background

information; (2) difficulty, which measures how much the

VISUAL outperforms achieves than the RANDOM results

(“easy”, “medium” and “hard”). More details are given in

the Appendix. Table 3 summarizes the subset results.

The effectiveness of Lloc We see from Table 3 that when

adding the localization loss gains are more significant for

O-classes, compared to C-classes and Others. The local-

ization loss depends on the area of either object or context

regions in the images, and the objects’ region, which is used

in LC in Eq. 3, are typically small5. As a result, the Lloc has

no significant effect on the final score.

We also conduct a qualitative study to understand why

the localization loss helps intent recognition. Results are

shown in Fig. 8. We can see that the localization loss helps

the model to focus on the correct region of interest for both

O- and C-classes, especially when the image is scattered

with multiple objects and scenes. Fig. 8(a) confirms that

VISUAL + Lloc works well when both object and context in-

formation are presented in the image (bottom 2 examples),

or the target region of interest is small (top example). We

also note in Fig. 8(b) that for images where the region of

interest is located in the center, or is relatively large, both

VISUAL and our method give good results.

The effectiveness of hashtags From Table 3, we observe

5Note that LC minimizes the overlap region between object area and

the salient region (CAM).
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Method Content Difficulty

O-classes C-classes Others Easy Medium Hard

RANDOM 7.75 ± 5.47 12.53 ± 5.96 6.05 ± 5.23 19.86 ± 1.28 7.11 ± 3.40 2.81 ± 1.80

VISUAL 34.92 ± 3.63 41.27 ± 3.53 25.34 ± 1.13 61.84 ± 4.90 33.71 ± 2.24 11.73 ± 1.74

HT 26.96 ± 0.80 35.15 ± 4.18 15.43 ± 0.87 63.58 ± 1.79 19.68 ± 1.70 6.63 ± 1.43

VISUAL + Lloc 38.82 ± 1.95 (+3.9) 43.14 ± 3.00 (+1.87) 25.90 ± 1.35 (+0.56) 63.67 ± 1.47 (+0.09) 34.72 ± 1.26 (+1.01) 13.83 ± 1.13 (+2.10)

VISUAL + HT 37.71 ± 2.70 (+2.79) 42.17 ± 3.62 (+0.90) 26.36 ± 1.17 (+1.02) 66.67 ± 2.12 (+4.83) 32.93 ± 1.57 (-0.78) 15.52 ± 0.98 (+3.79)

VISUAL + Lloc + HT 39.82 ± 1.56 (+4.90) 42.09 ± 2.57 (+0.82) 26.77 ± 1.13 (+1.43) 66.18 ± 4.56 (+4.34) 33.86 ± 1.08 (+0.15) 16.50 ± 1.80 (+4.77)

Table 3. Experimental results in terms of how much object/context information intent categories need (content), and how difficult it is for

VISUAL to outperforms the RANDOM results (difficulty). (+ ·) indicates the difference comparing to VISUAL. (+ ·) in green denotes that

the difference is larger than the std.

(b)(a)

Original VISUAL VISUAL+ ℒ!"#

FineDesignLearnArt-
Art

Good Parent & 
Emotion Close to Child

Attractive;  
In Love 
(animal)

Original

Attractive;  
In Love 
(animal)

FineDesignLearnArt-
Arch

FineDesignLearnArt-
Art

VISUAL+ ℒ!"#VISUAL

Figure 8. Analysis of the proposed localization loss. (a) VISUAL + Lloc approach learns to isolate appropriate regions of interest,

comparing to VISUAL. For example, our method learn to focus on the dog and girl respectively for “In love (animal)” and “Attractive”

respectively, which are O-classes. (b) Examples for which both VISUAL + Lloc and VISUAL produce similar visualizations. Both methods

focus on the correct region, which are located in center and account for a larger area of the image.

that the model using both images and hashtags outperforms

the uni-modal approaches over “easy” and “hard” classes,

without hurting the “medium” classes. This suggests there

is value in the auxiliary information to help close the seman-

tic gap. Therefore, our results suggest that images and hash-

tags do in fact complement each other in the motive recog-

nition task. For example, #love is directly indicative of

the intent label “in love”, as is #workout of “health” (see

Fig. 7 for more hashtag examples). Interestingly, for “easy”

classes, HT model outperforms the VISUAL model by 8.2%,

however it struggles with the “medium” and “hard” classes

(Table 3). This suggests that hashtags provided by users,

while noisy, do still contain information about intent to

some extent.

It is perhaps counter-intuitive that hashtags do not out-

perform visual signals entirely. While hashtags seem to cap-

ture the essence of human intents (see examples in Fig. 7),

careful inspection of the fetched hashtags shows that not all

hashtags are useful in practice. Obscurity and ambiguity

exist, including typos, slang, inside jokes, and irrelevant in-

formation. More effective modeling of hashtags remains an

open research problem.

7. Conclusion

In this work, we studied the problem of modeling hu-

man motives in social media posts. We introduced a new

dataset that taps into mental imagery in a novel annotation

game with a purpose to acquire labels from MTurk, and

collected a rich image dataset with 28 human motives sup-

ported by a social psychological taxonomy. We conducted

rigorous studies to explore the connections between content

and intent. Our results show that there is still much room

for improvement (for context-dependent, and hard classes

for example). We therefore hope that the new Intentonomy

dataset will facilitate future research to better understand

the cognitive aspects of images.

Acknowledgement We thank Luke Chesser and Timothy Car-

bone from Unsplash for providing the images, Kimberly Wilber

and Bor-chun Chen for tips and suggestions about the annotation

interface and annotator management, Kevin Musgrave for the gen-

eral discussion, and anonymous reviewers for their valuable feed-

back. This work is supported by a Facebook AI research grant

awarded to Cornell University.

12993



References

[1] Tamar Ashuri, Shira Dvir-Gvisman, and Ruth Halperin.

Watching me watching you: How observational learning af-

fects self-disclosure on social network sites? Journal of

Computer-Mediated Communication, 23(1):34–68, 2018. 2

[2] Saeideh Bakhshi, David A Shamma, Lyndon Kennedy, and

Eric Gilbert. Why we filter our photos and how it impacts en-

gagement. In Ninth International AAAI Conference on Web

and Social Media, 2015. 2

[3] Sara Beery, Grant Van Horn, and Pietro Perona. Recognition

in terra incognita. In Vittorio Ferrari, Martial Hebert, Cris-

tian Sminchisescu, and Yair Weiss, editors, ECCV, 2018. 2

[4] Wieland Brendel and Matthias Bethge. Approximating cnns

with bag-of-local-features models works surprisingly well on

imagenet. ICLR, 2019. 2

[5] Xinlei Chen, Li-Jia Li, Li Fei-Fei, and Abhinav Gupta. Iter-

ative visual reasoning beyond convolutions. In CVPR, June

2018. 2

[6] Myung Jin Choi, Antonio Torralba, and Alan S Willsky.

Context models and out-of-context objects. Pattern Recog-

nition Letters, 33(7):853–862, 2012. 2

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.

ImageNet: A Large-Scale Hierarchical Image Database. In

CVPR, 2009. 3, 6

[8] Jia Deng, Jonathan Krause, and Li Fei-Fei. Fine-grained

crowdsourcing for fine-grained recognition. In CVPR, pages

580–587, 2013. 3

[9] Arie Dijkstra. The psychology of tailoring-ingredients in

computer-tailored persuasion. Social and personality psy-

chology compass, 2(2):765–784, 2008. 2

[10] Albert Gordo, Jon Almazán, Jérôme Revaud, and Diane Lar-
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