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Abstract

Generating high-quality stitched images with natural

structures is a challenging task in computer vision. In this

paper, we succeed in preserving both local and global geo-

metric structures for wide parallax images, while reducing

artifacts and distortions. A projective invariant, Character-

istic Number, is used to match co-planar local sub-regions

for input images. The homography between these well-

matched sub-regions produces consistent line and point

pairs, suppressing artifacts in overlapping areas. We ex-

plore and introduce global collinear structures into an ob-

jective function to specify and balance the desired charac-

ters for image warping, which can preserve both local and

global structures while alleviating distortions. We also de-

velop comprehensive measures for stitching quality to quan-

tify the collinearity of points and the discrepancy of matched

line pairs by considering the sensitivity to linear struc-

tures for human vision. Extensive experiments demonstrate

the superior performance of the proposed method over the

state-of-the-art by presenting sharp textures and preserv-

ing prominent natural structures in stitched images. Espe-

cially, our method not only exhibits lower errors but also the

least divergence across all test images. Code is available at

https://github.com/dut-media-lab/Image-

Stitching.

1. Introduction

Image stitching, that combines multiple images into a

larger image with a wider field of view [25], is widely used

in photogrammetry [24], robot navigation [6] and panorama

on smart phones [29]. It is still challenging to produce high

quality stitched images for the state-of-the-art as they suffer

from severely unpleasant effects such as artifacts and dis-

tortions, especially for wide parallax images.

Feature matching is the key to aligning multiple images

for producing artifact-free stitching as the matched features

act as anchors in alignment. The SIFT features [23] are

Figure 1: Comparisons of stitching methods. Evident ar-

tifacts and distortions appear in the results of the existing

methods shown in the zoomed-in rectangles, but ours is free

of these unpleasant effects.

widely used in many traditional methods for feature points

detection and matching [4, 5, 30]. Some recent works also

introduce line features to obtain robust matching in the

cases of large parallax and/or low textures where points

are prone to mismatched [11]. Lin et al. exploit both

point and line features by different weights in an objec-

tive function [16]. Unfortunately, these methods separately

match points and lines, and thus the local surrounding ar-

eas may be inconsistently and non-uniformly stretched or

compressed when mismatches inevitably occur, presenting

artifacts in the stitched images. Liao et al. employ the

RANSAC strategy to refine point and line pairs by using

the homography between images [17]. It is worth noting
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that the homography relationship only holds for points and

lines in the same projective plane [12]. Therefore, those

refinements upon the homongraphy but neglecting the co-

planar constraint fail to give accurate matches. As shown in

the red rectangles of the first three rows in Fig. 1, the mag-

nified overlapping area on the right exhibits artifacts on the

picture frame, clock and computer. It is highly desirable to

explore co-planar areas and refine corresponding matching

pairs of points and lines.

Image stitching has to preserve linear structures while

alleviate distortions since human visual perception is very

sensitive to these structures. The as-projective-as-possible

(APAP) method adopts parametric warps by local con-

straints [30], but suffers from severe shape distortions es-

pecially in non-overlapping areas, as shown in the blue

rectangle of the first row in Fig. 1. Shape-preserving half-

projective (SPHP) [4] and global similarity prior (GSP) [5]

share a similar idea to adapt different warps for different

image areas. Geodesic-preserving[13] and line-structure-

preserving[3] involve collinearity preservation, but their im-

age resizing takes one panoramic image as input, already

including correct global geometric structures as reference.

Recently, Liao et al. propose single-perspective warps

(SPW) [17] to protect linear structures while suppress dis-

tortions. These methods can well preserve local structures

but fail to resolve the conflict when maintaining both local

and global linear structures. Global collinear structures can

be either a long line across the major part of an image, e.g.,

the long line under the two picture frames in Fig. 1, or sev-

eral separate collinear line segments. Current line detec-

tors [26] cannot detect or connect these long lines. Con-

sequently, local shapes may be well preserved by setting

appropriate parameters, but the global linear structure is out

of shape in the second row of Fig. 1. In the third row, pre-

serving linear structure results in severe distortions for local

shapes. It still remains unresolved to preserve both local and

global collinear structures.

Meanwhile, the existing metrics to evaluate the stitch-

ing quality are not comprehensive enough. These metrics

including the distance between matched points [30] and av-

erage geometric error (SSIM) [27] on local patterns of pixel

intensities can only quantify performance on point match-

ing. None of them can reflect the alignment of points on lin-

ear structures or the collinearity of matched line segments.

Quantitatively evaluating the preservation on linear struc-

tures for image stitching is also an open issue.

This paper leverages the line and point consistence to

preserve linear structures that are essential geometries for

image stitching. We divide input images into co-planar re-

gions upon the neighborhoods of lines, and match the re-

gions from different views using a series of geometric in-

variants reflecting the intrinsic nature of lines and points.

Hence, the homography between these co-planar regions

can accurately generate matches of both lines and points.

Subsequently, an line-guided objective function for warping

is designed to preserve both local and global linear struc-

tures and suppress distortions. The fourth row in Fig. 1

demonstrates that our method yields a significant gain in

image quality. Moreover, a quantitative evaluation measure

for lines is proposed to analyze the quality of stitched im-

ages more comprehensively. Our contributions are summa-

rized as follows:

• We design a new matching strategy to obtain consis-

tent point and line pairs by exploring co-planar sub-

regions using projective invariants. This matching fol-

lows the essential co-planar requirement for homogra-

phy so that it can provide accurate pre-alignment while

eliminating artifacts and non-uniform distortions.

• To the best of our knowledge, we are the first to incor-

porate global collinear structures as a constraint that

significantly alleviates unnatural distortions.

• We propose a comprehensive metric to quantify the

preservation of linear structures for image stitching.

We compare the proposed method with the state-of-the-

art on challenging natural image pairs with prominent linear

structures covering variations on camera motions, scenes

and fields of view. Our method can produce visually ap-

pealing stitching and our average RMSE for point matching

is 31% lower than that of SPW [17]. Meanwhile, ours works

the most accurate and stable for preserving the linear struc-

tures in terms of the proposed metric. Sections 3, 4 and 5

elaborate our contributions, respectively.

2. Related Works

This paper brings the line-guided image stitching method

that preserves both local and global structures. Hence, this

section reviews previous works related to warps for less dis-

tortion and warps with line structure constraints.

Traditional stitching methods usually estimate an opti-

mal global transformation for each input image. They can

only work well for ideal near planar scenes, and the result-

ing images often suffer from local artifacts and projective

distortion [2]. Therefore, some methods try to make warps

adaptive to different areas of images. Lin et al. [21] propose

a smoothly varying affine (SVA) transformation for better

local adaptation. Li et al. use Bayesian model to remove

outliers and the thin plate spline for analytical warp [14].

Gao et al. divide image into ground plane and distant

plane, and propose a dual-homography warp (DHW) [8]

to reduce the distortion. Shape-preserving half-projective

(SPHP) warps [4] combine the projection transformation

in the overlapping and non-overlapping area. Adaptive

as-natural-as-possible (AANAP) warps [18] share similar

idea, which transforms the homography transformation in

the overlapping area to the whole image. Herrman et al.
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[9] introduce multiple registrations to capture greater ac-

curacy instead of a single registration. Li et al. propose

a quasi-homography (QH) warp [15], which relies on a

global homography while squeezing the non-overlapping

areas. However, they are not flexible enough to decrease

distortion for scenes with large parallax.

In order to get better alignment with less distortion,

APAP [30] fine-tunes the global homography warp to ac-

commodate location dependent alignment. Chen et al. pro-

pose a global similarity prior (GSP) based warps by min-

imizing an energy function consisting of alignment, local

and global similarity terms [5]. Their method aims at solv-

ing the distortion in non-overlapping area, but linear struc-

tures are not well protected. Zhang et al. achieve a bet-

ter performance by setting a series of prior constraints and

manual guidance [32]. Lin et al. take the difference of

pixel intensity into consideration, which works well in low

texture images [20]. Lee et al. partition images into super-

pixels and warp them adaptively using the computed fea-

ture matches according to the warping residuals for parallax

scenes [12].

In addition, there are some seam-based approaches for

less local distortion. A parallax-tolerant warp is proposed

that combines homography and content-preserving-warps

(CPW) [22] to control distortion [31]. However, their

method still leads to shape distortion in large parallax.

Lin et al. iteratively improves the seam-guided local align-

ment by adaptive feature weighting and introduces a novel

term to preserve salient line structures approach [19]. How-

ever, global distortion still exists in non-overlapping areas.

In order to achieve better stitching quality with less dis-

tortion and preserving linear structures, Li et al. intro-

duce line features into image stitching, which improves

content-preserving-warps by introducing linear alignment

terms [16]. Xiang et al. propose a line-guided local

warping with global similarity constraint [28]. Liao et

al. simultaneously emphasizes different characteristics of

the single-perspective warp, including alignment, distortion

and saliency [17]. However, global collinear structure has

seldom been addressed, and the conflict between local and

global structure preserving still exists in these approaches.

3. Pre-alignment Based on Consistent Line-

Point Constraints

In this section, a dual-feature (lines and points) based

pre-alignment algorithm is designed, which is demonstrated

in Fig. 2. First, image is divided into coplanar sub-regions

based on line detection, and one of them is illustrated in

green rectangle of Fig. 2. Then, sub-regions are matched

by the similarity calculated from a series of projective in-

variants. The third, matched point pairs are increased and

refined, and lines are matched by the homography between

matched regions. Finally, a global pre-alignment is con-

structed based on dual features.

3.1. Sub­region Division Based on Line Detection

Local homography between coplanar regions is more ac-

curate than global one. As many lines are formed by the

intersection of planes, we make a rough assumption that

the neighborhood determined by the length of the line can

be regarded as a local coplanar sub-region of the image.

LSD [26] is used to obtain the original line segments, then

the neighborhood of lines is split into the left one and the

right one according to the gradient direction, as points lo-

cated on different sides of a line may not be coplanar. The

gradient of a line is defined as the average gradient of all

points on it. As shown in Fig. 3, in the neighborhood of

a line, the distance from any pixel to the line is less than

α · len(l) and less than β · len(l) to the perpendicular bisec-

tor line. In our experiments, α and β are set as 2.0 and 0.5,

respectively [10].

3.2. Sub­regions Matching by Line­point Invariant

In order to match coplanar sub-regions and finally more

line and point pairs, a projective invariant Characteristic

Number (CN ) is introduced to construct a line-point invari-

ant, and the similarity between sub-regions is defined based

on it. The CN is defined as follows:

Let K be a field and Pm(K) be m-dimension projec-

tive space over K, and {Pi}i=1,2,...,R be distinct points in

Pm(K) that construct a close loop (PR+1 = P1). There

are distinct points {Q
(j)
i }j=1,2,...,S on the line segment

{PiPi+1}i=1,2,...,R such that each point Q
(j)
i can be linearly

represented by Pi and Pi+1 as Q
(j)
i = a

(j)
i Pi + b

(j)
i Pi+1.

Let P = {Pi}i=1,2,...,R andQ = {Q
(j)
i }

j=1,2,...,S
i=1,2,...,R, then the

Figure 2: Overview of pre-alignment. In the left box with

dotted lines, line-point invariant is illustrated by the red

matching points and lines in two different views, labeled

as lj and l′j . New added point pairs are corresponded by

black double-headed arrows, and original point pairs are la-

beled in red double-headed arrows on the right dotted box.

Output matched line pairs are labeled by different colors on

right.
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Figure 3: Coplanar sub-regions division and matching.

quantity

CN(P,Q) =
R∏

i=1

(

S∏

j=1

a
(j)
i

b
(j)
i

) (1)

is called the Characteristic Number of P and Q [10].

As the construction of CN requires a close loop and

equal number of points on each edge, we use five points

to construct a triangle and equal intersections on each

edge [10]. As shown in the upper left image of Fig. 2, K1
l

and K2
l are two endpoints on the red line l. P1, P2 and P3

are three non-collinear feature points on the same side of

the line that are marked as red dots. Any three of the points

(K1
l ,K

2
l , P1, P2, P3) are not collinear.

We denote the line through two points, Pi and Pj , as

PiPj and the intersection of two lines, PiPj , and PkPm,

as <PiPj , PkPm>. We can obtain several intersection

points (blue points), including U1 =< K1
l P1,K

2
l P3 >,

U2 =<K1
l P1, P2P3>, U3 =<P1P2,K

2
l P3>, U4 =<

K1
l P3, P1K

2
l >, U5 =< K1

l K
2
l , U1P2 > and U6 =<

K1
l K

2
l , U1U4>.

Thus, we have △K1
l U1K

2
l , and we are able to

calculate CN with P = {K1
l , U1,K

2
l } and Q =

{P1, U2, U3, P3, U5, U6}. We denote the CN value con-

structed in this way as CN(l, P1, P2,P3). Thereafter, in

the other view shown in the down left figure of Fig. 2,

we can construct △K1
l
′U ′

1K
2
l
′ in the same way, and

CN(l, P1, P2,P3) is equal to CN(l′, P ′

1, P
′

2,P ′

3) with cor-

responding matched line and point pairs. A series of CN

values can be obtained by different feature points.

Let I and I
′

denote the target and reference images, re-

spectively. We use SURF [1] to detect and match features,

and use LSD [26] to detect lines. Then, we can calculate

the similarity between candidate sub-regions based on a se-

ries of CN values within the corresponding regions [10].

For the matching sub-regions Reg ∈ I and Reg′ ∈ I ′

with the highest similarity, the existing matching point pairs

within the matching region are used to construct CN as

demonstrated in the left image of Fig. 2. The intersection

points U1, U2, U3, U4, U5, U6 on △K1
l U1K

2
l , and the cor-

responding points U ′

1, U
′

2, U
′

3, U
′

4, U
′

5, U
′

6 on △K1
l
′U ′

1K
2
l
′

are added into the matching points set to increase the an-

chor points for warping. Finally, we use RANSAC [7] to

refine matching points and estimate its local homography

H , which is used to obtain more matching lines in sub-

regions [10].

3.3. Pre­alignment Based on Dual Features

Let pi = (xi, yi, 1) and p
′

i = (x
′

i, y
′

i, 1) be matched

point pairs {(pi, p
′

i)}i=1,2,...,N in homogeneous coordi-

nates, where N is the number of matched point pairs, for

the set of matching line pairs {(lj , l
′

j)}j=1,2,...,L, lj ∈ I

and l
′

j ∈ I
′

, where L is the number of matching line pairs.

Line lj is represented as (lsj , l
e
j ), where lsj and lej are two

end points. In order to achieve a better registration, the

Euclidean distance between matched points and lines after

warps should be minimized. We denote H as the initial

homography, H∗ is the vector expression of H , and Ĥ∗ is

the desired homography. Therefore, a global homography

based on dual features can be expressed as

Ĥ∗ =argmin
H

(

N∑

i=1

||p
′

i ×Hpi||
2 +

L∑

j=1

||dis(l
′

j , Hl
s,e
j )||2)

= argmin
H

(

N∑

i=1

||UiH∗||
2 +

L∑

j=1

||VjH∗||
2),

(2)

where dis(l
′

j , Hl
s,e
j ) denotes the distance between the end-

points Hl
s,e
j and line l

′

j , H∗ ∈ R9. Ui ∈ R2×9 and Vj ∈

R2×9. We can easily minimize the function [UiVj ]
TH∗ = 0

via SVD. Further, we use normalization and coordinate

axis rotation to improve the stability and accuracy of the

model [4] and [17].

4. Global Line-guided Mesh Deformation

The global homography estimated by pre-alignment only

provides an approximate transformation, but there are still

distortions and bent lines. The longer the salient lines, the

greater the straight line bending. In order to address this is-

sue, we explore global collinear structures for line preserv-

ing constraints and combine it with point-line alignment,

and distortion terms in an energy function.

4.1. Energy Function Definition

First, we construct rectangular meshes for each im-

age pair. Let I and I
′

denote the target and refer-

ence images, respectively. Suppose the index for the

mesh grid vertices is from 1 to n. Vector V =
[x1 y1 x2 y2 · · · xn yn]

T (V ∈ R2n) is used

to describe the coordinates of original vertex, and vector

V̂ = [x̂1 ŷ1 x̂2 ŷ2 · · · x̂n ŷn]
T (V̂ ∈ R2n) rep-

resents the coordinates of warped vertex. For any sample

point p ∈ I , we represent it as τ(p) by a bilinear interpo-

lation of its four enclosing grid vertices. Then, the corre-

sponding warped point p̂ is represented as τ(p̂). The total
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Algorithm 1 Extraction of local and global lines.

Input: original set of lines Sl = l1, l2, ..., ln.

Output: the local lines set Slo and global lines set Sgl

1: procedure ”LINE-MERGING AND CLASSIFICATION”

2: for i = 1→ n do

3: for j = 1→ n− 1 do

4: if flag(llom) == 0 and flag(llon ) == 0
5: and i 6= j then

6: if θ = arctan| k(l1)−k(l2)
1+k(l1)k(l2)

| < γ1 and

7: dis
(
lj , p

s
li

)
−dis

(
lj , p

e
li

)
< γ2 and

8: dis(peli , p
s
lj
) < γ3 ·dis(p

s
li
, pelj ) then

9: merge li and lj as a new line lij and

10: Sl ← Sl ∪ {lij}, n = n+ 1 and

11: flag(llom) = 1, flag(llon ) = 1
12: end if

13: end if

14: end for

15: end for

16: for each l ∈ Sl do

17: if len (l) > µ then

18: Sgl ←− l

19: else

20: Slo ←− l

21: end if

22: end for

23: return Sgl and Slo

24: end procedure

energy function E(V̂ ) is

E(V̂ ) = Elp(V̂ ) + Ea(V̂ ) + Ed(V̂ ), (3)

where Elp(V̂ ) addresses line preserving term by protect-

ing both local and global lines, Ea(V̂ ) addresses point-line

alignment term by improving the correspondences between

matching points and lines, and Ed(V̂ ) addresses distortion

control term by preserving the slope of grid lines and warp-

ing the adjacent grids evenly.

4.2. Line Preserving Term

Both local individual salient lines and global collinear

line segments are crucial for warps. Thus, line preserving

term is defined as

Elp(V̂ ) = λloElo(V̂ ) + λglEgl(V̂ ), (4)

where Elo(V̂ ) and Egl(V̂ ) are constraints on local lines and

global co-linear line segments, respectively. λlo and λgl are

the weights of each term.

As shown in Fig. 4, the local red lines l1 . . . , l5 are sepa-

rated in space, but they are co-linear as illustrated by the

global blue line l6. As demonstrated in the second im-

age in Fig. 4, the local line structures can be kept but their

collinearity are easily destroyed during warping. Since such

distortions are very disturbing for human perception of im-

age quality, we design a merging strategy of local warp-

ings to preserve global linear structure by evaluating the

collinearity of line segments, which is one of our main con-

tributions. The merging process is detailed in Algorithm

1. We evaluate pairs of lines each time, and the merged

lines should meet three constraints. First, the slope of two

lines slope(li) and slope(lj) should be close. Second, the

distances from the endpoints to another line, which are

dis(lj , p
e
li
) and dis(lj , p

s
li
) should be small. Third, the dis-

tance of adjacent endpoints dis(peli , p
s
lj
) of two lines should

be small, shown in Fig. 4. Note that we introduce flag to

avoid infinite loop of merging lines, which is set to 0 ini-

tially and set to 1 after merging. While local lines are most

likely obtained by the original line fitting, the global lines

usually result from the merging process. It is worth noticing

that the length of each line len (l) is used to classify local

and global line segments by threshold µ.

Let us take lines {lg}g=1,2,...,Q in global line set Sgl as

an example, where Q is the number of lines. Each line is

uniformly sampled with Mg points {pgk}
g=1,2,...,Q
k=1,2,...,Mg

. Then,

Egl(V̂ ) =

Q∑

g=1

Mg−1∑

k=1

‖(τ(p̂gk+1)− τ(p̂gk)) ·
−→
ng‖2

= ‖WglV̂ ‖
2,

(5)

where
−→
ng is the normal vector of lg , and Wgl ∈

R(
∑Q

g=1
(Mg−1))×2n. We use the same method to construct

the constraint term for local lines.

Figure 4: A diagram demonstrating line merging.

4.3. Point­Line Alignment and Distortion Control

The point-line alignment term is defined based on an in-

tuitive constraint that matched point and line pairs should

be coincident with each other after warps, which is defined

as

Ea(V̂ ) = λpEp(V̂ ) + λlEl(V̂ ), (6)

where Ep(V̂ ) and El(V̂ ) are point and line alignment term,

respectively. λp and λl are the weights of each term.

In order to control the distortion of the target image I , a

series of horizontal and vertical lines are constructed, which
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(a) Warpping result with cross lines of SPW

(b) Warpping result with cross lines of ours

Figure 5: Comparison of warpping result between SPW and

our method showing by the same number of cross lines.

are called cross lines. These constructed lines are regarded

as inherent linear structure of image I , as demonstrated as

red lines in Fig. 5. The slope of the lines and space be-

tween their intersections are used to control the distortion.

The distortion term is defined by global term Edg and non-

overlapping term Edn

Ed(V̂ ) = λdgEdg(V̂ ) + λdnEdn(V̂ ), (7)

where λdg and λdn denote the weights of each term.

As all constraint terms are quadratic, they can be refor-

mulated and minimized by a sparse linear solver. More

details can be found in [17]. The warping result is com-

pared with SPW [17], which also has line constraints. Both

methods have the same number of evenly spaced cross

lines for target image I in original. The warping result is

demonstrated in Fig. 5, and our method exhibits dense cross

lines and moderate transition from overlapping area to non-

overlapping area, showing good control to distortions, while

evident distortions appear in the results of SPW [17] shown

in the zoomed-in rectangle.

Figure 6: Quantitative evaluation for linear structures.

5. Quantitative Evaluation for Collinearity

In order to quantify the stitching performance on linear

structures, we design a new evaluation method that consid-

ers three aspects: the collinearity of points, the distance

of matched lines, and the discrepancy in the direction of

matched lines.

We sample Ps points {pjk}k=1,2,...,Ps
on line lj uni-

formly, which are labeled in red in Fig. 6. The bottom-

left figure in Fig. 6 demonstrates the fitted line lπj =

π({̂pjk}k=1,2,...,Ps
) to warped points {̂pjk}k=1,2,...,Ps

by

least square method. The error term Eerr for L lines is

defined as

Eerr =

√√√√ 1

L

L∑

j=1

||

Ps∑

k=1

(lπj (y)x=p̂
j

k
(x)
− p̂

j
k(y))||

2, (8)

where p̂
j
k(y) is the y-coordinate of p̂

j
k, and lπj (y)x=p̂

j

k
(x)

is

the y-coordinate on lπj with the same x-coordinate as p̂
j
k.

As demonstrated in the upper-right figure of Fig. 6, the

distance term Edis represents the average distance between

two warped endpoints and the matching line, which is de-

fined as

Edis =

√√√√√ 1

L

L∑

j=1

||
dis(l

′

j , p̂
j
1) + dis(l

′

j , p̂
j
Ps
)

2
||2, (9)

where p̂
j
1 and p̂

j
Ps

are two endpoints of l̂j .

The direction term Edir estimates the direction differ-

ence between the warped line and the matching line. We

represent line l̂j and line l
′

j as direction vectors
−→
l̂j and

−→
l
′

j , respectively. The endpoint with smaller x-coordinate

is used as the start point of each vector. As demonstrated

in the bottom-right figure of Fig. 6, the cross product of

two lines
−→
l
′

j ×
−→
l̂j = len(l

′

j)× len(l̂j)× sin(θ) can reflect

the direction difference of two vectors, which also takes the

length of two lines len(l
′

j) and len(l̂j) into consideration.

Hence, Edir for all lines is denoted as

Edir =

√√√√ 1

L

L∑

j=1

||
−→
l
′

j ×
−→
l̂j ||2. (10)

6. Experiments

We demonstrate the effectiveness of the proposed

method with an ablation study and with quantitative and

qualitative comparisons to the state-of-the-art on 15 testing

images pairs, which covered different types of datasets with

respect to camera motions, scenes and fields of view. In-

put images pairs are resized to 1000 × 800 pixels, and the

size for each mesh grid is 40 × 40. This allows us to keep
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(a) Evaluation on collinearity of warped lines. (b) Distance of matched line pairs. (c) Angle difference of matched line pairs.

Figure 7: Quantitative comparison on linear structure preservation between SPW [17] and our method.

(a) Matching lines and points separately.

(b) Joint matching with the proposed consistent point and line pairs.

Figure 8: Ablation study on consistent lines and points matching.

all the parameters constant. The threshold µ to divide local

and global line segments is set to three times the diagonal

length of the grid. In energy function, λlo and λgl are set to

50 and 100 for lines preserving, λp and λl are set to 1 and 5

for point-line alignment, λdg and λdn are set to 50 and 100

for distortion minimization.

Dataset
SVA CPW APAP GSP SPW Ours

[21] [22] [30] [5] [17]

APAP-
7.30 6.77 4.51 4.58 2.28 1.78

railtracks

DH-
12.21 2.54 2.04 2.21 2.31 1.78

temple

APAP-
11.36 7.06 5.16 5.01 4.4 2.02

conssite

APAP-
9.16 6.33 5.24 4.47 2.11 1.89

train

APAP-
8.98 6.36 5.19 4.15 2.85 1.44

garden

DH-
4.05 3.60 1.38 1.78 1.54 1.31

carpark

SVA-
20.78 9.45 2.96 2.88 1.88 1.69

chessgirl

Table 1: RMSE on matched feature points.

6.1. Ablation Study

Consistent lines and points constraints can provide

accurate alignment and suppress artifacts. We substitute

our joint matching strategy with a separate points and lines

matching strategy [17] with other parts unchanged. Sam-

ple results are shown in Fig. 8. There are three stitching

instances, the enlarged overlapping areas are shown on the

right of each result. As we can see, our joint points and lines

matching produces clear stitching result in Fig. 8(b), while

there are obvious artifacts in Fig. 8(a).

Linear structure preserving can keep both local and

global linear structures and suppress the distortion as shown

in Fig. 9. In Fig. 9(a), local shapes are well preserved

but the lines are bent without linear constraints. When we

roughly use lines detected by LSD, the short lines on build-

ings and the ground are much better, but they are still not

straight enough. Especially, the bike has severe deforma-

tion in Fig. 9(b). By contrast, the local and global linear

constraints are well balanced in our method, as shown in

Fig. 9(c).

6.2. Comparison with the state­of­the­arts

Couple of experiments are conducted to compare the

stitching results with the existing methods including
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(a) Without linear constraints. (b) With only local linear constraints. (c) With our local and global linear constraints.

Figure 9: Ablation study on structure preserving.

SVA [21], CPW [22], APAP [30], ELA [14], SPHP [4],

GSP [5], and SPW [17]. The quantitative and qualitative

results are from their papers or the released code.

We adopt quantitative evaluation on both points and

lines. The alignment accuracy on points is measured by the

root mean squared error (RMSE) [30] on a set of matched

points. Table 1 depicts the RMSE values on 7 image pairs

named in the first column. Our method yields the lowest

errors on all 7 pairs. Our average error is 1.7014, which is

31% lower than that of SPW. Moreover, the variance of our

errors is 0.05, which is 93% lower than the value 0.75 of

SPW.

Further, we evaluate linear structures using our three

measures proposed in Sec. 5. In Fig. 7, we compare our

method to SPW [17], which has local but not global line

constraints. As shown in Fig. 7, the x-coordinate indi-

cates the name of the image pairs, and vertical coordi-

nate indicates the errors. Our method outperforms SPW on

collinearity and difference of angles, as shown in Fig. 7(a)

and Fig. 7(c). In Fig. 7(b), the variance of our error is

0.0855, which is 87.11% less than 0.6630 of SPW, show-

ing less divergence errors for all pairs. SPW shifts severely

with about twice errors of us on the image pairs ’School’

and ’Building’.

A comprehensive visual comparison is demonstrated in

Fig. 10. Our method outperforms all the other methods

in preserving linear structure and in producing clear and

artifacts-free overlapping areas. The linear structures in the

first four rows all exhibit severe bent, labelled in red. Ev-

ident artifacts appear in the results of the existing methods

shown in the zoomed-in rectangles, such as the flowers, ta-

bles, and parasols.

7. Conclusion

We propose a structure preserving image stitching

method based on line-guided warping and line-point con-

straint. We partition input images into sub-regions, and

match them by line-point invariants. The local matching

provides accurate line and point pairs for pre-alignment,

showing no blur or artifacts in overlapping areas. We pro-

Figure 10: Comparison of different stitching methods.
pose a line-guided warp to preserve both local and global

structures while eliminating distortion for non-overlapping

area. Furthermore, we design a new quantitative evalua-

tion measure for linear structures, which is consistent with

human perception in that human vision is very sensitive to

distortions in linear structures. Experimental results demon-

strated that the proposed method accurately aligns overlap-

ping and non-overlapping areas on challenging test images,

and yields a significantly better performance compared with

the state-of-the-arts.
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