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Abstract

Quantifying the importance of each training point to a

learning task is a fundamental problem in machine learning

and the estimated importance scores have been leveraged

to guide a range of data workflows such as data summa-

rization and domain adaption. One simple idea is to use

the leave-one-out error of each training point to indicate its

importance. Recent work has also proposed to use the Shap-

ley value, as it defines a unique value distribution scheme

that satisfies a set of appealing properties. However, cal-

culating Shapley values is often expensive, which limits its

applicability in real-world applications at scale. Multiple

heuristics to improve the scalability of calculating Shapley

values have been proposed recently, with the potential risk

of compromising their utility in real-world applications.

How well do existing data quantification methods per-

form on existing workflows? How do these methods compare

with each other, empirically and theoretically? Must we

sacrifice scalability for the utility in these workflows when

using these methods? In this paper, we conduct a novel theo-

retical analysis comparing the utility of different importance

quantification methods, and report extensive experimental

studies on existing and proposed workflows such as noisy la-

bel detection, watermark removal, data summarization, data

acquisition, and domain adaptation. We show that Shapley

value approximation based on a KNN surrogate over pre-

trained feature embeddings obtains comparable utility with

existing algorithms while achieving significant scalability

improvement, often by orders of magnitude. Our theoretical

analysis also justifies its advantage over the leave-one-out

error.

The code is available at https://github.com/AI-
secure/Shapley-Study .

∗Equal contribution.

1. Introduction

Understanding the importance of a single training exam-

ple, relative to other training examples, to a learning task is a

fundamental problem in machine learning (ML) which could

have profound impact on a range of applications including

interpretability, robustness, data acquisition, data valuation,

among others [12, 7, 14].

In this paper, we are driven by two questions around this

fundamental problem. Our contribution is a novel theoretical

analysis and thorough experimental studies towards under-

standing both questions.

Q1: Leave-one-out vs. Shapley? Given a training set D,

a validation set Dval and a learning algorithm A, let the

utility UA,Dval
(D) be the validation accuracy of the model

trained on D using A, recently there have been two lines of

work in assigning relative importance to a data point z ∈ D.

A. Leave-one-out (LOO)-based Method & Influence
Function. One natural way to assign importance to z is by
calculating its contribution to the rest of training data:

vloo(z) ∝ UA,Dval
(D)− UA,Dval

(D\{z})

When we need to assign such an importance score to all data

points in the training set, we need to train a large number of

models. Thus researchers have proposed efficient techniques

to approximate this score, e.g., via influence function [14].

B. Shapley-based Method. Another natural way to as-
sign importance to z is inspired by cooperative game theory
and to use the Shapley value [12, 7]:

νshap(z) ∝
1

N

∑

S⊆D\{z}

1
(

N−1

|S|

)

[

UA,Dval
(S ∪ {z})− UA,Dval

(S)
]

Both approaches have recently been explored by researchers

and have been applied to a range of ML tasks including noisy

label detection, watermark removal, data summarization,

active data acquisition, and domain adaptation [12, 7, 14].
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However, one question remains: What’s the relationships

and differences, both theoretically and empirically, between

these two lines of approaches?

Q2: Exact Shapley vs. Shapley over Surrogates? As

we will show in this paper, Shapley-based methods often

outperforms leave-one-out-based methods, both theoretically

and empirically. However, Shapley-based approaches can

be expensive as one needs to train, for general classifiers,

exponentially many models. Thus, many state-of-the-art

approaches resort to a sampling-based approach [12, 7] to

approximate this score. On the other hand, a recent work by

Jia et al. [11] has shown that for a certain family of classifiers,

i.e., K-Nearest Neighbor (KNN), calculating this score can

be done efficiently, in O(|D| log |D|) time for all data points

in D.

Despite this, there still remains a question: Can we use

a K-Nearest Neighbor classifier as a surrogate model to

calculate the Shapley value, and how does it perform on real-

world applications compared with the vanilla exact Shapley

value?

Technical Contributions. In this paper, we take the first

step towards understanding the above questions. We make

contributions on both theoretical and empirical fronts.

• We conduct a novel theoretical analysis aiming at rigor-

ously analyzing the differences between the leave-one-

out-based and the Shapley-based methods. Specifically,

we formalize two performance metrics specific to data

importance: one focuses on the predictive power of data

importance, studying whether it is indicative of a training

point’s contribution to a random set; the other focuses on

the ability of a data to discriminate “good” training points

from “bad” ones. We show that for both performance met-

rics, under certain technical conditions, the Shapley-based

method can outperform leave-one-out–based approaches.

To our best knowledge, this is the first theoretical analy-

sis reasoning the relative performances of different data

importance quantification techniques.

• We conduct a thorough empirical study on a range of ML

tasks, including noisy label detection, watermark removal,

data summarization, active data acquisition, and domain

adaptation on different benchmark datasets. Some have

been used by previous work as a use case of data valu-

ation methods, and some are proposed by us. On these

tasks, we empirically investigate the relative performance

between (1) leave-one-out–based methods and Shapley-

based methods, and (2) exact Shapley-based methods and

Shapley over KNN Surrogates.

• Our empirical study suggests that the Shapley-over-KNN-

Surrogates method performs well and achieves compara-

ble results with, and often outperforms, all other meth-

ods in quality while being orders of magnitude faster.

This gives us the first practical algorithm over large-scale

datasets that returns useful data importance scores for a

range of important ML tasks.

2. Background: General Frameworks for Data

Importance Quantification

There are two lines of work in estimating the importance

of a single training point for supervised learning [12, 7, 14].

In this section, we describe these methods and the KNN-

surrogate-based method to set the context for our analysis in

Section 3-4.

We first set up the notations to characterize the main in-

gredients of a supervised learning problem, including the

training and validation data, the learning algorithm, and the

performance measure. Let D = {zi}
N
i=1 be the training

set, where zi is a feature-label pair (xi, yi), and Dval be

the validation data. Let A be the learning algorithm which

maps a training dataset to a model. Let U be a performance

measure which takes as input training data, any learning

algorithm, and validation data and returns a score. We write

U(S,A, Dval) to denote the performance score of the model

trained on a subset S of training data using the learning algo-

rithm A when testing on Dval. When the learning algorithm

and validation data are self-evident, we will suppress the

dependence of U on them and just use U(S) for short. Our

goal is to assign a score to each training point zi, denoted by

ν(zi, D,A, Dval, U), indicating its importance to the super-

vised learning problem specified by D,A, Dval, U . We will

often write it as ν(zi) or ν(zi, U) to simplify notation.

2.1. Leave­One­Out Method

One simple way to quantify data importance is to measure

one data point’s contribution to the rest of the training data:

νloo(zi) = U(D)− U(D \ {zi}) (1)

This data importance measure is referred to as the Leave-

One-Out (LOO) value. The exact evaluation of the LOO

values for N training points requires re-training the model

for N times and the associated computational cost is pro-

hibitive for large training datasets and large models. For

deep neural networks, Koh et al. [14] proposed to estimate

the model performance change due to the removal of each

training point via influence functions. However, in order to

obtain the influence functions, one will need to evaluate the

inverse of the Hessian for the loss function. With N training

points and p model parameters, it requires O(Np2 + p3) op-

erations. Koh et al. [14] approximate the influence function

with O(Np) complexity, which is still expensive for large

networks.

2.2. Shapley Value­based Method

The Shapley value is a classic concept in cooperative
game theory to distribute the total gains generated by the
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coalition of all players. One can think of a supervised learn-
ing problem as a cooperative game among training data
instances and apply the Shapley value to value the contribu-
tion of each training point. Given a performance measure
U , the Shapley value for training data zi is defined as the
average marginal contribution of zi to all possible subsets of
D formed by other training points:

νshap(zi) =
1

N

∑

S⊆D\{zi}

1
(

N−1

|S|

)

[

U(S ∪ {zi})− U(S)
]

(2)

However, calculating the Shapley value can be expensive:

evaluating the exact Shapley value involves computing the

marginal contribution of each training point to all possible

subsets, whose complexity is O(2N ). Such complexity is

clearly impractical for valuating a large number of training

points. Even worse, for ML tasks, evaluating the utility

function per se (e.g., validation accuracy) is computationally

expensive as it requires re-training an ML model.

MCMC-based Approximation. Ghorbani et al. [7] in-

troduced two approaches to approximating the Shapley value

based on Monte Carlo approximation. The central idea be-

hind these approaches is to treat the Shapley value of a

training point as its expected contribution to a random subset

and use sample average to approximate the expectation. By

the definition of the Shapley value, the random set has size 0

to N − 1 with equal probability and is also equally likely to

be any subset of a given size (corresponding to the 1/
(

N−1
|S|

)

factor). In practice, one can implement an equivalent sam-

pler by drawing a random permutation of the training set.

Then, the Shapley value can be estimated by computing the

marginal contribution of a point to the points preceding it

and averaging the marginal contributions across different per-

mutations. However, these Monte Carlo-based approaches

cannot circumvent the need to re-train models and therefore

are not viable for large models. In our experiments, we found

that the approaches in Ghorbani et al. [7] can manage data

size up to one thousand for simple models such as logistic

regression and shallow neural networks, while failing to esti-

mate the Shapley value for larger data sizes and deep nets in

a reasonable amount of time. We evaluate runtime in more

details in Section 4.

KNN Surrogate-based Approach. In one recent paper,

Jia et al. [11] developed an exact, efficient algorithm to

compute the Shapley value for KNN classifiers. In principle,

we can use a KNN classifier to act as a surrogate model

and use it instead of the target learning algorithm. Given a

single validation point xval with the label yval, the simplest,

unweighted version of a KNN classifier first finds the top-K
training points (xα1

, · · · , xαK
) that are most similar to xval

and outputs the probability of xval taking the label yval as

P [xval → yval] =
1
K

∑K

i=1 ✶[yαi
= yval]. We assume that

the confidence of predicting the right label is used as the

performance measure, i.e.,

U(S) =
1

K

min{K,|S|}
∑

k=1

✶[yαk(S) = yval] (3)

where αk(S) represents the index of the training feature

that is the kth closest to xval among the training examples

in S. Particularly, αk(D) is abbreviated to αk. Under this

performance measure, the Shapley value can be calculated

exactly using the following theorem.

Theorem 1 (Jia et al. [11]). Consider the model perfor-
mance measure in (3). Then, the Shapley value of each
training point can be calculated recursively as follows:

ν(zαN
) =

✶[yαN
= yval]

N
(4)

ν(zαi
) = ν(zαi+1

)+
✶[yαi

= yval]− ✶[yαi+1
= yval]

K

min{K, i}

i
(5)

Theorem 1 can be readily extended to the case of mul-

tiple validation points by summing up the Shaplley value

with respect to each validation point. We will call the scores

obtained from (4) and (5) the KNN-Shapley value here-

inafter. For each validation point, computing the KNN-

Shapley value requires only O(N logN) time, which cir-

cumvents the exponentially many utility evaluations entailed

by the Shapley value definition.

Using Pre-trained Embeddings. One problem of using

KNN as a surrogate model is that KNN often does not

perform well on high-dimensional data. As many works

have illustrated the power of pre-trained embeddings on a

different, new task [17, 16, 24, 30], we address this problem

by using pre-trained embeddings as a feature extractor and

then apply KNN. Note that this feature needs to be trained

on a different dataset for KNN surrogate to respect Shapley

value semantics.

3. Theoretical Comparison Between LOO and

Shapley Value

We now focus on the first question: What’s the relation-

ships and differences, both theoretically and empirically, be-

tween these two lines of approaches? Specifically, we define

two performance metrics and conduct theoretical analysis

under different technical assumptions. To our best knowl-

edge, this is the first theoretical analysis reasoning about the

relative performances of different techniques that measure

data importance.

3.1. Performance Metric 1: Order­Preservation

Both the LOO-based method and the Shapley-based

method only measure the importance of a data point rel-

ative to other points in the given dataset. Since it is still
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uncertain what data will be used in tandem with the point

being valued after its importance is measured, in the first per-

formance metric, we hope that the data importance measures

of a point are indicative of the expected performance boost

when combining the point with a random set of data points.

In particular, we consider two points that have different

scores under a given data importance measure and study

whether the expected model performance improvements due

to the addition of these two points will have the same order

as the importance scores. With the same order, we can confi-

dently select the higher-importance point in favor of another

when performing ML tasks. We formalize this desirable

property in the following definition.

Definition 1. We say a data importance measure ν is order-

preserving at a pair of training points zi, zj with different

scores if
(

ν(zi, U)− ν(zj , U)
)

×E
[

U(T ∪ {zi})−U(T ∪

{zj})
]

> 0 where T is an arbitrary random set drawn from

some distribution.

For general model performance measures U , it is difficult

to analyze the order-preservation of the corresponding data

importance measures. However, for KNN, we can precisely

characterize this property for both the LOO and the Shapley

value. The formula for the KNN-Shapley value is given in

Theorem 1 and we present the expression for the KNN-LOO

value in the following lemma.

Lemma 1 (KNN-LOO Value). Consider the model perfor-

mance measure in (3). Then, the KNN-LOO value of each

training point can be calculated by νloo(zαi
) = 1

K

(

✶[yαi
=

yval]− ✶[yαK+1
= yval]

)

if i ≤ K and 0 otherwise.

Now, we are ready to state the theorem that exhibits the

order-preservation of the KNN-LOO value and the KNN-

Shapley value.

Theorem 2. For any given D = {z1, . . . , zN}, where zi =
(xi, yi), and any given validation point zval = (xval, yval), as-

sume that z1, . . . , zN are sorted according to their similarity

to xval. Let d(·, ·) be the feature distance metric according

to which D is sorted. Suppose that P(X,Y )∈D(d(X,xval) ≥
d(xi, xval)) > δ for all i = 1, . . . , N and some δ > 0.

Then, νshap-knn is order-preserving for all pairs of points in

I; νLOO-knn is order-preserving only for (zi, zj) such that

max i, j ≤ K.

Due to the space limit, we will omit all proofs to the

appendix. The assumption that P(X,Y )∈D(d(X,xval) ≥
d(xi, xval)) > δ in Theorem 2 intuitively means that it is

possible to sample points that are further away from xval

than the points in D. This assumption can easily hold for

reasonable data distributions in continuous space.

Theorem 2 indicates that the KNN-Shapley value has

more predictive power than the KNN-LOO value—the

KNN-Shapley value can predict the relative utility of any two

points in D, while the KNN-LOO value is only able to cor-

rectly predict the relative utility of the K-nearest neighbors

of xval. In Theorem 2, the relative data utility of two points

is measured in terms of the model performance difference

when using them in combination with a random dataset.

Theorem 2 can also be generalized to the setting of multi-

ple validation points using the additivity property. Specifi-

cally, for any two training points, the KNN-Shapley value

with respect to multiple validation points is order-preserving

when the order remains the same on each validation point,

while the KNN-LOO value with respect to multiple vali-

dation points is order-preserving when the two points are

within the K-nearest neighbors of all validation points and

the order remains the same on each validation point. We

can see that similar to the single-validation-point setting, the

condition for the KNN-LOO value with respect to multiple

validation points to be order-preserving is more stringent

than that for the KNN-Shapley value.

3.2. Performance Metric 2: Value Distinguishness

In the second performance metric, we are interested in

conditions under which LOO-based method and Shapley-

based method cannot distinguish between different data

points, independently of their importance. The technical

tool that we use as a demonstration is to consider the setting

in which the classifier is trained in a differentially private

(DP) manner.

Definition 2 (Differential privacy). A : DN → H is (ǫ, δ)-
differentially private if for all R ⊆ H and for all D,D′ ∈
DN such that D and D′ differ only in one data instance:

P [A(D) ∈ R] ≤ eǫP [A(D′) ∈ R] + δ.

By definition, differentially private learning algorithms

hide the influence of one training point on the model perfor-

mance. Thus, it may be more difficult to differentiate “good”

data from “bad” ones for differentially private models. We

will show that the Shapley value could have more discrimina-

tive power than the LOO value when the learning algorithms

satisfy DP.

The following theorem states that for differentially pri-

vate algorithms, the values of training data are gradually

indistinguishable from each other as the training size grows

larger using both the LOO and the Shapley value measures;

nonetheless, the value differences vanish faster for the LOO

value than the Shapley value.

Theorem 3. For a learning algorithm A(·) that
achieves (ǫ(N), δ(N))-DP when training on N data
points, let the performance measure be U(S) =

− 1
M

∑M

i=1 Eh∼A(S)l(h, zval,i) for S ⊆ D. Let ǫ′(N) =

ecǫ(N) − 1 + cecǫ(N)δ(N). It holds that

max
zi∈D

νloo(zi) ≤ ǫ
′(N − 1) max

zi∈D
νshap(zi) ≤

1

N − 1

N−1
∑

i=1

ǫ
′(i).
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For typical differentially private learning algorithms, such

as adding random noise to stochastic gradient descent, the

privacy guarantees will be weaker if we reduce the size of

training set (e.g., see Theorem 1 in Abadi et al. [1]). In

other words, ǫ(n) and δ(n) are monotonically decreasing

functions of n, and so is ǫ′(n). Therefore, it holds that

ǫ′(N) < 1
N

∑N

i=1 ǫ
′(i). The implications of Theorem 3

are three-fold. Firstly, the fact that the maximum score of

all training points is directly upper bounded by ǫ′ signifies

that stronger privacy guarantees will naturally increase the

difficulty to distinguish the importance of different points.

Secondly, the monotonic dependency of ǫ′ on N indicates

that both the LOO and the Shapley value converge to zero

when the training size is very large. Thirdly, by comparing

the upper bound for the LOO and the Shapley value, we see

that the convergence rate of the Shapley value is slower and

thus it has a better chance to differentiate “good” data from

the “bad” ones compared with the LOO value.

Our results are extendable to general stable learning algo-

rithms, which are insensitive to the removal of an arbitrary

point in the training dataset [4]. Stable learning algorithms

are appealing as they enjoy provable generalization error

bounds. Indeed, differentially private algorithms are sub-

sumed by the class of stable algorithms [28]. We leave the

details to the appendix.

4. Empirical Studies

Here we conduct a thorough empirical study on a range of

real-world ML applications with different datasets to inves-

tigate the performance comparison between (a) leave-one-

out–based method and Shapley-based method, and (b) exact

Shapley-based method and Shapley over KNN surrogates.

We first compare the runtime for different data importance

quantification methods, followed by the data importance

predictive power comparison, which is demonstrated on ap-

plications including mislabeled data detection, watermark

removal, data summarization, active data acquisition, and

domain adaptation. Due to the space limit, we leave the

detailed experimental settings to appendix.

4.1. Data Importance Quantification Approaches

Here we we mainly compare the up-to-date data impor-

tance quantification approaches, including the exact Shapley-

based method, leave-one-out method, as well as the ones

using KNN as surrogates for both.

Truncated Monte Carlo Shapley (TMC-Shapley).

This is a Monte Carlo-based approximation algorithm pro-

posed in Ghorbani et al. [7]. Monte Carlo-based methods

regard the Shapley value as the expectation of a training

instance’s marginal contribution to a random set and then

use the sample mean to approximate it.

Gradient Shapley (G-Shapley). This is another Monte

Carlo-based method proposed in Ghorbani et al. [7] with a
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Figure 1: runtime comparison.

different heuristic to accelerate the algorithm. G-Shapley

approximates the model performance change due to the addi-

tion of one training point by taking a gradient descent step at

that point and calculating the performance difference. This

method is applicable only to the models trained with gradient

methods; hence, the method will be included as a baseline

in our experimental results when the underlying models are

trained using gradient methods.

Leave-One-Out (LOO). We use LOO to refer to the

algorithm that calculates the exact model performance due

to the removal of a training point. Evaluating the LOO error

requires to re-train the model on the reduced dataset for every

training point, thus also impractical for large models.

KNN-LOO. Leave-one-out is efficient for KNN accord-

ing to Theorem 1. To use the KNN-LOO for valuing data,

we first use the pre-trained models offered in PyTorch [23]

to extract features for KNN and compute the KNN-LOO

value over the extracted features.

KNN-Shapley. We use KNN-Shapley to refer to the

following algorithm: similar to in KNN-LOO, we first use

the pretrained models in PyTorch to extract features. We

then directly apply Theorem 1 to compute the Shapley value

over pre-trained feature transformations. When pre-trained

feature transformations are not available, we directly com-

pute the KNN-Shapley value on the raw data as a surrogate

for the true Shapley value. The complexity of the above

algorithm is O(Nd+N logN) where d is the dimension of

feature representation. As opposed to Monte Carlo-based

methods (e.g., [7, 12]), the proposed algorithm does not re-

quire retraining models. It is well suited for approximating

scores for large models.

Random. The random baseline does not differentiate

importance between different data points and selects data

randomly from training set to perform a given task.

4.2. Runtime Comparison

First, we compare the runtime between the KNN-Shapley

approach and other baselines. Fig. 1 corresponds to ResNet-

18 [9] on CIFAR-10 [18], implemented on a machine with

1.80 GHz and 32 GB memory. We can see that KNN-

Shapley (using pre-trained MobileNet [10] embedding) out-

performs other approaches by several orders of magnitude
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Table 1: a summary of experiments in Appendix E.

Task (Section) Datasets

1. Noisy labels Detection (E.1) Spam [3], Flower1

2. Pattern-based watermark removal

(E.2)

Fashion-MNIST [29], MNIST [21],

PubFig-83 [19]

3. Instance-based watermark removal

(E.1)

CIFAR-10 [18], SVHN [22]

4. Data summarization (E.3) Tiny ImageNet [20]

5. Data acquisition (E.4) Tiny ImageNet [20]

6. Domain adaptation (E.5) MNIST [21] → SVHN [22]

for large training data size and large model size.

4.3. Comparisons on Applications

We study the efficacy of data importance estimated by

different approaches on a range tasks, including noisy label

detection, watermark removal, data summarization, active

data acquisition, and domain adaptation. While most of the

applications are used in a recent work [7], the watermark

removal including both pattern-based and instance-based

watermark removal evaluations are proposed by us here. We

consistently use the MobileNet embedding pretrained on

ImageNet on image inputs. For the spam dataset [3] and

the flower dataset1, we do not apply embedding as the pro-

vided features are not of image form. We compare different

embeddings in Appendix F.
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(b) Watermark removal
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(c) Data summarization
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Figure 2: The experiment result of (a) noisy label detection on

fashion-MNIST dataset; (b) instance-based watermark removal

on MNIST dataset; (c) data summarization on UCI Adult Census

dataset [15]; (d) data acquisition on MNIST dataset with injected

noise. In (a)-(b) the “random” line shows the results of random

guess; while in (c)-(d), the “random” line corresponds to the empir-

ical results of the random baseline introduced in Section 4.1.

1https://www.tensorflow.org/tutorials/load_data/

images

Summary of Experiments in Appendix. In this paper,

we evaluate different methods on 6 applications, each of

which on 2 to 3 datasets following the practice of previous

work. Due to the space limitation, we describe only one

representative dataset in the main body and leave the exper-

iment details and results on other datasets to Appendix E.

Table 1 is a summary of the experiments in the appendix.

Noisy Labels Detection. Labels in the real world are often

noisy due to automatic labeling, non-expert labeling, or label

corruption by data poisoning adversaries. We show that the

notion of data importance can help prioritize the verifica-

tion process, allowing experts to review only the examples

that are most likely to be contaminated. The key idea is to

rank the data points according to their data importance and

prioritize the points with the lowest importance scores. Fol-

lowing Ghorbani et al. [7], we perform experiments in three

settings and present the result of a three-layer convolutional

network trained on the fashion-MNIST dataset here in the

main body. The noise flipping ratio is 10% for this dataset.

The performance of different data importance measures is

illustrated in Fig. 2a. We examine the label of the training

instances that have the lowest scores, and plot the change of

the fraction of detected mislabeled data (in percentage) with

the fraction of the checked training data (in percentage). We

can see that the KNN-Shapley value outperforms all other

methods. Also, the Shapley value–based measures, includ-

ing TMC-Shapley, G-Shapley, and our KNN-Shapley, are

more effective than the LOO-based measures.

Watermark Removal. One prevalent way to claim the

ownership of a trained deep net is to embed watermarks

into the model. There are two classes of watermarking tech-

niques, namely, pattern-based techniques and instance-based

techniques. The watermark examples are displayed in Fig. 4.

Here, we present the experiment results for instance-based

techniques. The details on how they the watermarks are gen-

erated and how they work, as well as the experiment results

for the pattern-based techniques are left to Appendix E.2.

In this application, we demonstrate that it is always pos-

sible for the model trainer to remove the watermarks based

on data importance. The idea is that the watermarks should

have low data importance by nature, since they contribute

little to predict the normal validation data. Note that this

experiment constitutes a new type of attack, which might be

of independent interest itself.

We consider the setting of one logistic regression model

trained on 10000 images from MNIST for instance-based

watermark removal. The watermark ratio is 10%. For this

experiment, we found that both watermarks and benign in-

stances tend to have low scores on some validation instances;

therefore, they are not quite separable in terms of the score

averaged over the whole validation set. We instead propose
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(a) (b) (c) (d)

Figure 3: (a) (c) Top 20 selected images with the highest Shapley values for Tiny ImageNet, using MobileNet and VGG11 embeddings. (b)

(d) Histogram of images in top 50 classes after summarization (sorted by decreasing order). It is clear that within the top 50 classes, there

are many overlapped classes between different embeddings.

(a) (b) (c)

Figure 4: Examples of watermarks generated by (a)-(b) pattern-

based and (c) instance-based techniques.

to compute the max score across the validation set for each

training point, which we name as max-KNN-Shapley, and

remove the instances with lowest max-KNN-Shapley val-

ues. The intuition is that out-of-distribution samples are

inessential to the prediction of normal validation instances

and thus the maximum of their Shapley values w.r.t. differ-

ent validation instances should be low. In plotting Fig. 2b,

we examine the label of the training instances that have the

lowest scores and plot the change of the fraction of the de-

tected watermarks (in percentage) with the fraction of the

checked training data (in percentage). The figure reveals

that our max-KNN-Shapley is more effective in detecting

instance-based watermarks than all other baselines.

Data Summarization. Data summarization aims to select

a small representative subset from a massive dataset, which

can retain a comparable utility to that of the whole dataset.

This is a natural application of data importance, since we

can directly reduce the dataset size by eliminating data of

low importance.

We use a single hidden layer neural network trained on

UCI Adult Census dataset. In Fig. 2c, we plot the change of

prediction accuracy (in percentage) with the change of the

fraction of data removed (in percentage). The figure reveals

that the instances selected by the Shapley value–based data

importance measures are more representative than the LOO-

based measures. Though TMC-Shapley and G-Shapley can

achieve slightly better performance than KNN-Shapley, our

method still retains a high performance even after reducing

50% of the whole training set, which is notable.

Apart from the quantitative results above, we provide the

qualitative visualization of images drawn from Tiny Ima-

geNet in Fig. 3, where we show the images of the highest

Shapley value (i.e., representative images), as well as the

top 50 classes that their summarization belongs to. It is in-

triguing that a similar set of images (e.g., dugong, espresso,

monarch, goldfish) stand out as the most representative sam-

ples even when they are pre-processed using different feature

extractors. Why these classes are more representative is an

interesting open question that deserves further investigation.

Another observation is the high diversity of the top 20 im-

ages displayed, which further corroborates the capability of

our Shapley enriched method in producing a high-quality

miniature for the original massive dataset.

Active Data Acquisition. Annotated data is often hard

and expensive to obtain, particularly for specialized domains

where only experts can provide reliable labels. Active data

acquisition aims to facilitate the data collection process by

automatically deciding which instances an annotator should

label to train a model. To simulate this scenario, we start

with a small training set, and then train a random forest to

predict the score for new data based on their features. We

repeat the process and iteratively add new data with highest

data importance to the training set.

Here, we choose MNIST as our dataset and inject noise to

part of it. We start with a small training set with 100 images

and add Gaussian white noise into half of them. We use

another 100 images to calculate the scores of training data

and a held-out validation dataset of size 1000 to evaluate the

performance. In Fig. 2d we plot the change of prediction ac-

curacy with the number of added training points. Evidently,

new data selected based on KNN-Shapley value improves

model accuracy faster than all other methods.

Domain Adaptation. Domain adaptation aims to lever-

age the dataset from one domain for the prediction tasks

in another domain. We will show that the data importance
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Table 2: Domain adaptation between MNIST and USPS.

Method MNIST → USPS USPS → MNIST

→ →

KNN-Shapley 31.70% → 47.00% 23.35% → 29.80%

KNN-LOO 31.70% → 37.40% 23.35% → 24.50%

TMC-Shapley 31.70% → 44.90% 23.35% → 29.55%

LOO 31.70% → 29.40% 23.35% → 23.53%

measures will be useful for domain adaptation. Specifically,

we first compute the importance of data in the source domain

with respect to a held-out set from the target domain. We

then train the model using only positive-valued points in

source domain and evaluate the model in target domain.

We perform experiments on MNIST and USPS following

the setups in Ghorbani et al. [7] and present the transfer

results between the two. We first train a multinomial logistic

regression classifier. We randomly sample 1000 images from

the source domain as the training set, calculate the scores for

the training data based on 1000 instances from the target do-

main, and evaluate the performance of the model on another

1000 target domain instances. The results are summarized

in Table 2. As it shows, KNN-Shapley performs the best.
Summary of Results. Based on extensive empirical ob-

servations, we conclude that: (1) the KNN-Shapley-based

method requires the minimal runtime compared with the rest

approaches on large scale training data and models (some

methods such as TMC-Shapley cannot even finish running

within reasonable time); (2) for different ML applications

(e.g. mislabeled data detection, watermark removal, data

summarization active data acquisition, and domain adapta-

tion), different variants of Shapley-based methods consis-

tently outperform the leave-one-out–based methods; (3) the

KNN-Shapley based methods including both KNN- and

max-KNN-Shapley, always achieve the best or at least com-

parable performance compared to other Shapley approxima-

tion methods.

4.4. Comparisons of Different Embeddings

In Section 4.3 we provide results corresponding to the em-

beddings extracted by MobileNett [10] classifier pre-trained

on ImageNet. In this section, we leverage different embed-

dings extracted by 4 other pre-trained classifiers for evalu-

ation: ResNet18 [9], VGG11 [25], Inception-V3 [26], and

EfficientNet B7 [27].

We provide part of results in Fig. 5 for selected appli-

cations and datasets. In each figure, there are clearly two

groups of curves: one group for KNN-Shapley and the other

for KNN-LOO. We can see that the utility of KNN-LOO

is roughly the same as random, while the KNN-Shapley

presents high utility for different applications. In conclu-

sion, the difference induced by using different embeddings

is marginal compared to using different measures. Further-

more, our KNN-Shapley based importance measure is insen-

sitive to the selection of embeddings and can achieve superb
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Figure 5: Comparisons of different embeddings on different appli-

cations and datasets.

performance without the need of carefully selecting feature

extractors. A more comprehensive set of results are left to

Appendix F.

5. Conclusion

This paper provides the first theoretical and large-scale

empirical studies towards answering the fundamental ques-

tions about what method should be used for evaluating data

importance and how to efficiently do so. Particularly, we

prove that the Shapley-based method provides higher utility

than a leave-one-out–based approach, in terms of evaluating

the predictive power of the data importance as well as the

data discrimination ability. Extensive experiments are con-

ducted on five applications, showing that the Shapley-based

methods outperform the leave-one-out–based ones in terms

of both runtime and experimental performance. Specifically,

the KNN-Shapley approach provides the most efficient so-

lution and usually achieves the best or comparable perfor-

mance among all. In addition, we are the first to leverage

data importance approaches to perform watermark removal,

which is a challenging task currently, and achieve promising

results. This particular application would shed light on future

research on watermark analysis and other related tasks.
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