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Abstract

Learning based representation has become the key to

the success of many computer vision systems. While many

3D representations have been proposed, it is still an unad-

dressed problem how to represent a dynamically changing

3D object. In this paper, we introduce a compositional rep-

resentation for 4D captures, i.e. a deforming 3D object over

a temporal span, that disentangles shape, initial state, and

motion respectively. Each component is represented by a

latent code via a trained encoder. To model the motion, a

neural Ordinary Differential Equation (ODE) is trained to

update the initial state conditioned on the learned motion

code, and a decoder takes the shape code and the updated

state code to reconstruct the 3D model at each time stamp.

To this end, we propose an Identity Exchange Training (IET)

strategy to encourage the network to learn effectively de-

coupling each component. Extensive experiments demon-

strate that the proposed method outperforms existing state-

of-the-art deep learning based methods on 4D reconstruc-

tion, and significantly improves on various tasks, including

motion transfer and completion.

1. Introduction

Shape representation is one of the core topics in 3D com-

puter vision, especially in the era of deep learning. Early

work uses explicit representation, e.g. volume [13, 17, 58],

point cloud [46, 16, 45, 1], and mesh [18, 23, 57] for

3D related tasks, such as shape reconstruction, synthesis,

and completion. Recently, deep implicit representation

[33, 40, 22] shows promising performance in producing ac-

curate geometry with appealing surface details. However,

arguably, we, humans, stay in a 3D world with an addi-

tional temporal dimension, and the majority of data we per-

ceive everyday are moving or deforming 3D objects and

scenes. Many existing applications also require understand-
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Figure 1: We present a compositional representation for 4D

object dynamics, through which the input point cloud se-

quence is disentangled into semantically meaningful rep-

resentations in three latent spaces for geometry template,

initial state, and temporal deformation.

ing or reconstruction of 4D data, such as autonomous driv-

ing, robotics, and virtual or augmented reality. But the deep

representation for 4D data, i.e. a deforming 3D object over

a time span, is barely missing in the literature. As a pio-

neer work, Niemeyer et al. [37] propose to predict velocity

field of the 3D motion via a Neural ODE [11]. However, the

method mainly focuses on recovering and integrating local

flow for 4D reconstruction, which might accumulate error

and thus produce sub-optimal quality.

In this work, we propose a novel deep compositional

representation for 4D captures. This representation can be

used to reconstruct 4D captures, and it also extracts key

understanding that supports high-level tasks, such as mo-

tion transfer, 4D completion, or future prediction. This is

achieved by an encoder that takes a 4D capture as input and

produces latent codes representing the geometry template,

5340



initial state, and temporal deformation respectively. Taking

human as an example, these three key factors are commonly

understood as the identity, initial body pose, and motion1.

To reconstruct the 4D capture, we design a novel archi-

tecture taking three latent codes as inputs. First, we keep the

geometry template code (i.e. the identity) unchanged over

time since it is not affected by the motion. Then, we propose

a novel conditional latent Neural ODE to update the initial

state code (i.e. the initial body pose) conditioned on the de-

formation code (i.e. the motion). The temporally varying

state code is further concatenated with the geometry tem-

plate code, and fed into a decoder to reconstruct an implicit

occupancy field for each time frame, which recovers the 3D

shape over time. Mostly similar to us, Occupancy Flow [37]

also use Neural ODE [11] to update the position of each 3D

point for 4D reconstruction. In contrast, our method applies

the Neural ODE to update the latent state code that controls

the shape globally, which is empirically more stable.

To learn our compositional representation, we propose

a training strategy to enable the encoder to decouple the

geometry template and deformation, inspired by He et al.

[19]. Specifically, we take two 4D captures from different

subjects and extract their latent codes respectively. We then

swap their geometry template code and train the network

to reconstruct the motion with swapped geometry template.

The training is fully supervised by synthetic data, where the

parametric model is used to generate 4D captures with the

same motion but different geometry template, e.g. SMPL

model [28] for humans. We found this training strategy is

effective in separating geometry template from the motion,

which naturally supports motion transfer. The representa-

tion also enables 4D completion from captures with either

missing frames or partial geometry by solving an optimiza-

tion to update the latent codes until the partial observation

is best explained.

Our contributions can be summarized as follows. First,

we design a novel deep representation for 4D captures that

understands the geometry template, initial state, and tem-

poral deformation, and propose a novel training strategy to

learn it. Second, we propose a novel decoder to recon-

struct 4D captures from the learned representation, which

includes, as a key component, a conditional Neural ODE to

recover varying pose codes under the guidance of the mo-

tion code; and these codes are then translated into an occu-

pancy field in implicit representation to recover the varying

shape. Finally, we show that our model outperforms state-

of-the-art methods on 4D reconstruction, and our composi-

tional representation is naturally suitable for various appli-

cations, including motion transfer and 4D completion.

1Since the experiment is mainly conducted on 4D human captures, we

use these terms interchangeably.

2. Related Work

There is a large body of work that focuses on 3D rep-

resentation, 4D capture, 3D pose and motion transfer, and

compositional/disentangled representation. We discuss the

most related techniques in the context of our work.

3D Representation There has been a lot of work aiming

at reconstructing a continuous surface from various type

of inputs, such as color images [49, 57, 25, 10, 38], point

clouds [7, 3, 26], etc. Recently, great success has been

achieved for 3D shape reconstruction using deep learning

techniques. In early works, 3D volumes [13, 17, 58] and

point clouds [46, 16, 45, 1] are adopted as the outputs of the

networks, which suffer from the problems of losing surface

details or limited resolutions. With the development of the

graph convolution network, recent methods [18, 23, 57, 27]

take the triangle mesh as the output representation, most of

which regress the vertices and faces directly and require an

initial template and fixed topology. Most recently, there has

been significant work [33, 40, 22, 12, 15, 8] on learning

an implicit field function for surface representation, which

allow more flexible output topology and network architec-

tures. Among those methods, Occupancy Network [33] rep-

resents 3D shapes using continuous indicator functions by

specifying which subset of 3D space the object occupies,

and the iso-surface can be extracted by utilizing Marching

Cube algorithm [29].

4D Capture Research on 4D capture has been advancing

significantly in the past decades [42, 53, 32, 2]. How-

ever, most works are developed based on strong assump-

tions [54, 42, 53, 31, 56], demand the costly multi-view

inputs [36, 52, 35, 14]. Behl et al. [4] provide the 4D

scene flow estimation leveraging object localization or se-

mantic priors from deep networks, while the motion of

scenarios is assumed to be in a tiny range, fixed pattern,

rigid or linear, and high quality multi-view inputs are re-

quired. This greatly limits the ease of use and stability.

Meanwhile, some methods exploit guided transformations

on predefined templates to capture the time-dependent 3D

flow [5, 28, 60, 43, 24]. Such methods usually focus on spe-

cific shape categories, and the performance is restricted by

the characteristic and the generalization ability of the tem-

plate model.

Recently, Occupancy Flow [37] is presented to learn a

temporally continuous field to model the motion of every

point in space and time with Neural ODE [11] and the con-

tinuous implicit occupancy representation. Nevertheless,

since the network is trained to model the continuous flow

of the initial occupancy space, the quality of 4D reconstruc-

tion results relies on the initial frame heavily.

3D Pose and Motion Transfer Conventional methods solv-

ing the 3D pose transfer problem via discrete deformation

transfer. Learning-based mesh deformation is presented in

[55], which leverages the spatially adaptive instance nor-
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Figure 2: Overview of our model. Our full model contains three building blocks, namely, compositional encoder, latent pose

transformer and implicit occupancy decoder. During each training step, two point cloud sequences are chosen randomly from

the training set as a pair and fed into the three encoders successively (note that the motion encoder is provided with the whole

sequence, while the other two encoders are only provided with the first time step of sequence). After that, there is a 50%

probability that the identity codes of the two sequences are exchanged before continuing the forward propagation. Note that

if the identity codes are exchanged, the ground truth meshes used for loss calculation will also be updated correspondingly.

malization [21] in the network. Nevertheless, dense trian-

gle mesh is required and the modeling of both spatial and

temporal motion continuous flow is unavailable.

3D motion transfer aims at producing a new shape se-

quence given a pair of source and target shape sequences,

making the target shape sequence do the same temporal de-

formation as the source, which focuses on the continuous

pose transformation among shape sequences. By applying

vector field-based motion code to target shape, Occupancy

Flow [37] transfers motion among human model sequences.

Essentially, since Occupancy Flow does not explicitly dis-

entangle the representations of pose and shape as done in

our work, we notice the good motion transfer results of Oc-

cupancy Flow are mostly achieved in the cases that the iden-

tities and initial poses from source and target are similar.

Compositional/Disentangled Representation Learning

compositional/disentangled representations has been exten-

sively studied in previous work [51, 34, 48, 61, 41, 50].

One attractive property of human intelligence is to learn

novel concepts from a few or even a single example by

composing known primitives [51], which is lacking in the

current deep learning system. Prior work utilize composi-

tional/disentangled representations to address various tasks.

Zhu et al. [61] disentangle shape, viewpoint, and texture

and present an end-to-end adversarial learning framework

to generate realistic images. Tewari et al. [50] learn a face

model from in-the-wild video with a novel multi-frame con-

sistency loss, the proposed approach represents the facial

geometry and appearance in different spaces and achieves

realistic 3D face reconstruction. Park et al. [41] propose a

fully unsupervised method to learn a swapping autoencoder

for deep image manipulation task, which disentangles tex-

ture from structure. Most recently, Rempe et al. [47] pro-

pose CaSPR to learn a 4D representation of dynamic object

point cloud sequences in Temporal-NOCS using latent Neu-

ral ODE and enable multiple applications. By dividing the

latent feature into static and dynamic parts, it realizes shape

and motion disentanglement. Unlike methods mentioned

above, our goal is to learn a deep compositional represen-

tation for 4D captures with conditional latent Neural ODE,

which decouples geometry template, initial state, and tem-

poral deformation into different latent spaces, and supports

various high-level tasks.

3. Method

In this section, we introduce our compositional represen-

tation for 4D captures and the training strategy to learn it

from data. The full pipeline of our framework is illustrated
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in Fig. 2. Taking a 3D model doing non-rigid deformation

in time span [0, 1], we extract the sparse point cloud from

the 3D model in K uniformly sampled time stamps and feed

them to the network as inputs. Our goal is to learn separate

compact representations for identity ci, initial pose cp, and

motion cm, and reconstruct the 3D model at any continuous

time stamp from them. On the encoder side, we train three

PointNet [46] based networks to extract ci and cp from the

first frame, and cm from the whole sequence. To reconstruct

mesh in target time t, we first update the initial pose code

cp to c
(t)
p encoding the pose of the 3D model in target time,

which is achieved via a Neural ODE [11] conditioned on

motion code cm. The ci and c
(t)
p are then concatenated and

fed into a network to produce an implicit occupancy field

indicating whether a 3D location is inside or outside the 3D

shape, and the 3D mesh surface can be reconstructed via the

Marching Cube algorithm [30].

3.1. Compositional Encoder

We utilize three separate encoders to extract 128-d latent

codes for identity, pose, and motion respectively. Inspired

by Occupancy Flow [37], we use a PointNet-based [46] net-

work architecture with ResNet blocks [20] as the backbone,

although the input to each encoder is different according to

the semantic meaning of each code. The initial pose only

depends on the 3D shape in the first frame, therefore the

corresponding encoder only takes the point cloud of the first

frame, i.e. t = 0, as input. In contrast, the motion encoder

takes the whole point cloud sequence as the input since the

motion code needs to encode the deformation throughout

the whole time span. To get the identity code, the encoder

can take the whole sequence as input, but we empirically

found that using only the first frame is enough and achieves

similar performance.

3.2. Latent Pose Transformer

After obtaining the ci, cp, and cm from the composi-

tional encoder, the next step is to update the pose code for

target time t, i.e. c
(t)
p , which are used to reconstruct the

3D shape in corresponding time stamp. Intuitively, the tar-

get pose code should start from the initial pose code, i.e.

c
(t=0)
p = cp, and varies continuously over time conditioned

on the motion code cm. To this end, we propose a novel

latent pose transformer, which is achieved by a conditional

latent Neural ODE.

Neural ODE is used to reconstruct continuous tempo-

ral signals S(t). Instead of directly estimating the target

value, Neural ODE fθ(t) predicts differential elements at

each time stamp, which can be integrated to reconstruct the

signal, i.e. S(T ) = S(0) +
∫ T

0
fθ (t, S(t)) dt. For our spe-

cific scenario, we train a Neural ODE to predict the varia-

tion of the latent pose code over time. Different from the

original Neural ODE, our model is further conditioned on

the motion code, which allows the same network to update

initial poses in different manners according to the motion

exhibit in the input sequence. Therefore, the pose code in

target time T is obtained by

c
(T )
p = cp +

∫ T

0

fθ

(

c
(t)
p , t | cm

)

dt, (1)

where fθ(·) is modeled by a neural network of 5 residual

blocks with θ as the parameters. Following the advice of

[11], we obtain the gradient using the adjoint sensitivity

method [44]. For more details, please refer to the Supple-

mentary Material.

3.3. Implicit Occupancy Decoder

The last stage of our model translates the identity code ci

and the pose code in target time c
(t)
p into 3D shape. Inspired

by high geometry quality from recent work using implicit

representation [40, 33, 59], we train an Occupancy Network

(ONet) [33] to predict for each 3D location if they were

inside or outside the object surface:

o
(t)
p

:= Φη

(

p | ci ⊕ c
(t)
p

)

, (2)

where p is a 3D location, Φη is an ONet parameterized by

η, ⊕ denotes the concatenation operation between codes,

o
(t)
p is the occupancy of location p in time t. Note that the

identity code ci remains the same as it should not change

over time.

3.4. Identity Exchange Training

Naively training our network with 4D reconstruction

is not sufficient to learn the compositional representation

that isolates identity, initial pose, and motion. We in-

troduce a simple yet effective training strategy (shown in

Fig. 2), where the network is asked to reconstruct the

same motion with different identities. Specifically, we ex-

tract latent codes for two sequences, {ci1 , cm1
, cp1

} and

{ci2 , cm2
, cp2

}, from different subjects s1 and s2. We then

swap their identity codes and supervise the model to re-

construct ground truth 4D captures of the same motion per-

formed by the other subjects, i.e. s1 performing motion of

s2 and vice versa. Since cm1
and cp1

has no visibility to s2,

all the identity information for s2 has to be encoded in ci2

for successful reconstruction. In practice, we perform this

identity exchange training strategy for 50% of the iterations,

and find it effective in disentangling identity and motion.

3.5. Loss Function

Our model is trained by minimizing the binary cross en-

tropy error (BCE) on the occupancy of 3D locations. In-

spired by Occupancy Network [33], we randomly sample a
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time step τ and a set of 3D query points S , and compute the

loss L(τ) between the predicted occupancy value o
(τ)
p and

the ground truth ô
(τ)
p :

L(τ) =
∑

p∈S

BCE
(

ô
(τ)
p

,o(τ)
p

)

. (3)

To get S , we normalize all the meshes to [−0.5, 0.5] with

the global scale and translation calculated from the dataset,

and sample 50% points uniformly in a bounding volume

and 50% points near the surface of the mesh. We find the

definition of the bounding volume affects the training per-

formance, and experiment with two ways: 1) a fixed volume

with the length of 1; 2) a tight bounding volume around the

mesh, in our experiments.

During training, we also supervise the predicted occu-

pancy value at time step 0 to ensure a high quality initial-

ization. Therefore, the complete loss function is defined as:

L = λ1L
(0) + λ2L

(τ), (4)

where λ1 = λ2 = 1.0 in our experiment. We use Adam op-

timizer with the learning rate as 10−4. The model is trained

with batch size of 16 on a single NVIDIA RTX 2080Ti

GPU.

4. Experiments

In this section, we perform extensive experiments to

evaluate our method. We first show the ability for 4D recon-

struction, and then apply our compositional representation

to various tasks like motion transfer, 4D completion and fu-

ture prediction.

4.1. Data Preparation

We use two datasets to train and evaluate our proposed

method. The first dataset is Dynamic FAUST (D-FAUST)

[6], which contains 129 mesh sequences of 10 real human

subjects performing 14 different motions and all meshes are

registered with SMPL [28] model. We augment D-FAUST

to meet the needs of our Identity Exchange Training strategy

(Sec. 3.4). We first fit the SMPL shape and pose parameters

for all the data. Then, the ground truth mesh sequences of

all the combinations of identities and motions are generated,

extending the number of mesh sequences to about 1000.

We also build a Warping Cars dataset using the approach

introduced in Occupancy Flow [37] to investigate the per-

formance of our method on non-human objects. Specifi-

cally, we randomly choose 10 car models from ShapeNet

[9] Car category and generate 1000 warpings. To generate

a warping field, Gaussian displacement vectors are sampled

in a 3 × 3 × 3 × 5 grid and the RBF [39] interpolation is

used to obtain a continuous displacement field. We com-

bine different car shapes and warpings and finally get the

dataset with total number of mesh sequences to 10000, each

of which has 50 time steps.

4.2. 4D Reconstruction

We first verify the reconstruction ability of our model

following the setting in Occupancy Flow (OFlow) [37]. The

network consumes 300 sparse point trajectories as input,

each of which consists of 3D locations at L = 17 equally

divided time stamps, and the goal is to reconstruct compact

mesh at these time stamps even though the model is able to

produce mesh at any particular time. For human model, we

use the same train/test split on D-FAUST [6] as OFlow, in-

cluding data on subjects seen and unseen during the training

respectively. For Warping Cars dataset, we test on our own

testing set as it was not released.

The quantitative results on the D-FAUST dataset and

the Warping Cars dataset are summarized in Tab. 1, where

we report the average IoU and Chamfer Distance over 17

frames of all testing sequences. As our baseline, “PSGN

4D” is a 4D extension of Point Set Generation Network [16]

by predicting a set of trajectories instead of single points,

and “ONet 4D” is an extension of Occupancy Network

(ONet) [33], which predicts occupancy value for points

sampled in 4D space and reconstructs each frame of the

sequence separately. OFlow uses Neural ODE to learn a

continuous motion vector field for every point in space and

time. While OFlow explicitly transform the 3D coordinates

of each point, we transform the pose code in the latent

space. The results of baselines on the D-FAUST dataset

are cited from OFlow [37], and the results on Warping Cars

dataset are produced by a retrained OFlow. Overall, our

method performs comparable or better than other methods

on D-FAUST and Warping Cars datasets, indicating that our

model is able to reconstruct accurate surfaces.

In Fig. 3, we show qualitative comparison on the D-

FAUST dataset with OFlow. Our method is able to capture

more details, such as the shape of the opening hands and

the outline of the muscles on the body. In particular, OFlow

fails to track the motion of hands in the last frame of the

left sequence, while our method produces stable results dur-

ing the whole sequence time. This is presumably because

our method reconstructs each frame of the whole sequence

individually with the transformed pose latent code, while

OFlow only reconstructs the first frame and deforms it with

the learned transformation flow. Furthermore, the qualita-

tive results on the Warping Cars dataset are shown in Fig. 4,

in which our method shows better capability of recovering

motion than OFlow.

We provide an ablation study on 4D reconstruction task

based on the D-FAUST dataset to evaluate the effectiveness

of ODE in different aspects. 1) ODE in feature v.s. 3D.

We found that training an ODE directly in 3D space, i.e.

exactly an OFlow, with identity exchange is hard to con-

verge. We trained the model for a week on a single NVIDIA

RTX 2080Ti GPU, and found the model learns barely any

motion. In contrast, applying ODE in feature space, i.e.
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Figure 3: 4D reconstruction from point cloud sequence (D-FAUST). GT is short for Ground Truth.

Methods
Seen Individuals (D-FAUST) Unseen individual (D-FAUST) Warping Cars

IoU ↑ Chamfer Distance ↓ IoU ↑ Chamfer Distance ↓ IoU ↑ Chamfer Distance ↓

PSGN 4D - 0.108 - 0.127 - -

ONet 4D 77.9% 0.084 66.6% 0.140 - -

OFlow 79.9% 0.073 69.6% 0.095 70.0% 0.166

Ours 81.8% 0.068 68.2% 0.100 70.9% 0.154

Ours* 81.5% 0.068 69.9% 0.094 - -

Table 1: 4D reconstruction from point cloud sequence (D-FAUST and Warping Cars). Ours* indicates that when

preparing training data, we sample query points in a fixed cubic bounding volume with the length of 1 (see Sec. 3.5).

our method, may benefit from regularization provided by

the compact 1-d latent vector and converges well. 2) ODE

v.s. MLP. We train a model replacing ODE to an MLP

that directly produces the pose code for a specified time,

and get IoU=80.4% and Chamfer Distance=0.073 for re-

construction on D-FAUST, while our ODE model achieves

IoU=81.8% and Chamfer Distance=0.068. This indicates

that ODE performs better than MLP in reconstructing pose

sequence for motion, but the MLP model trains and runs

relatively faster.

4.3. Pose and Motion Transfer

Our compositional representation also naturally supports

motion transfer. Consider two subjects performing different

motions, namely id1 +motion1 and id2 +motion2, and

our goal is to generate 4D sequence with id2 +motion1.

To do so, we first extract the latent representations with

our compositional encoder for each input sequence, namely
(

c
1
i , c

1
p0
, c1m

)

,
(

c
2
i , c

2
p0
, c2m

)

, and then feed
(

c
2
i , c

1
p0
, c1m

)

to

the latent pose transformer and implicit occupancy decoder.

We evaluate our method on the D-FAUST testing set,

where we randomly select 20 identity and motion pairs, and

generate the ground truth 4D sequences after motion trans-

fer using the known SMPL parameters. As baseline, we

compare to OFlow which also learns separate codes to rep-

resent first frame geometry (i.e. the identity) and velocity

field (i.e. the motion) respectively. In addition, we also

build a baseline with the recent state-of-the-art neural pose
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Figure 4: 4D reconstruction on Warping Cars dataset.

transfer method NPT [55], which utilizes spatially adaptive

instance normalization to deform the identity point cloud

to each time step of the target motion sequence using pose

transfer. The transformed point clouds are then fed into

OFlow to generate complete meshes.

The quantitative results are shown in Tab. 2. Our method

significantly outperforms other baseline methods with large

margins. One qualitative comparison is shown in Fig. 5.

The performance of NPT is heavily limited by the density

of the input identity and motion sequences, which makes

it hard to transfer the continuous motion with sparse in-

puts. OFlow does not transfer the motion at all, presumably

because the pose representations are not decoupled from

the shape latent code, which leads to a wrong first frame

pose initialization and the failure of the whole generated se-

quence. In contrast, our method successfully transfers the

motion to the new identity, including both the initial pose

and following frames. Additional results on Warping Cars

dataset are shown in Supplementary Material.

IoU ↑ Chamfer Distance ↓

NPT 26.4% 0.498

OFlow 26.7% 0.400

Ours 85.0% 0.055

Table 2: Motion transfer (D-FAUST).

We further investigate if the motion code cm can be

transferred without the initial pose code cp. Even though

this is sometimes an ill-posed problem (e.g. forcing a stand-

up motion to start with a standing pose), we find, surpris-

ingly, our model is still able to produce reasonable results

if the new initial pose is not too different from the origi-

nal one (See Supplementary Material for results). This in-

dicates that our conditional Neural ODE is robust to some

extent against the noise in the initial pose code.

4.4. 4D Completion

Our compositional 4D representation also provides

strong prior as the regularization for 4D completion task,

Identity

Sequence

Motion

Sequence

Time

NPT

OFlow

Ours

Inputs

Results 

Figure 5: Motion transfer results on an input sequence

pair (D-FAUST). Our method transfers the motion of the

second sequence to the identity of the first sequence suc-

cessfully, while keeping the shape property of the first se-

quence unchanged.

Methods
Temporal Spatial

IoU ↑ CD ↓ IoU ↑ CD ↓

OFlow 85.1% 0.057 86.0% 0.054

Ours 86.4% 0.056 87.2% 0.051

Table 3: 4D temporal completion and spatial completion

(D-FAUST). CD is short for Chamfer Distance.

in which the goal is to fill in the missing signals in a given

4D capture with only partial observation. This is practi-

cally useful when part of the 4D capture is corrupted due

to imperfect capturing techniques or challenging scenar-

ios. Specifically, this task can be categorized into two kinds

based on the missing data: 1) Temporal completion, which

recovers the missing frames; 2) Spatial completion, which

completes partial geometry in each frame. To perform these

tasks, we remove the encoder, fix the decoder parameters,

and optimize the latent codes with back-propagation until

the output 4D sequence matches the partial observation.

The experiments are conducted on the D-FAUST dataset.
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OFlow
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Figure 6: 4D temporal completion (D-FAUST). We show

the results of 5 missing frames.

OFlow

Time

Ours

GT

Figure 7: Future prediction (D-FAUST). The results on

the left of the dotted line are reconstructions for partial ob-

servation, and the results on the right are future predictions.

For temporal completion, we select 18 mesh sequences with

L = 30 frames from the testing set, and randomly withheld

half of the frames in each sequence for testing. For spatial

completion, we randomly select three points in each frame

and remove the points less than 0.2 away from them.

Comparison to OFlow is shown in Tab. 3. Our method

performs comparable or better IoU and Chamfer distance

than OFlow on both temporal and spatial completion. Fig.

6 shows a temporal completion result. Our method suc-

cessfully interpolates correct poses for missing frames with

more complete geometry than OFlow. Please refer to Sup-

plementary Material for results on Warping Cars dataset.

4.5. Future Prediction

Not only interpolating internal missing frames, our

model can also predict the future of the motion by extrapo-

lating temporal frames onward. To validate this, we select

15 mesh sequences with L = 20 frames from the D-FAUST

testing set, and always remove the last 10 frames instead of

randomly selected ones. Tab. 4 and Fig. 7 show the com-

parison to OFlow. Though OFlow can also produce reason-

able future motion, the magnitudes are usually small which

leads to overly slow motion. In contrast, our method pre-

dicts much more accurate motion, e.g. with the other leg

raised. The results on Warping Cars dataset are shown in

Supplementary Material.

IoU ↑ Chamfer Distance ↓

OFlow 75.5% 0.099

Ours 80.8% 0.081

Table 4: Future prediction (D-FAUST). We remove the

last 10 frames of sequence to investigate the extrapolation

ability of our method.

5. Conclusion

This paper introduces a compositional representation for

4D captures by disentangling the geometry template, ini-

tial state and temporal deformation with separated compact

latent codes, which can reconstruct the deforming 3D ob-

ject over a temporal span. Furthermore, an identity ex-

change training strategy is proposed to make geometry tem-

plate and temporal deformation efficiently decoupled and

exchangeable. Extensive experiments on 4D reconstruction,

pose and motion transfer, 4D completion, and motion pre-

diction validate the efficacy of our proposed approach.
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