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Abstract

Domain adaptation (DA) aims at transferring knowl-

edge from a labeled source domain to an unlabeled target

domain. Though many DA theories and algorithms have

been proposed, most of them are tailored into classifica-

tion settings and may fail in regression tasks, especially in

the practical keypoint detection task. To tackle this diffi-

cult but significant task, we present a method of regressive

domain adaptation (RegDA) for unsupervised keypoint de-

tection. Inspired by the latest theoretical work, we first uti-

lize an adversarial regressor to maximize the disparity on

the target domain and train a feature generator to minimize

this disparity. However, due to the high dimension of the

output space, this regressor fails to detect samples that de-

viate from the support of the source. To overcome this prob-

lem, we propose two important ideas. First, based on our

observation that the probability density of the output space

is sparse, we introduce a spatial probability distribution to

describe this sparsity and then use it to guide the learning

of the adversarial regressor. Second, to alleviate the opti-

mization difficulty in the high-dimensional space, we inno-

vatively convert the minimax game in the adversarial train-

ing to the minimization of two opposite goals. Extensive ex-

periments show that our method brings large improvement

by 8% to 11% in terms of PCK on different datasets.

1. Introduction

Many computer vision tasks have achieved great success

with the advent of deep neural networks in recent years.

However, the success of deep networks relies on a large

amount of labeled data [14], which is often expensive and

time-consuming to collect. Domain adaptation (DA) [21],

which aims at transferring knowledge from a labeled source

domain to an unlabeled target domain, is a more econom-

ical and practical option than annotating sufficient target

samples, especially in the keypoint detection tasks. The

fast development of computer vision applications leads to

huge increases in demand for keypoint detection but the an-

Before Adaptation After Adaptation

Figure 1. Visualization before and after adaptation on the unla-

beled target domain. (Left) The wrong predictions before adapta-

tion are usually located at other keypoints. (Right) The predictions

of the adapted model look more like hands or bodies.

notations of this task are more complex than classification

tasks, requiring much more labor work especially when the

objects are partially occluded. On the contrary, accurately

labeled synthetic images can be obtained in abundance by

computer graphics processing at a low cost [27, 23]. Hence,

enabling domain adaptation in regression settings for unsu-

pervised keypoint detection has a promising future.

There are many effective DA methods for classification

[17, 6, 22, 30], but we empirically found that few methods

work on regression. One possible reason is that there ex-

ist explicit task-specific boundaries between classes in clas-

sification. By applying domain alignment, the margins of

boundaries between different classes on the target domain

are enlarged, thereby helping the model generalize to the

unlabeled target domain. However, the regression space is

usually continuous on the contrary, i.e., there is no clear de-

cision boundary. Meanwhile, although images have limited

pixels, the keypoint is still in a large discrete space due to

a combination of different axes, posing another huge chal-

lenge for most DA methods.

To solve the issues caused by the large output space, we

delved into the predictions of a source-only keypoint de-

tection model. We observed that when the predictions on

the unlabeled domain are wrong, they are not equally dis-

tributed on the image. For example, if the position of a right

ankle is mistaken (Figure 1), the wrong prediction is most

likely at the position of the left ankle or other keypoints,

instead of somewhere in the background as we expected.

This unexpected observation reveals that the output space is

sparse in the sense of probability. Consider an extremely
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sparse case where the predicted position is always located

at a keypoint, then a specific ankle detection problem be-

comes a K-way classification problem, and we can reduce

the domain gap by enlarging the decision boundary between

keypoints. This extreme case gives us a strong hint that if

we can constrain the output space from a whole image space

into a smaller one with onlyK keypoints, it may be possible

to bridge the gap between regression and classification.

This paper aims to enable regressive domain adaptation

(RegDA). Inspired by the latest domain adaptation theory—

disparity discrepancy (DD) [30], we first use an adversar-

ial regressor to maximize the disparity on the target do-

main and train a feature generator to minimize this disparity.

Based on the aforementioned observations and analyses, we

introduce a spatial probability distribution to describe the

sparsity and use it to guide the optimization of the adversar-

ial regressor. It can somewhat avoid the problems caused by

the large output space and reduce the gap between keypoint

detection and classification in domain adaptation. Besides,

we also found that maximizing the disparity of two regres-

sors is unbelievably difficult (see Section 5.2.4). To this end,

we convert the minimax game in DD [30] into minimization

of two opposite goals. This conversion has effectively over-

came the optimization difficulty of adversarial training in

RegDA. Our contributions are summarized as follows:

• We discovered the sparsity of regression output space

in the sense of probability, which provides a hint to

bridge the gap between regression and classification.

• We proposed RegDA, an effective regression method,

which converts the minimax game between two regres-

sors into the minimization of two opposite goals.

• We conducted rich experiments on various keypoint

detection tasks and validate that our method can bring

performance gains by 8% to 11% in terms of PCK.

2. Related Work

Domain Adaptation. Most deep neural networks suffer

from performance degradation due to the domain shift [20].

Domain Adaptation (DA) is proposed to transfer knowledge

from the source domain to the target domain. DAN [17]

adopts adaptation layers to minimize an optimal MK-MMD

[7] between domains. DANN [6] first introduces adversar-

ial training into domain adaptation. MCD [22] uses two

task-specific classifiers to approximate the H∆H-distance

[2] between source and target and minimizes it by feature

adaptation. MDD [30] extends the theories of domain adap-

tation to multiclass classification and proposes a novel mea-

surement of domain discrepancy. These methods mentioned

above are insightful and effective in classification problems.

But few of them work on regression problems. In our work,

we propose a novel training method for domain adaptation

in keypoint detection, which is a typical regression problem.

Keypoint Detection. 2D keypoint detection has become a

popular research topic these years for its wide use in com-

puter vision applications. Tompson et al. [25] propose a

multi-resolution framework that generates heatmaps repre-

senting per-pixel likelihood for keypoints. Hourglass [18]

develops a repeated bottom-up, top-down architecture, and

enforces intermediate supervision by applying loss on in-

termediate heatmaps. Xiao et al. [29] propose a simple and

effective model that adds a few deconvolutional layers on

ResNet [9]. HRNet [24] maintains high resolution through

the whole network and achieves notable improvement. Note

that our method is not intended to further refine the network

architecture, but to solve the problem of domain adaptation

in 2D keypoint detection. Thus our method is compatible

with any of these heatmap-based networks.

Some previous works have explored DA in keypoint de-

tection, but most in 3D keypoints detection. Cai et al. [3]

propose a weakly-supervised method with the aid of depth

images and Zhou et al. [32] conduct weakly-supervised do-

main adaptation with a 3D geometric constraint-induced

loss. These methods assume 2D ground truth available on

target domain and use a fully-supervised method to get 2D

heatmap. Zhou et al. [33] utilize view-consistency to regu-

larize predictions from unlabeled target domain in 3D key-

points detection, but depth scans and images from different

views are required on the target domain. Our problem setup

is completely different from the above works since we only

have unlabeled 2D data on the target domain.

Loss Functions for Heatmap Regression. Heatmap re-

gression is widely adopted in keypoint detection problems,

which computes the the mean squared error between the

predicted heatmap and the ground truth one [25, 28, 4, 5,

16, 24]. Besides, Mask R-CNN [8] adopts the cross-entropy

loss, where the ground truth is a one-hot heatmap. Some

other works [10, 19] take the problem as a binary classifica-

tion for each pixel. Differently, we present a new loss func-

tion based on KL-divergence, which is suitable for RegDA.

3. Preliminaries

3.1. Learning Setup

In supervised 2D keypoint detection, we have n la-

beled samples {(xi,yi)}
n
i=1 from X × YK , where X ∈

RH×W×3 is the input space, Y ∈ R2 is the output space

and K is the number of keypoints for each input. The sam-

ples independently drawn from the distribution D are de-

noted as D̂. The goal is to find a regressor f ∈ F that

has the lowest error rate errD = E(x,y)∼DL(f(x), y) on D,

where L is a loss function we will discuss in Section 4.1.

In unsupervised domain adaptation, there exists a labeled

source domain P̂ = {(xsi ,y
s
i )}

n
i=1 and an unlabeled target

domain Q̂ = {xti}
m
i=1. The objective is to minimize errQ.
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3.2. Disparity Discrepancy

Definition 1 (Disparity [30]). Given two hypothesis f, f ′ ∈
F , we define the disparity between them as

dispD(f
′, f) , EDL(f

′, f). (1)

Definition 2 (Disparity Discrepancy, DD [30]). Given a hy-

pothesis space F and a specific regressor f ∈ F , the Dis-

parity Discrepancy (DD) is defined by

df,F (P,Q) , sup
f ′∈F

(dispQ(f
′, f)− dispP (f

′, f)). (2)

It has been proved that when L satisfies the triangle in-

equality, the expected error errQ(f) on the target domain is

strictly bounded by the sum of four terms: empirical error

on the source domain err
P̂
(f), empirical disparity discrep-

ancy df,F (P̂ , Q̂) between source and target, the ideal error

λ and complexity terms [30]. Thus our task becomes

min
f∈F

err
P̂
(f) + df,F (P̂ , Q̂). (3)

We train a feature generator network ψ (see Figure 2)

which takes inputs x, and regressor networks f and f ′

which take features from ψ. We approximate the supremum

in Equation (2) by maximizing disparity discrepancy (DD):

max
f ′

D(P̂ , Q̂) = E
x
t
∼Q̂

L((f ′ ◦ ψ)(xt), (f ◦ ψ)(xt))

− E
x
s
∼P̂
L((f ′ ◦ ψ)(xs), (f ◦ ψ)(xs)).

(4)

When the regressor f ′ is close to the supremum, minimizing

the following terms will decrease errQ effectively,

min
ψ,f

E(xs,ys)∼P̂L((f ◦ ψ)(xs),ys) + ηD(P̂ , Q̂), (5)

where η > 0 is the trade-off coefficient.
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Figure 2. DD architecture under the keypoint detection setting.

4. Method

4.1. Supervised Keypoint Detection

Most top-performing methods on keypoint detection [29,

24, 18] generate a likelihood heatmap H(yk) ∈ RH
′×W ′

for each keypoint yk . The heatmap usually has a 2D Gaus-

sian blob centered on the ground truth location yk. Then we

can use L2 distance to measure the difference between the

predicted heatmap f(xs) and the ground truth H(ys). The

final prediction is the point with the maximum probability

in the predicted map hk, i.e. J (hk) = argmax
y∈Yhk(y).

Heatmap learning shows good performance in the super-

vised setting. However, when we apply it to the minimax

game for domain adaptation, we empirically find that it will

lead to a numerical explosion. The reason is that f(xt) is

not bounded, and the maximization will increase the value

at all positions on the predicted heatmap.

To overcome this issue, we first define the spatial prob-

ability distribution PT(yk), which normalizes the heatmap

H(yk) over the spatial dimension,

PT(yk)h,w =
H(yk)h,w∑H′

h′=1

∑W ′

w′=1 H(yk)h′,w′

. (6)

Denote by σ the spatial softmax function,

σ(z)h,w =
exp(zh,w)∑H′

h′=1

∑W ′

w′=1 exp(zh′,w′)
. (7)

Then we can use the KL-divergence to measure the dif-

ference between the predicted spatial probability p̂
s =

(σ ◦ f)(xs) ∈ RK×H×W and the ground truth label ys,

LT(p
s,ys) ,

1

K

K∑

k

KL(PT(y
s
k)||p

s
k). (8)

In supervised setting, models trained with KL-divergence

achieve comparable performance with models trained with

L2 loss since both models are provided with pixel-level su-

pervision. Since σ(z) sums to 1 in the spatial dimension,

the maximization of LT(p
s,ys) will not cause the numeri-

cal explosion. In our next discussion, KL is used by default.

4.2. Sparsity of the Spatial Density

Compared with classification models, the output space

of the keypoint detection models is much larger, usually of

size 64× 64. Note that the optimization objective of the ad-

versarial regressor f ′ is to maximize the disparity between

the predictions of f ′ and f on the target domain, and min-

imize the disparity on the source domain. In other words,

we are looking for an adversarial regressor f ′ which pre-

dicts correctly on the source domain, while making as many

mistakes as possible on the target domain. However, in the

experiment on dSprites (detailed in Section 5.1), we find

that increasing the output space of the adversarial regressor

f ′ will worsen the final performance on the target domain.

Therefore, the dimension of the output space has a huge im-

pact on the adversarial regressor. It would be hard to find the

adversarial regressor f ′ that does poorly only on the target

domain when the output space is too large.

Thus, how to reduce the size of the output space for the

adversarial regressor has become an urgent problem. As
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we mentioned previously (see Figure 1), when the model

makes a mistake on the unlabeled target domain, the prob-

ability of different positions is not the same. For example,

when the model incorrectly predicts the position of the right

ankle (see Figure 3), most likely the position of the left an-

kle is predicted, occasionally other keypoints predicted, and

rarely positions on the background are predicted. Hence,

when the input is given, the output space, in the sense of

probability, is not uniform. This spatial density is sparse,

i.e., some positions have a larger probability while most

positions have a probability close to zero. To explore this

space more efficiently, f ′ should pay more attention to po-

sitions with high probability. Since wrong predictions are

often located at other keypoints, we sum up their heatmaps,

HF(ŷk)h,w =
∑

k′ 6=k

H(ŷk′)h,w, (9)

where ŷk is the prediction by the main regressor f . Then we

normalize the map HF(yk) into ground false distribution,

PF(ŷk)h,w =
HF(ŷk)h,w∑H′

h′=1

∑W ′

w′=1 HF(ŷk)h′,w′

. (10)

We use PF(ŷk) to approximate the spatial probability dis-

tribution that the model makes mistakes at different loca-

tions and we will use it to guide the exploration of f ′ in

Section 4.3. The size of the output space of the adversarial

regressor is reduced in the sense of expectation. Essentially,

we are making use of the sparsity of the spatial density to

ease the minimax game in a high-dimensional output space.

"

"!

Source Target

Source Target

Figure 3. The task is to predict the position of the right ankle. Pre-

dictions of f and f ′ on the source domain (in yellow) are near

the right ankle. Predictions of f on the target domain (in blue)

are sometimes wrong and located at the left ankle or other key-

points. The predictions of f ′ on the target domain (in orange) are

encouraged to locate at other keypoints in order to detect samples

far from the support of the right ankle.

4.3. Minimax of Target Disparity

Besides the problem discussed above, there is still one

problem in the minimax game of the target disparity. The-

oretically, the minimization of KL-divergence between two

distributions is unambiguous. As the probability of each lo-

cation in the space gets closer, two probability distributions

will also get closer. But the maximization of KL-divergence

will lead to uncertain results. Because there are many situa-

tions where the two distributions are different, for instance,

the variance is different or the mean is different.

In the keypoint detection, we usually use PCK (detailed

in Section 5.2.3) to measure the quality of the model. As

long as the output of the model is near the ground truth, it

is regarded as a correct prediction. Therefore, we are more

concerned about the target samples whose prediction is far

from the true value. In other words, we hope that after maxi-

mizing the target disparity, there is a big difference between

the mean of the predicted distribution (ŷ
′

should be differ-

ent from ŷ in Figure 4). However, experiments show that

ŷ
′

and ŷ are almost the same during the adversarial training

(see Section 5.2.4). In other words, maximizing KL mainly

changes the variance of the output distribution. The reason

is that KL is calculated point by point in the space. When

we maximize KL, the probability value of the peak point

(ŷ
′

in Figure 4) is reduced, and the probability of other po-

sitions will increase uniformly. Ultimately the variance of

the output distribution increases, but the mean of the dis-

tribution does not change significantly, which is completely

inconsistent with our expected behavior. Since the final pre-

dictions of f ′ and f are almost the same, it’s hard for f ′ to

detect target samples that deviate from the support of the

source domain. Thus, the minimax game takes little effect.

"!#

$%′$% $%′$%

"!

#

Observed 

Behavior

Expected 

Behavior

*: predictions of $ +*′: predictions of $&

Figure 4. When we maximize the KL-divergence between the pre-

dictions by f ′ and f (fixed), we expect to maximize the mean dif-

ference, but what actually changes is often only the variance.

Since minimization cannot get our expected behavior,

can we avoid using it and only use minimization in the ad-

versarial training? The answer is yes. The reason that we

had to maximize before was that we only had one optimiza-

tion goal. If we have two goals with opposite physical mean-

ings, then the minimization of these two goals can play the

role of minimax game. Our task now is to design two oppo-

site goals for the adversarial regressor and the feature gen-

erator. The goal of the feature generator is to minimize the

target disparity or minimize the KL-divergence between the

predictions of f ′ and f . The objective of the adversarial re-

gressor is to maximize the target disparity, and we achieve

this by minimizing the KL-divergence between the predic-
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tions of f ′ and the ground false predictions of f ,

LF(p
′,p) ,

1

K

K∑

k

KL(PF(J (p))k||p
′
k), (11)

where p′ = (σ ◦ f ′ ◦ψ)(xt) is the prediction of f ′ and p is

the prediction of f . Compared to directly maximizing the

distance from the ground truth predictions of f , minimizing

LF can take advantage of the spatial sparsity and effectively

change the mean of the output distribution.

Now we use Figure 3 to explain Equation (11). Assume

we have K supports for each keypoint in the output space.

The outputs on the labeled source domain (in yellow) will

fall into the correct support. But for outputs on the target

domain, the position of the left ankle might be confused as

the right ankle. And these are the samples far from the sup-

ports. Through minimizing LF, we mislead f ′ to predict

other keypoints as right ankle, which encourages the adver-

sarial regressor f ′ to detect target samples far from the sup-

port of the right ankle. Then we train the feature generator

network ψ to fool the adversarial regressor f ′ by minimiz-

ing LT on the target domain. This encourages the target

features to be generated near the support of the right ankle.

This adversarial learning steps are repeated and the target

features will be aligned to the supports of the source finally.

4.4. Overall Objectives

The final training objectives are summarized as follows.

Though described in different steps, these loss functions are

optimized simultaneously in a unified framework.

Objective 1. First, we train the generator ψ and regressor

f to detect the source samples correctly. Also, we train the

adversarial regressor f ′ to minimize its disparity with f on

the source domain. The objective is as follows:

min
ψ,f,f ′

E(xs,ys)∼P̂ (LT((σ ◦ f ◦ ψ)(xs),y
s)

+ ηLT((σ ◦ f ′ ◦ ψ)(xs), (J ◦ f ◦ ψ)(xs))).
(12)

Objective 2. Besides, we need the adversarial regressor

f ′ to increase its disparity with f on the target domain by

minimizing LF. By maximizing the disparity on the tar-

get domain, f ′ can detect the target samples that deviate far

from the support of the source. This corresponds to Objec-

tive 2 in Figure 5, which can be formalized as follows,

min
f ′

ηE
xt∼Q̂

LF((σ ◦ f ′ ◦ ψ)(xt), (f ◦ ψ)(xt)). (13)

Objective 3. Finally, the generator ψ needs to minimize

the disparity between the current regressors f and f ′ on the

target domain. This corresponds to Objective 3 in Figure 5,

min
ψ
ηE

xt∼Q̂
ηLT((σ ◦f

′ ◦ψ)(xt), (J ◦f ◦ψ)(xt)). (14)

#
"

"!

+" ∘ -

.
/#

Objective 2: Maximize disparity on target (Fix # and ", update "!)

Objective 3: Minimize disparity on target (Fix " , "! , update #)

update

ground false prediction

#
"

"!

+$ ∘ -

.
/#

KL

update

ground truth prediction

KL

Figure 5. Adversarial training objectives. Our network has three

parts: feature generator ψ, regressor f and adversarial regressor

f ′ . Objective 2: f ′ learns to maximize the target disparity by

minimizing its KL with ground false predictions of f . Objective

3: ψ learns to minimize the target disparity by minimizing the KL

between the predictions of f ′ with ground truth predictions of f .

5. Experiments

First, we experiment on a toy dataset called dSprites to il-

lustrate the effects of high dimension on the minimax game.

Then we perform extensive experiments on real-world

datasets, including hand datasets (RHD→H3D) and human

datasets (SURREAL→Human3.6M, SURREAL→LSP), to

verify the effectiveness of our RegDA method. We set η =
1 on all datasets. Code is available at https://github.

com/thuml/Transfer-Learning-Library.

5.1. Experiment on Toy Datasets

Dataset DSprites is a 2D synthetic dataset (see Figure 6).

It consists of three domains: Color (C), Noisy (N) and

Scream (S), with 737, 280 images in each. There are four

regression factors and we will focus on two of them: po-

sition X and Y. We generate a 64 × 64 heatmap for the

keypoint. Experiments are performed on six transfer tasks:

C→N, C→S, N→C, N→S, S→C, and S→N.

Color

Noisy

Scream

Figure 6. Some example images in the dSpirtes dataset.

6784

https://github.com/thuml/Transfer-Learning-Library
https://github.com/thuml/Transfer-Learning-Library


Implementation Details We finetune ResNet18 [9] pre-

trained on ImageNet. Simple Baseline [29] is used as our

detector head and is trained from scratch with learning rate

10 times that of the lower layers. We adopt mini-batch SGD

with momentum of 0.9 and batch size of 36. The learning

rate is adjusted by ηp = η0(1 + αp)−β where p is the train-

ing steps, η0 = 0.1, α = 0.0001 and β = 0.75. All models

are trained for 20k iterations and we only report their final

MAE on the target domain. We compare our method mainly

with DD [30], which is designed for classification. We ex-

tend it to keypoint detection by replacing cross-entropy loss

with LT. The main regressor f and the adversarial regres-

sor f ′ in DD and our method are both 2-layer convolutional

neural networks with 256 channels.

Discussions Since each image has only one keypoint in

dSprites, we cannot generate PF(ŷ) according to Equa-

tion (10). Yet we find that for each image in the dSprites,

keypoints only appear in the middle areaA = {(h,w)|16 ≤
h ≤ 47, 16 ≤ w ≤ 47}. Therefore, we only assign posi-

tions inside A with positive probability,

HF(ŷ)h,w =
∑

a∈A,a 6=ŷ

H(a)h,w

PF(ŷ)h,w =
HF(ŷ)h,w∑H′

h′=1

∑W ′

w′=1 HF(ŷ)h′,w′

.

(15)

We then minimizeLF to maximize the target disparity. Note

that Equation (15) just narrows the original space from 64×
64 to 32×32. However, this conversion from maximization

to minimization has achieved significant performance gains

on dSprites. Table 1 shows that this conversion reduces the

error by 63% in a relative sense.

Table 1. MAE on dSprites for different source and target domains

(lower is better). The last row (oracle) corresponds to training on

the target domain with supervised data (lower bound).

Method C→N C→S N→C N→S S→C S→N Avg

ResNet18 [29] 0.495 0.256 0.371 0.639 0.030 0.090 0.314

DD [30] 0.037 0.078 0.054 0.239 0.020 0.044 0.079

RegDA 0.020 0.028 0.019 0.069 0.014 0.022 0.029

Oracle 0.016 0.022 0.014 0.022 0.014 0.016 0.017

We can conclude several things from this experiment:

1. The dimension of the output space has a huge impact

on the minimax game of the adversarial regressor f ′.

As the output space enlarges, the maximization of f ′

would be increasingly difficult.

2. When the probability distribution of the output by f ′ is

not uniform and our objective is to maximize the dis-

parity on the target domain, minimizing the distance

with this ground false distribution is more effective

than maximizing the distance with the ground truth.

5.2. Experiment on Hand Keypoint Detection

5.2.1 Dataset

RHD Rendered Hand Pose Dataset (RHD) [34] is a syn-

thetic dataset containing 41, 258 training images and 2, 728
testing images, which provides precise annotations for 21
hand keypoints. It covers a variety of viewpoints and diffi-

cult hand poses, yet hands in this dataset have very different

appearances from those in reality (see Figure 7).

Figure 7. Some annotated images in the RHD dataset.

H3D Hand-3D-Studio (H3D) [31] is a real-world dataset

of hand color images with 10 persons of different genders

and skin colors, 22k frames in total. We randomly pick 3.2k
frames as the testing set, and the remaining part is used as

the training set. Since the images in H3D are sampled from

videos, many images share high similarity in appearance.

Thus models trained on the training set of H3D (oracle)

achieve high accuracy on the test set. This sampling strat-

egy is reasonable in the domain adaptation setup since we

cannot access the labels on the target domain.

5.2.2 Training Details

We evaluate the performance of Simple Baseline [29] with

ResNet101 [9] as the backbone.

Source only model is trained with L2. All parameters

are the optimal parameters under the supervised setup. The

base learning rate is 1e-3. It drops to 1e-4 at 45 epochs and

1e-5 at 60 epochs. There are 70 epochs in total. Mini-batch

size is 32. There are 500 steps for each epoch. Note that 70
epochs are completely enough for the models to converge

both on the source and the target domains. Adam [13] opti-

mizer is used (we find that SGD [1] optimizer will reach a

very low accuracy when combined with L2).

In our method, Simple Baseline is first trained with LT,

with the same learning rate scheduling as source only. Then

the model is adopted as the feature generator ψ and trained

with the proposed minimax game for another 30 epochs.

The main regressor f and adversarial regressor f ′ are both

2-layer convolutional networks with width 256. The learn-

ing rate of the regressor is set 10 times to that of the feature

generator, according to [6]. For optimization, we use the

mini-batch SGD with the Nesterov momentum 0.9.

We compare our method to several feature-level domain

adaptation methods, including DAN [17], DANN [6], MCD

[22] and DD [30]. All methods are trained on the source
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domain for 70 epochs and then finetunes with the unlabeled

data on the target domain for 30 epochs. We report the final

PCK of all methods for a fair comparison.

5.2.3 Results

Percentage of Correct Keypoints (PCK) is used for evalua-

tion. An estimation is considered correct if its distance from

the ground truth is less than a fraction α = 0.05 of the im-

age size. We report the average PCK on all 21 keypoints.

We also report PCK at different parts of the hand, such

as metacarpophalangeal (MCP), proximal interphalangeal

(PIP), distal interphalangeal (DIP), and fingertip.

The results are presented in Table 2. In our experiments,

most existing domain adaptation methods do poorly on real

keypoint detection tasks. They achieve a lower accuracy

than source only, and their accuracy on the test set varies

greatly during training. In comparison, our method has sig-

nificantly improved the accuracy at all positions of hands,

and the average accuracy has increased by 10.7%.

Table 2. PCK on task RHD→H3D. The last row (oracle) corre-

sponds to training on H3D with supervised data (upper bound on

the domain adaptation performance). For all kinds of keypoints,

our approach outperforms source only considerably.

Method MCP PIP DIP Fingertip Avg

ResNet101 [29] 67.4 64.2 63.3 54.8 61.8

DAN [17] 59.0 57.0 56.3 48.4 55.1

DANN [6] 67.3 62.6 60.9 51.2 60.6

MCD [22] 59.1 56.1 54.7 46.9 54.6

DD [30] 72.7 69.6 66.2 54.4 65.2

RegDA 79.6 74.4 71.2 62.9 72.5

Oracle 97.7 97.2 95.7 92.5 95.8

We visualize the results before and after adaptation in

Figure 8. As we mentioned in the introduction, the false

predictions of source only are often located at the positions

of other keypoints, resulting in the predicted skeleton not

look like a human hand. To our surprise, although we did

not impose a constraint (such as bone loss [32]) on the out-

put of the model, the outputs of the adapted model (RegDA)

look more like a human hand automatically.

Source

Only

Ours

Ground

Truth

Figure 8. Qualitative results of some images in the H3D dataset.

5.2.4 Ablation Study

We also conduct an ablation study to illustrate how mini-

mization and maximization influences domain adaptation.

Table 3 shows the results. The first row is DD, which plays

the minimax game on LT. The second row plays the mini-

max game on LF. The last row is our method, which mini-

mizes two opposite goals separately. Our proposed method

outperforms the previous two methods by a large margin.

Table 3. Ablation study on the minimax of target disparity.

Method f ′ ψ MCP PIP DIP Fingertip Avg

DD [30] max LT min LT 72.7 69.6 66.2 54.4 65.2

min LF max LF 74.4 71.1 66.9 56.4 66.5

RegDA min LF min LT 79.6 74.4 71.2 62.9 72.5

Figure 9 visualizes the training process. For DD, the dif-

ference in predictions ||ŷ′−ŷ|| is small throughout training,

which means that maximizing LT will make the adversarial

regressor f ′ weak. For methods that play minimax on LF,

the difference in predictions keeps enlarging and the per-

formance of f ′ gradually drops. Thus, maximizing LF will

make the generator ψ too weak. In contrast, the prediction

difference of our method increases at first and then grad-

ually converges to zero during the adversarial training. As

the training proceeds, the accuracy of both f and f ′ steadily

increases on the target domain. Therefore, using two min-

imizations is the most effective way to realize adversarial

training in a large discrete output space.
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Figure 9. Empirical statistics during the training process.

5.3. Experiment on Human Keypoint Detection

We further evaluate our method on the human keypoint

detection task. The training details are the same as 5.2.2.
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5.3.1 Dataset

SURREAL SURREAL [26] is a synthetic dataset that

consists of monocular videos of people in motion against

indoor backgrounds (see Figure 10). There are more than 6

million frames in SURREAL.

Figure 10. Some annotated images in the SURREAL dataset.

Human3.6M Human3.6M [11] is a large-scale real-world

video dataset captured in indoor environments, with 3.6
million frames in total. It contains videos of human charac-

ters performing actions. We down-sampled the video from

50fps to 10fps to reduce redundancy. Following the standard

in [15], we use 5 subjects (S1, S5, S6, S7, S8) for training

and the rest 2 subjects (S9, S11) for testing.

LSP Leeds Sports Pose (LSP) [12] is a real-world dataset

containing 2k images with annotated human body joint lo-

cations collected from sports activities. The images in LSP

are captured in the wild, which look very different from

those indoor synthetic images in SURREAL.

5.3.2 Results

For evaluation, we also use the PCK defined in 5.2.3. Since

the keypoints defined by different datasets are different, we

select the shared keypoints (such as shoulder, elbow, wrist,

hip, knee) and report their PCK.

As shown in Tables 4 and 5, our RegDA method substan-

tially outperforms source only at all positions of the body.

The average accuracy has increased by 8.3% and 10.7% on

Human3.6M and LSP respectively.

Figures 11 and 12 show the visualization results. The

model before adaptation often fails to distinguish between

left and right, and even hands and feet. Our RegDA method

effectively help the model distinguish between different

keypoints on the unlabeled domain.

6. Conclusion

In this paper, we proposed a novel method to enable

regressive domain adaptation in keypoint detection, which

utilizes the sparsity of the regression output space to help

adversarial training in the high-dimensional space. We use

a spatial probability distribution to guide the optimization

of the adversarial regressor and perform the minimization

of two opposite goals to solve the optimization difficulties.

Extensive experiments are conducted on hand keypoint de-

tection and human keypoint detection datasets. Our method

surpasses the source only model by a large margin and out-

performs state-of-the-art domain adaptation methods.

Table 4. PCK on task SURREAL→Human3.6M. Sld: shoulder,

Elb: Elbow.

Method Sld Elb Wrist Hip Knee Ankle Avg

ResNet101 [29] 69.4 75.4 66.4 37.9 77.3 77.7 67.3

DAN [17] 68.1 77.5 62.3 30.4 78.4 79.4 66.0

DANN [6] 66.2 73.1 61.8 35.4 75.0 73.8 64.2

MCD [22] 60.3 63.6 45.0 28.7 63.7 65.4 54.5

DD [30] 71.6 83.3 75.1 42.1 76.2 76.1 70.7

RegDA 73.3 86.4 72.8 54.8 82.0 84.4 75.6

Oracle 95.3 91.8 86.9 95.6 94.1 93.6 92.9

Table 5. PCK on task SURREAL→LSP. Sld: shoulder, Elb: Elbow.

Method Sld Elb Wrist Hip Knee Ankle Avg

ResNet101 [29] 51.5 65.0 62.9 68.0 68.7 67.4 63.9

DAN [17] 52.2 62.9 58.9 71.0 68.1 65.1 63.0

DANN [6] 50.2 62.4 58.8 67.7 66.3 65.2 61.8

MCD [22] 46.2 53.4 46.1 57.7 53.9 52.1 51.6

DD [30] 28.4 65.9 56.8 75.0 74.3 73.9 62.4

RegDA 62.7 76.7 71.1 81.0 80.3 75.3 74.6

Source

Only

Ours

Ground

Truth

Figure 11. Qualitative results of some images in the Human3.6M

dataset. Note that the keypoints on the blue lines are not shared

between different datasets.
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Ours

Ground

Truth

Figure 12. Qualitative results of some images in the LSP dataset.
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