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Abstract

In this paper, we propose a novel task for saliency-

guided image translation, with the goal of image-to-image

translation conditioned on the user specified saliency map.

To address this problem, we develop a novel Generative Ad-

versarial Network (GAN)-based model, called SalG-GAN.

Given the original image and target saliency map, SalG-

GAN can generate a translated image that satisfies the tar-

get saliency map. In SalG-GAN, a disentangled represen-

tation framework is proposed to encourage the model to

learn diverse translations for the same target saliency con-

dition. A saliency-based attention module is introduced as

a special attention mechanism for facilitating the developed

structures of saliency-guided generator, saliency cue en-

coder and saliency-guided global and local discriminators.

Furthermore, we build a synthetic dataset and a real-world

dataset with labeled visual attention for training and eval-

uating our SalG-GAN. The experimental results over both

datasets verify the effectiveness of our model for saliency-

guided image translation.

1. Introduction

Conditional image generation has gained significant at-

tention in recent years, especially in light of the progress

in Generative Adversarial Network (GAN)-based, and, to a

lesser extent, Variational Auto Encoder (VAE)-based gen-

erative methods. Impressive results have been achieved in

generating high-quality images from different (condition-

ing) information such as text [6, 11], sketches [13], lay-

outs [38], facial attributes [5, 34] and scene graphs [18].

Image-to-image translation [13, 20, 33, 40] has been a par-

ticularly successful sub-class of these methods. Image-

to-image translation focuses on producing images that are

structurally similar to the original inputs but deviate in

stylistic [20] or texture detail [33]. This allows models such

as CycleGAN [40] and alternatives to produce images of

zebras from horses, or Picasso painting renditions from ev-

eryday photographs. More recent models [1] also provide
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ability to modify the image more structurally by, for exam-

ple, adding specific objects. This of course requires a user

to select and place an object in a desired location. None

of these methods, however, allow for the ability to model

more abstract translations or image modifications that alter

the way in which the original image is perceived.

Consider someone taking a photo of a person outdoors.

In addition to the person, the image may contain other back-

ground or foreground objects (e.g., cars, motorcycle) that

distract attention of the viewer. How can this be mitigated

in “post-production”? Many techniques and strategies can

be employed. For example, distracting objects may sim-

ply be removed, using image inpainting techniques [36] on

the object regions. Alternatively, good bokeh (good qual-

ity blur) could be computationally applied to all pixels but

those belonging to the main subject, effectively modeling

shallow depth of field which is a common technique in pro-

fessional photography. Note that a bad bokeh (a distracting

blur) may actually have an adverse effect toward the desired

goal. Further, a color pallet of either distracting objects or

the subject itself maybe altered to make the subject more

distinctive. These are just some of the multitude of ways

that an image maybe altered to achieve a desired effect. Lets

consider what all of these strategies have in common, in ef-

fect they are trying to modify the saliency distribution of the

input image, by modifying image itself, to achieve a certain

visual effect. We posit that ability to manipulate an image

to achieve a desired saliency distribution is a core task for a

variety of high-level applications including image retarget-

ing [26], object enhancement [27], distractor removal [7]

and intelligent advertisement [31]. To this end we propose

a novel task of saliency-guided image translation and cor-

responding benchmark datasets.

The goal of saliency-guided image translation is to per-

form image-to-image translation conditioned on the (user

specified) target image saliency map. Some examples

of saliency-guided image translation are shown in Fig-

ure 1. Despite long history of saliency in computer vi-

sion [14], few approaches exist that carry ability to per-

form saliency-driven image adjustments; most focus on
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(a) Saliency-driven Image Editing

(b) Saliency-Guided Image Trnslation

Figure 1. In traditional saliency-driven image editing, the modification is pixel aligned; while for our saliency-guided image trans-

lation, the composition of the image itself can be changed, allowing spatial transformations or shifts, addition, removal of objects as a

whole. Meanwhile, instead of an accurate mask, our image translation method is directly guided by the fixation map, which can be easily

acquired by mouse-contingent tool or eye-tracker. In (b), we present two potential applications of saliency-guided image translation: object

enhancement (first row) and object removal (second row). In the first row, the mug in the original image attracts little human attention,

mainly because it is far away from the camera. We can make the mug more focal by a suitable target saliency map. The saliency-guided

translated image can be seen on the right. Similarly, in the second row, the distracting objects can be removed by giving the target saliency

map. Note that the results in (a) and (b) are from [27] and our proposed method, respectively.

saliency prediction. Saliency-driven image editing methods

[4, 7, 27, 31, 35, 8, 28], that come closest, are a special case

of the proposed, and much more broadly defined, saliency-

guided image translation. Saliency driven image manipu-

lation approaches are limited to low-level pixel modifica-

tions such as color, luminance, saturation and sharpness;

while our task also allows for object removal, creation and

even motion within the image. As shown in Figure 1,

saliency-driven image editing methods are limited to low-

level pixel modifications such as color, luminance, satu-

ration and sharpness; while our task also allows for ob-

ject removal, creation and even motion within the image.

while our task also allows for object removal, creation and

even motion within the image. Meanwhile, instead of an

accurate mask, our image translation method is directly

guided by the fixation map, which can be easily acquired

by mouse-contingent tool or eye-tracker. Thus, beyond

saliency-driven image editing, saliency-guided image trans-

lation offers more flexible and vast potential real-world ap-

plications, such as the go-to tools for product designers,

market researchers and consumer behavior modeling, in-

cluding in advertising.

Compared to traditional image-to-image translation

tasks, the saliency-guided image translation is much more

challenging. Impoverished content and ambiguity of the

saliency are the core challenges. For example, saliency is

object and content agnostic, meaning same added level of

saliency in a given image location can be achieved by in-

serting a variety of objects that adhere to the correct pro-

portions. Also, there are multiple conceptual solutions that

can satisfy the same saliency change. For example, the

saliency of a object can be enhanced by changing its appear-

ance or removing other salient objects around it. Last, the

saliency of same object can be different across images, due

to the influence of surrounding objects. Thus, the models

for saliency-guided image translation should be inherently

capable of both generating real images and understanding

of human attention and how it can be manipulated.

Contributions: In this paper, we take the first step to-

wards the saliency-guided image translation, by proposing

a novel GAN-based model, namely SalG-GAN. To address

the challenge of saliency ambiguity, a disentangled repre-

sentation framework is developed in SalG-GAN, in order

to encourage the model to learn diverse translations for the

same target saliency map. Besides, a saliency-based atten-

tion module is introduced as a special attention mechanism
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for facilitating the developed structures of saliency-guided

generator, saliency cue encoder and saliency-guided global

and local discriminators. Additionally, a light but effective

saliency detector is developed as part of the framework, to

help the generator understand and modify human attention.

For training and testing our SalG-GAN, we build a syn-

thetic dataset (SGIT-S) consisting of 53,000 images and a

real-world dataset (SGIT-R). Both datasets are labeled by 7

subjects with attention; datasets will be released. The ex-

periments over these two datasets show the effectiveness of

our method for saliency-guided image generation.

2. Related work

Saliency-driven Image Editing. Many existing image edit-

ing tasks [4, 9, 27, 31, 35, 8, 28] use saliency cues as guid-

ance. For instance, Nguyen et al. [31] proposed a Markov

Random Field (MRF) based method for retargeting the hu-

man attention to certain parts in an image, by recoloring

surrounding super-pixels. In [35], Wong et al. improved

image aesthetic by modifying low-level properties of the vi-

sually dominant subjects. Similarly, advanced image edit-

ing algorithms were developed in [29] and [2], to direct hu-

man attention to the advertisements/important information

in Mixed Reality and computer games, respectively. More

recently, Mejjati et al. [28] proposed a practical image edit-

ing pipeline for increasing or attenuating attention in an im-

age region, based on a encoder-decoder network. However,

all the above methods are pixel aligned. They mainly focus

on pixel-by-pixel manipulation of the saliency related prop-

erties (such as color, luminance and sharpness) of a certain

object/region. In contrast, for saliency-guided image trans-

lation, the composition of the image itself can be changed,

allowing spatial transformations or shifts, addition, removal

of objects as a whole.

Conditional Image Generation. Recently, conditional im-

age generation methods have shown great success in gen-

erating high-quality images from different conditions such

as text [11, 6], sketches [13], layout [38], facial attribute

[5, 34] and scene graph [18]. However, these works can

not be simply applied for saliency-guided image translation,

due to the saliency ambiguity. For example, the same salient

region of an expected saliency map could be occupied by

a different object, as long as that object can draw similar

level of saliency. Also, there are multiple solutions to satisfy

the same saliency change, e.g., the saliency of a object can

be enhanced by changing its appearance or removing other

salient objects around it. Besides, the saliency of the same

object can be different across images, influenced by other

surrounding objects. Therefore, the models for saliency-

guided image translation should be able to both generate

real images and understand human attention.

3. Methodology

3.1. Framework of SalG-GAN

The overall training pipeline of our proposed SalG-GAN

is illustrated in Figure 2. As shown in the figure, SalG-

GAN consists of five components: (i) saliency-based atten-

tion module, (ii) saliency-guided generator, (iii) saliency

cue encoder, (iv) saliency detector, and (v) saliency-guided

global and local discriminators.

Specifically, given the original image X and a target

saliency map Sy , our goal is to learn a model that can

generate the translated image Ŷ with saliency Sy . First,

based on the original saliency map1
Sx and target saliency

map Sy , additive attention map Sp and subtractive attention

map Sm are extracted from saliency-based attention mod-

ule. The two maps, separately, capture where attention is

required to increase/decrease with respect to the source im-

age. Second, taking Sp, Sm and the original image X as

inputs, saliency-guided generator generates the fake image

Ŷ through a residual learning scheme, to fool the saliency-

guided global and local discriminators.

Furthermore, due to the ambiguity of the saliency, there

are multiple conceptual ways that can satisfy the same tar-

get saliency map. To this end, in addition to the attention

maps, we also embed the latent saliency cue z ∈ Z as the

input for the generator to output diverse saliency-guided im-

ages that satisfy the same target saliency map Sy . Z is the

latent space of all saliency cues. In order to disentangle the

representation of latent saliency cues, our SalG-GAN is de-

veloped in a supervised and an unsupervised paths, which

are introduced as follows. Notably both paths share all five

developed components. Similar ideas for disentangling rep-

resentation can be found in [41, 24].

Supervised Path. For the supervised path, the latent

saliency cue zs is sampled from the posterior distribution

Q(zs|Y ), which is estimated from our saliency cue encoder

applied to the ground-truth image Y . By encouraging the

translated image Ŷs to reconstruct the ground-truth image,

the network can learn how to encode latent saliency cue

codes effectively. Further, Q(zs|Y ) is regularized to ap-

proach standard normal distribution N (0, 1) in the super-

vised path, in order to perform sampling at test time.

Unsupervised Path. For the unsupervised path, the latent

saliency cue zu is sampled from a normal prior distribu-

tion N (0, 1). In order to emphasize the role of saliency cue

during image generation, zu should be re-predicted by the

saliency cue encoder, from the translated image Ŷu. This

would help generate diverse results by mitigating many-to-

one mapping problem, which is consistent with [38]. Fur-

ther, since there is no ground-truth image to supervise Ŷu,

1At test time, the original saliency map is generated by the saliency

detector in SalG-GAN.
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Global D

. . .

Local D

. . .

Translated image Y

Target saliency

GT image

Sampling

Fake samples

Real samples

Fake samples

Real samples

Y

Sy

Attention-based box   B
a

^

G
L

Target saliency
map Sy

Original saliency
map

Attention difference Sd

-

SAF

SAF

SAF

Additive attention Sp

SmSubtractive attention 

Sx

Sx

Sy

-Sx Sy
Relu

Relu

DBG

Attention based box   Ba

(a) Saliency-based attention module (b) Saliency-guided global and local discriminators

Figure 3. (a) The details about saliency-based attention module. Based on original and target saliency maps, the attention module

generates the additive attention map, subtractive attention map, attention difference map and attention-based bounding box for further

use. Note that SAF and DBG are the saliency adjustment and density-based bounding box generation functions. (b) The details about
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we use Ŷu to reconstruct the original image X , with corre-

sponding loss functions.

3.2. Detailed Structures

Saliency-based Attention Module. As illustrated in Fig-

ure 3-(a), based on original saliency map Sx and the tar-

get saliency map Sy , we introduce a saliency-based atten-

tion module to obtain additive attention map Sp, subtrac-

tive attention map Sm and attention difference map Sd,

which indicate the regions of saliency increase, saliency de-

crease and absolute saliency change, respectively. Before

obtaining the attention maps, a saliency adjustment func-

tion SAF(·) is developed to adjust the sparsity of a saliency

map S:

SAF(S) = Norm(
1

1 + exp(−θα · (S − θβ))
). (1)

In (1), Norm(·) is 0 to 1 normalization, while θα and θβ
are the scaling and shifting hyper-parameters. Given the at-

tention difference map Sd, a density-based bounding box
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generation function is also developed to extract the bound-

ing box Ba of each salient region for further useage.

Saliency-guided Generator. In the task of saliency-guided

image translation, most parts of the input image are in-

tended to stay consistent. Therefore, as illustrated in Figure

2, a residual learning scheme is introduced in our saliency-

guided generator G, which can also help improve the train-

ing efficiency. Specifically, based on original image X ,

additive attention map Sp, subtractive attention map Sm,

latent saliency cue z and attention difference map Sd, the

generated fake image Ŷ can be represented as follows

Ŷ = G(X,Sd,Sp,Sm, z) (2)

= C1x1 (Sd ·Unet(X,Sp,Sm, z)⊕ (1− Sd) ·X) ,

where C1x1 is the 1× 1 convolutional layer, and ⊕ is chan-

nel wise concatenation. In (2), Unet(·) is the U-shaped

structure, including 8 pairs encoder and decoder blocks with

symmetric skip connections. It is worth noting that, instead

input the target saliency map, the generator G is separately

feed with Sp and Sm. That helps the generator directly

learn how to increase or decrease the saliency of certain re-

gions during image translation. Further, the attention dif-

ference map Sd in (2) is used to encourage the generator to

focus on generating the regions with high saliency change.

Saliency Cue Encoder. Inspired by the idea of VAE-GAN

[23], the saliency cue encoder E is developed to estimate

the mean (μ) and variance (σ) of the posterior distribution

for each input image, then the corresponding latent saliency

cue can be sampled from this posterior. For example, in the

supervised path, zs is encoded by E, as the saliency cue of

ground-truth image Y :

zs ∼ Q(zs|Y ) = N (μy, σy), (3)

where μy, σy = E(Y · Sd).

In (3), Sd is the attention difference map from our saliency-

based attention module, which helps the encoder focus on

the regions with high saliency change. The saliency cue

encoder consists of 5 convolutional layers, followed by 2

FC layers for estimating mean and variance, respectively.

Saliency Detector. In our SalG-GAN, a light but effec-

tive saliency detector is developed to predict saliency map

from image. Specifically, the saliency detector consists of

3 dense blocks [12] followed by 3 deconvolutional blocks.

Between dense and deconvolutional blocks, an Atrous Spa-

tial Pyramid Pooling (ASPP) [3] is added to extract multi-

scale features for saliency prediction.

Saliency-guided Global and Local Discriminators. As il-

lustrated in 3-(b), we adopt a global discriminator DG and a

local discriminator DL to judge the realism of the translated

images. As shown, DG is used to discriminate the realism

of the whole input image, while DL works on the image

patches sampled by the attention based bounding boxes Ba

from our saliency-based attention module. In addition to

the fake (Ŷ ) or real (Y ) image, the target saliency map Sy

is also input to discriminators as the conditional informa-

tion. The experimental results show that this helps to avoid

mode collapse problems. Consequently, an LSGAN [25]

based objective can be formulated as

Ladv= E
Ŷ ,Sy∼pf (Ŷ ,Sy)

(

||DG(Ŷ ,Sy)||
2 + ||DL(Ŷ ,Sy)||

2
)

(4)

+ E
Y ,Sy∼pr(Y ,Sy)

(

||1−DG(Y ,Sy)||
2 + ||1−DL(Y ,Sy)||

2
)

,

where pf (pr) represents the joint distribution of all fake

(real) images and corresponding saliency maps. In our

SalG-GAN, pf includes the translated images (Ŷs and Ŷu)

from the supervised and unsupervised paths, and pr in-

cludes the original images X and the ground-truth images

Y . The structure of DG is based on PatchGAN [13] with 3

scales, while DL is a single-scale discriminator.

3.3. Loss Functions

The proposed SalG-GAN is trained in an end-to-end and

adversarial manners. Besides the adversarial loss Ladv in

(4), the following 7 losses are also introduced.

(i) Content Loss Lcont is introduced to preserve content con-

sistency of regions without attention change, between the

translated image Ŷ and original image X:

Lcont = DVGG

(

(1− Sd) · Ŷ , (1− Sd) ·X
)

, (5)

where Sd is attention difference map, and DVGG(·) is the

VGG-based feature-wise distance in [17].

(ii) Image Reconstruction Loss Limg
1 = ||Ŷs − Y ||1 penal-

izes the L1 difference between the ground-truth image Y

and the translated image Ŷs in the supervised path.

(iii) Local Reconstruction Loss Llocal
1 is the L1 distance in-

side the attention based bounding boxes Ba, between Y and

Ŷs in the supervised path.

(iv) Latent Saliency Cue KL Loss LKL is applied to penal-
izes the posterior distribution Q(zs|Y ) in the supervised
path to be close to the standard normal distribution N (0, 1),
by measuring KL divergence DKL(·):

LKL = E[DKL (Q(zs|Y ) || N (0, 1))],

where DKL(p||q) = −

∫

p(z) log
p(z)

q(z)
dz. (6)

(v) Saliency Consistency Loss Lsal penalizes the distribu-

tion difference between the translated image Ŷ and the tar-

get saliency map Sy in the terms of KL divergence DKL(·):

Lsal = DKL

(

SalD(Ŷ ) ||Sy

)

, (7)

where SalD(·) is the saliency detector in our SalG-GAN.
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(vi) Cycle Loss Lcycle
1 is applied in the unsupervised path to

ensure that the translated image Ŷu can further reconstruct
the original image X:

Lcycle
1 = ||X −G(Ŷu,Sd,Sm,Sp,z

′

u)||1,

where Ŷu = G(X,Sd,Sp,Sm,zu). (8)

In (8), G(·) is the proposed generator formulated in (2).

Sd, Sp and Sm are the additive attention, subtractive atten-

tion and attention difference maps. Besides, z′

u and zu are

latent saliency cues, sampled from Q(z′

u|X) and N (0, 1).

(vii) Latent Saliency Cue Regression Loss Lcue
1 = ||ẑu −

zu||1 penalizes the L1 difference between the randomly

sampled zu and the re-estimated ẑu from the translated im-

age Ŷu in the unsupervised path.

Overall objective. Combining all above losses, the overall
objective function of our SalG-GAN is formulated as

min
G,E,SalD

max
DG,DL

Ladv + λcontLcont + λimgL
img
1 + λlocalL

local
1

+λKLLKL + λsalLsal + λcycleL
cycle
1 + λcueL

cue
1 , (9)

where λcont, λimg, λlocal, λKL, λsal, λcycle and λcue are the

hyper-parameters to balance the effect of each single loss.

4. Datasets establishment

Since there is no existing dataset for saliency-guided im-

age translation, we build a synthetic and a real-world dataset

for training our SalG-GAN, called SGIT-S and SGIT-R, re-

spectively. In practise, we manually edit the original image

X , to obtain the ground-truth translated image Y . Then, a

mouse-contingent based experiment is conducted to record

the visual attention over both X and Y , for generating

corresponding saliency maps of Sx and Sy . Addition-

ally, considering the practical applications, a small dataset

with more complex background, SGIT-C is collected as the

test set (without ground-truth). Some examples of above

datasets can be found in Figure 4, and the statistics of

datasets are introduced in the supplementary material.

Mouse-contingent experiment. Inspired by [16, 21], we

conduct mouse-contingent experiments to collect the clicks

over images to represent the human attention. In this way,

the saliency map can be obtained by several mouse clicks.

Specifically, in our experiments, each image is first blurred

by a Gaussian filter. Then, the subject is asked to click any-

where on image to reveal a small region at the original res-

olution. The location of each click is recorded as the proxy

of ”fixation”. Finally, similar to [15], the saliency map is

generated by convolving the fixations with Gaussian mask.

Note that the mouse-contingent is much easier than the eye-

tracking experiment, and it is convenient in practical use.

SGIT-S. Our synthetic dataset for saliency-guided image

translation (SGIT-S) is built on the top of open-source

project of CLEVR [19], where users can synthesize images

with objects depending on the pre-set attributes of location,

shape, color, material and size. First, we generate around

60,000 synthetic images with random attributes, as original

images X . Then, for each X , we randomly conduct one

of the following actions to generate the edited image Y . 1)

Add one or two objects. 2) Randomly remove one or two

existing objects. 3) Randomly move one or two existing

objects. 4) Randomly change the attribute of one or two

existing object. Then, the mouse-contingent experiments

are conducted on both X and Y by 7 subjects. After that,

we further remove the samples with small saliency changes,

based on a KL threshold of 0.2. Finally, the SGIT-S consists

of 50,000 training, 1,500 validation and 1,500 testing sam-

ples (106,000 images and saliency maps in total).

SGIT-R. In addition to the synthetic dataset, it is more in-

teresting to generate saliency-guided real-world images. To

this end, we further build a real-world image dataset SGIT-

R, including around 30 different objects. First, we take pho-

tos with randomly-selected objects as original images X .

Similar to SGIT-S, for each X , we also randomly add, re-

move, move and replace the existing objects, and then take

a new photo as the edited image Y . Note that the camera

is mounted on a tripod, to keep the same view. The mouse-

contingent experiments are conducted on all these images

to collect visual attention from 7 subjects. After removing

the pairs of images with small saliency change, we obtain

600 training, 40 validation and 80 testing samples of orig-

inal and “changed” images, as well as their saliency maps

(1,440 images and saliency maps in total).

SGIT-C. In order to evaluate the proposed method in prac-

tical scenario, we further collect a test set of around 300

images with more complex background, namely SGIT-C.

Specifically, SGIT-C is collected via two ways: 1) Simi-

lar to SGIT-S, we take photos with randomly-selected ob-

jects, but in the scenes with more complex background. 2)

Meanwhile, we randomly select the images from the test

set of Place2 [39]. Given a collected image X , we conduct

the mouse-contingent experiment to get the saliency map

Sx of X . Then, Sx is manually modified to be the target

saliency map Sy via another mouse-contingent experiment.

Note that the images in SGIT-C don’t have the ground-truth

translated image, and are only used on the test stage.

5. Experiments

5.1. Implementation Details

For stable training, we apply spectral normalization [30]

in all generator and discriminators of our SalG-GAN. In-

stance normalization [32] and leaky RelU are used as the

normalization and activation functions in SalG-GAN. The

resolution of input and output images are set to 256 × 256,

and the dimension of latent saliency cue is 16. As the hyper-

parameters, λcont, λimg, λlocal, λKL, λsal, λcycle and λcue

are set to 5, 10, 10, 10−5, 15, 5 and 10, respectively. Dur-
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Figure 4. Examples of our and baseline methods on SGIT-S, SGIT-R and SGIT-G. In the figure, from the top to bottom rows are:

original images, original saliency maps, target saliency maps, the translated images from our method and the baselines.

ing training, Adam optimizer [22] is applied in SalG-GAN

with initial learning rate of 2 × 10−4 and batch size of 16.

The training process over SGIT-S takes about 30 hours on

a single GTX 1080Ti GPU for 30 epochs. For SGIT-R, we

exchange the original and ground-truth images for data aug-

mentation, and the whole training takes around 12 hours on

the same device for 240 epochs. The pre-trained model of

SGIT-R is directly applied on SGIT-C for evaluation.

5.2. Baseline models

Since there is no existing method can be directly used

for saliency-guided image translation, we take a saliency-

driven image editing method HAG [9] and state-of-the-art

conditional image generation methods, CycleGAN [40] and

BicycleGAN [41] as the baseline models. For HAG, the

target saliency map is input for editing the original im-

age. For CycleGAN and BicycleGAN, the saliency maps

are concatenated with the input, as the conditional infor-

mation to guide translation of the input images. Mean-

while, same saliency detector and saliency-related loss in

our SalG-GAN, are also added in CycleGAN and Bicycle-

GAN. The models of CycleGAN and BicycleGAN are re-

trained over SGIT-S and SGIT-R for fair comparison.

5.3. Metrics

The translated images should be realistic, diverse and

satisfying the target saliency distribution. Thus, we use 4

evaluation metrics, Frechet Inception Distance (FID), lo-

cal Diversity Score (local DS) and KL divergence between

saliency map (SalD-KLD and F-KLD). The lower FID,

SalD-KLD and F-KLD mean better performance, while

higher local DS indicates that results are more diverse.

FID. FID [10] is a robust metric to evaluate the realism of

generated images, based on the 2nd order similarity of the

final layer of the inception model.

Local DS. In [37] authors propose DS by measuring percep-

tual similarity between two images in deep feature space,

to evaluate the diversity of the generated images from the

same input. However, for the task of saliency-guided image

translation, the non-salient regions of the translated images

are supposed to be consistent with input. Thus, we conduct

DS on the image patches with attention difference, based on

the saliency based bounding boxes Ba.

SalD-KLD and F-KLD. In order to evaluate the saliency

of the translated image, we calculate KLD to measure the

distribution difference between the target saliency and the

saliency map of the translated image. Specifically, we ap-

ply the pre-trained saliency detector to generate the saliency

map of each translated image, the KLD results based on

which are denoted as SalD-KLD. Simliarly, we further col-

lect eye-movement data on translated images by conducting

mouse-contingent experiments with 7 subjects. Then, the

KLD results based on fixation maps are denoted as F-KLD.
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Table 1. Performance of ours and baseline methods on SGIT-S, SGIT-R and SGIT-C, in terms of FID, local DS, SalD-KLD and F-KLD.
SGIT-S SGIT-R SGIT-C

FID Local DS SalD-KLD F-KLD FID Local DS SalD-KLD F-KLD FID Local DS SalD-KLD S-KLD

HAG 60.31 – 0.26 0.47 69.63 – 0.65 0.35 45.21 – 0.73 1.84

CycleGAN 34.81 – 0.03 0.28 106.45 – 0.03 0.18 114.58 – 0.43 1.17

BicycleGAN 113.92 – 0.06 0.47 122.03 – 0.08 0.30 118.67 – 0.38 1.47

SalG-GAN(Ours) 30.51 0.31 0.02 0.27 48.59 0.11 0.02 0.14 53.22 0.08 0.12 0.70

Table 2. User study. Preference (in %) between results obtained using our and baseline methods.
SGIT-S SGIT-R SGIT-C

Realism Saliency Content Realism Saliency Content Realism Saliency Content

HAG 8.2% 4.7% 18.3% 25.2% 9.7% 21.6% 47.7% 2.0% 43.7%

CycleGAN 21.0% 21.8% 10.2% 12.8% 16.7% 16.5% 2.1% 13.1% 2.1%

BicycleGAN 15.7% 18.8% 10.1% 8.8% 10.3% 14.1% 2.0% 13.0% 2.1%

Ours 55.1% 54.7% 61.4% 53.2% 63.3% 47.8% 48.2% 71.9% 52.1%

5.4. Qualitative results

Figure 4 shows the results obtained by our and baseline

methods on SGIT-C and the test sets of SGIT-S and SGIT-

R. As seen from this figure, we show the original images

randomly selected from SGIT-S, SGIT-R and SGIT-C, as

well as their original and target saliency maps. Then, the

translated images of our and other 3 baseline models (i.e.,

HAG, CycleGAN and BicycleGAN) are also presented in

Figure 4. It is clear that our method can generate higher

quality images than all baseline models. Moreover, the

saliency maps of our translated images are close to the target

saliency maps, which verifies our model is able to achieve

image translation that perfectly satisfy the target saliency

map. On the contrary, in most cases, the baseline models

fail to generate realistic images, or fail to generate transla-

tions that satisfy the target saliency maps. For more image

translation results of SGIT-S, SGIT-R and SGIT-C, please

see our supplemental material. The supplemental material

also demonstrates our model’s ability to generate diverse re-

sults, by providing diverse translated images with the same

target saliency map and original image as the inputs.

5.5. Quantitative results

In addition to the qualitative results, Table 1 summarizes

comparison results of FID, local DS, salD-KLD and F-KLD

over our SalG-GAN and baseline models, i.e., HAG, Cycle-

GAN and BicycleGAN that mentioned in Section 5.2. As

shown in Table 1, our proposed method significantly out-

performs baselines over both datasets of SGIT-S, SGIT-R

and SGIT-G, in the terms of FID. This indicates our method

is able to generate more realistic than the baselines. Mean-

while, the generated images from our SalG-GAN can per-

fectly satisfy the target saliency map, with averaged SalD-

KLD of only 0.02 and F-KLD of 0.27. Besides, our SalG-

GAN is the only method succeeds to calculate DS. HAG

is deterministic methods, so they generate single outputs.

Interestingly, even though CycleGAN and BicycleGAN are

conducted with the latent code, they fail to generate diverse

results. This verifies the effectiveness of our disentangle

representation in SalG-GAN.

Besides, we also evaluate results of images generated by

our and other 3 baseline methods, i.e., HAG [9], CycleGAN

[40] and BicycleGAN [41]. The setting of our user study is

similar to those in [41] and [24]. Specifically, given the

input image and the target saliency, the translated images

generated from our and other 3 methods are presented to 20

subjects. Then, they are asked: (1) “Which generated im-

age is most realistic?”, (2) “Which generated image satisfies

target saliency best?” and (3) “Which generated image has

the highest content consistency with the input?” For each

question, the subject needs to pick up the “best” image. Ta-

ble 2 lists the preference percentages over datasets SGIT-S,

SGIT-R and SGIT-G, in terms of realism (Q1), saliency ac-

curacy (Q2) and content consistency (Q3). It can be seen

that our method performs better than others in the terms of

all 3 subjective metrics. It is also worth noting that realism

and consistency for HAG are high, but the saliency is much

lower. That is because, in many cases, HAG just outputs the

original image without any manipulation.

Additionally, the supplemental material provides the ab-

lation results by removing each single loss, developed com-

ponents and attention mechanism and in our SalG-GAN,

which verify the effectiveness of the designs in SalG-GAN.

6. Conclusion

In this paper, we proposed a novel task of saliency-

guided image translation, with the goal of image-to-image

translation conditioned on the user specified saliency map.

Also, we developed a novel SalG-GAN method for this

task. Furthermore, we built a synthetic and a real-world

datasets with labeled visual attention for training and eval-

uating our SalG-GAN. The experimental results over both

datasets verified the effectiveness of our method.
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