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Abstract

This paper addresses the challenging unsupervised

scene flow estimation problem by jointly learning four low-

level vision sub-tasks: optical flow F, stereo-depth D, cam-

era pose P and motion segmentation S. Our key insight is

that the rigidity of the scene shares the same inherent geo-

metrical structure with object movements and scene depth.

Hence, rigidity from S can be inferred by jointly coupling

F, D and P to achieve more robust estimation. To this end,

we propose a novel scene flow framework named EffiScene

with efficient joint rigidity learning, going beyond the ex-

isting pipeline with independent auxiliary structures. In

EffiScene, we first estimate optical flow and depth at the

coarse level and then compute camera pose by Perspective-

n-Points method. To jointly learn local rigidity, we design

a novel Rigidity From Motion (RfM) layer with three prin-

cipal components: (i) correlation extraction; (ii) boundary

learning; and (iii) outlier exclusion. Final outputs are fused

based on the rigid map MR from RfM at finer levels. To

efficiently train EffiScene, two new losses Lbnd and Lunc

are designed to prevent trivial solutions and to regularize

the flow boundary discontinuity. Extensive experiments on

scene flow benchmark KITTI show that our method is ef-

fective and significantly improves the state-of-the-art ap-

proaches for all sub-tasks, i.e. optical flow (5.19 → 4.20),

depth estimation (3.78 → 3.46), visual odometry (0.012 →
0.011) and motion segmentation (0.57 → 0.62).

1. Introduction

Scene flow [38, 37] describes the 3D motion of a dy-

namic scene by 2D optical flow and scene depth, provid-

ing essential geometrical clues for numerous practical ap-

plications such as self-driving [28] and robotics naviga-

tion [1, 31]. However, acquiring dense ground truth for

both sub-tasks in real applications are usually expensive

or impractical. To overcome this, learning scene flow in

an unsupervised way has attracted much attention in recent

years, by minimizing the photometric differences between

the original-synthesized pixel pairs.

Optimizing pixel-wise photometric error for low-level

scene flow task without supervision is not a trivial task.

One of the most critical reason is that the pixel correspon-

dence between consecutive frames is highly ambiguous, es-

pecially in unstructured or texture-less regions. For exam-

ple, one pixel from a mountain or a highway surface in

frame t can be projected to various surrounding pixels in

frame t + 1 with very low photometric error, often leading

to the failure of local scene flow estimation. Unfortunately,

this issue always happens in outdoor scenarios due to miss-

ing small details due to motion blur. Therefore, additional

constraints are strongly needed to eliminate the ambiguities

for successful unsupervised scene flow estimation.

Figure 1. Main idea of our method. Different from independently

estimating rigid pixels from the auxiliary instance segmentation in

existing pipeline, we jointly learn per-pixel rigidity from optical

flow, depth and camera pose for more accurate rigid constraint.

Problems. In recent approaches, rigid constraint is

widely employed to separate the scene into static (rigid) and

moving (non-rigid) areas. It also restricts the ego-motion of

the rigid pixels which obey the rigid scene assumption [25].

To achieve this, current methods [33, 22, 43, 14, 9, 27] fol-

low a popular scene flow pipeline as shown in Fig. 1 (left),

where the auxiliary instance segmentation network is de-

signed to predict the rigid pixels that will be constrained by

local rigidity. Though impressive scene flow results can be

achieved, the performance of the segmentation is often poor,

indicating an inaccurate estimation of rigid pixels (static
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area), and it could, in turn, harm the rigid constraint. One

reason is that the independent rigidity inference in existing

pipeline limits the learning of pixel rigidity. More specif-

ically, the segmentation task in existing pipeline is jointly

optimized with scene flow sub-tasks in back-propagation,

but it is independently launched in forward inference. This

independent structure makes inference inefficient, resulting

in networks that can only learn pixel-wise rigidity from raw

RGB images, but difficult to extract extra geometrical in-

formation from flow and depth. Besides, optimizing both

deep segmentation network and scene flow multi-networks

in current pipeline without ground truth might be very diffi-

cult, requiring sophisticated training strategies such as [33].

Motivation & Idea. Inspired from recent works, our

key insight is that the rigidity of the scene shares the same

inherent geometrical structure with optical flow and depth,

hence they are highly correlated and can be mutually ben-

eficial. Based on this observation, instead of designing the

auxiliary segmentation structure, we jointly consider opti-

cal flow, depth and camera pose for rigidity learning as il-

lustrated in Fig. 1 (right), and propose a novel framework

called EffiScene. With the new pipeline, we can go beyond

the existing methods by providing: (i) more effective rigid

constraint via jointly considering scene flow sub-tasks for

learning accurate rigid pixels; and (ii) more efficient scene

flow framework optimization via eliminating the very deep

instance segmentation network.

Approach. EffiScene aims to solve the following four

unsupervised sub-tasks: (i) optical flow F estimation; (ii)

stereo-depth D prediction; (iii) camera pose P for visual

odometry; and (iv) motion segmentation S. We first esti-

mate the optical flow F o and depth D at the coarse level,

then compute the relative camera pose P from time t to t+1
by minimizing the reprojection error between the observed

coordinates (from F o) and the projected 3D points (from D)

via a Perspective-n-Points (PnP) solver. Next, we propose

a novel Rigidity From Motion (RfM) layer to estimate pixel

rigidity by explicitly modeling the correlation between opti-

cal flow F o and rigid flow F r. Our RfM includes three main

steps: (i) correlation extraction; (ii) boundary learning; and

(iii) outlier exclusion. The rigid map MR from RfM can

be interpreted as motion segmentation. Finally, flows from

F o and F r are fused to form the final flow, guided by the

rigid map MR at the fine level. In training, two new losses

– Lbnd and Lunc – are designed to optimize RfM and reg-

ularize the flow boundary discontinuity, respectively. Dif-

ferent from existing methods [41, 16], there are no sensitive

thresholds needed to be set manually in EffiScene.

Contributions are summarized as follows.

• We introduce a new structure for unsupervised scene

flow estimation, and demonstrate that per-pixel rigidity

can be efficiently predicted by jointly learning optical

flow, depth and camera pose.

• We design a novel Rigidity from Motion (RfM) layer

to recognize rigid regions via explicitly modeling mo-

tion correlations. To the best of our knowledge, this is

the first deep model for joint rigidity learning.

• We optimize scene flow training by two new losses:

Lbnd prevents the trivial solution of RfM whereas

Lunc regularizes the optical flow discontinuity in un-

covered boundary.

Extensive experiments on KITTI benchmarks [4, 5, 29]

show that our method outperforms existing state-of-the-

art (SOTA) approaches for all four sub-tasks with highly

efficient rigidity inference (RfM with size 0.0032Mb vs.

5.22Mb [33]), i.e. optical flow (5.19 → 4.20) by a signif-

icant 19% improvement, depth estimation (3.78 → 3.46),

visual odometry (0.012 → 0.011), and motion segmenta-

tion (0.57 → 0.62).

2. Related Work

We first offer a brief review of optical flow and depth

estimation, which are jointly learned for efficient rigidity

inference in our method. Then, scene flow is discussed.

Optical flow. Deep convolutional neural networks

(CNN) are widely used in supervised optical flow meth-

ods. FlowNet [2] is the first work using an end-to-end

CNN architecture. FlowNet2 [12] improves the results by

stacking more layers but can be computationally expen-

sive. Then, simpler deep models such as SpyNet [32], Lite-

FlowNet [10] and PWC-Net [34] are designed in spatial

or feature pyramid fashion. Very recently, recurrent units

are designed for decoding all-pair cost volumes in RAFT

[36] and it achieves state-of-the-art result. These works

[26, 18, 19, 13, 17] provide effective backbones for unsu-

pervised methods in which flow is learned by optimizing

photometric loss from synthesis views [45]. To address oc-

clusions and large displacements, novel losses and training

strategies are designed, such as bidirectional census loss in

UnFlow [26], data distillation in DDFlow [18] and SelFlow

[19], and extra forward pass in ARFlow [17].

Different from these works, we construct the final opti-

cal flow by fusing the motion from moving and static area

guided by the learned rigid map MR.

Depth estimation. Comparing with monocular estima-

tion, learning depth from stereo images in the absence of

the ground truth provides higher quality results. The self-

supervision signal comes from the left-right synthesis view.

In stereo works, Garg et al. [3] firstly adopt an auto-encoder

to predict continuous values of disparity. Godard et al. [6]

introduce a left-right consistency term for geometry con-

straint, then improves it by associated design choices [7].

Temporal information is also considered in [15, 46]. In

monocular based methods, since single-view depth is usu-
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ally insufficient for self supervision, extra information is

borrowed from consecutive frames [48, 39, 23].

Unsupervised scene flow estimation. Traditional scene

flow techniques have achieved impressive results, usually

at high computational cost, such as super-pixel scene de-

composition [28] and Plane+Parallax framework [42]. Even

the fast version [35] still runs in 2-3 seconds per frame. In

deep model, GeoNet [44] implicitly represents moving pix-

els by refining the residual non-rigid flow via ResFlowNet,

and DF-Net [50] imposes a cross-task consistency loss for

rigid area. Recently, per-pixel rigid constraint is adopted by

incorporating deep segmentation network into scene flow.

For instance, Ma et al. [22] adopt off-the-shelf Mask R-

CNN [8] for rigid instance segmentation, and Yang et al.

[43] predict moving masks via MotionNet followed by a

holistic 3D motion parser (HMP). To simplify the multi-task

training, Ranjan et al. [33] present Collaborative Competi-

tive (CC) to facilitate the network coordination. Wang et al.

[41] yield static pixels based on the flow residual, and Liu et

al. [16] extend it via local rigidity. However, both are sensi-

tive to thresholds, which may lead to the inaccurate motion

area.

These methods achieve very impressive results, but the

ego-motion is constrained in low efficiency due to the in-

dependent inference process. In our framework, we effi-

ciently learn per-pixel rigidity by jointly coupling optical

flow, depth and camera pose, leading to considerable im-

provements of each sub-task.

3. EffiScene Method

We first introduce the preliminary geometrical rigid con-

sistency in Sec. 3.1, and then describe the design of RfM in

Sec. 3.2. To present the new pipeline, we first construct the

overall algorithm in Sec. 3.3, and discuss the design of the

new loss as well as regularization functions in Sec. 3.4.

3.1. Geometrical Rigid Consistency

Given two consecutive frames It and It+1, pixel move-

ments can be divided into two categories: (i) local motion

from moving objects denoted by optical flow F o
t→t+1; and

(ii) global (or ego) motion from backgrounds described by

rigid flow F r
t→t+1. Compared with the optical flow F o

t→t+1,

rigid flow F r
t→t+1 strictly follows the rigid geometrical con-

sistency, hence it has lower corresponding ambiguity.

Rigid flow field F r
t→t+1 can be easily determined in 2D

cases such as FlyingChairs [2], where the depth D is treated

as a constant, by applying a 4-DoF plane affine transforma-

tion P . However, in realistic 3D scenes like KITTI suite

[4], the geometrical consistency of global motion can be

only guaranteed by re-projecting 2D points x back to 3D

world coordinates X with perspective transformation:

[x; 1] =
1

d
·KPM [X; 1], (1)

where K ∈ R
3×3 is the camera intrinsic parameter, P ∈

R
3×4 stands for the relative camera pose and M ∈ R

4×4

indicates the object movement in world coordinate system.

Also, d is the normalization coefficient for 3D → 2D pro-

jection, and it indicates the per-pixel depth for x. Based on

this, the movement of the static region (with M = I) is

computed by the differences between xt and xt+1, and can

be formulated via the rigid flow F r
t→t+1 as shown below

F r
t→t+1 =

1

dt+1

·KP (dt · P
−1

xt)− xt. (2)

Here, the depth dt of the source image It and the camera

pose P are the only two unknowns to be estimated in the

computation of F r
t→t+1. With this geometrical rigid con-

sistency, global motion from (2) are jointly considered with

local motion in RfM for efficient rigid area recognition.

3.2. Rigidity from Motion (RfM)

Instead of independently predicting pixel rigidity from

raw images as in [22, 43, 33], we classify the static rigid

area based on optical flow F o
t→t+1 and rigid flow F r

t→t+1.

This is similar to [41, 16] where a simple threshold is used

to binary divide static and moving regions. However, the

essential difference in our method comes from the consid-

eration that global motion in F r
t→t+1 is strictly restricted

by the geometrical rigid constraint whereas local motion

from F o
t→t+1 is free. The static area can be naturally de-

termined by regarding the local motion as the outliers of the

global motion. However, finding 3D motion outliers from

2D flow field is non-trivial since (i) different 3D motion ten-

sors can be represented by the same 2D flow vector; and

(ii) the learned flow filed itself might be inaccurate. Hence,

we need to design the Rigidity from Motion (RfM) layer to

adaptively learn the motion boundary by explicitly model-

ing the correlation of various flows.

Figure 2. Illustration of RfM. (Flows are replaced by RGBs, and

rigid map is shown in inverted colors for better visualization.)

Forward. The RfM involves three steps as illustrated

in Fig. 2: (i) correlation extraction; (ii) boundary learning;

and (iii) outlier exclusion. In the first place, we construct a

pixel wise correlation map CF as follows:

CF = N (fc(F
o
t→t+1, F

r
t→t+1)), (3)
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in which fc evaluates the per-pixel similarity between

F o
t→t+1 and F r

t→t+1, while the operator N normalizes the

correlation value to [0, 1]. Usually, inner product can be

the first choice to evaluate the correlation between any two

vectors. However, it could be insufficient to distinguish the

flow in the case that a pixel moves very slowly (near zero)

along one direction. For example, in Fig. 3 (a), the in-

ner product between green motion F r
t→t+1 and different

blue motions F o
t→t+1 will yield the same results regard-

less of the v-axis moving of F o
t→t+1. To avoid this issue,

we rely on the intuitive but more effective l2-norm for mo-

tion residual (red arrows) to describe the motion similarity

by fc = ||F o
t→t+1 − F r

t→t+1||2. CF evaluates the similar-

ity between the two flows F o
t→t+1 and F r

t→t+1, which are

more similar (with CF = 0) at rigid region, while dissimilar

(with CF = 1) at non-rigid region. According to the Cen-

tral Limit Theorem, the distribution of CF in rigid region

can be seen as a Gaussian with mean value 0, while non-

rigid region fits another Gaussian with mean value 1. Based

on this, secondly, we compute the overall histogram hF of

CF , and naturally separate rigid and non-rigid pixels from

the histogram by a Gaussian Mixture Model (GMM). To

enforce differentiability, we approximate the GMM by de-

signing a fully connected network g(hF |θ) with learnable

parameter θ. g(hF |θ) automatically regresses the optimal

rigid boundary by learning from the input hF . And lastly,

we construct the rigid map MR in (4) to exclude local mo-

tion outliers from the global motion.

MR = 1− 1/(1 + α · (CF − g(hF |θ))). (4)

In this equation, α controls the balance between ”hard”

mask (large α) and ”soft” mask (small α). In MR, a value

close to 1 indicates static rigid region whereas a value near

0 indicates the presence of a moving area.

Figure 3. Illustration of (a) flow correlation and (b) effectiveness

of boundary loss Lbnd to prevent trivial solutions.

Backward. RfM can be trained in self-supervision with-

out any ground truth. Since the rigid area is given by MR,

the difference between image It and its background recon-

struction (warped by rigid flow) at rigid area should be

zero only when there is no moving object detected in MR.

Hence, we could optimize RfM in an end-to-end fashion via

minimizing the rigid photometric loss Lr between It and

wf (It+1,−F r
t→t+1) on MR, in which the Warping func-

tion wf (I, F ) bilinearly interpolates image I according to

the flow F . Formulation details are given in Section 3.4.

However, simply optimizing Lr is prone to trivial solu-

tions, where Lr → 0 could be satisfied by generating an

all(near)-zero rigid map from RfM as illustrated in Fig. 3

(b). The reason is that RfM tries to minimize Lr by reduc-

ing the number of inliers (rigid pixels). To prevent this, we

design a new boundary loss Lbnd to encourage RfM to find

out more inliers as much as possible by restricting the area

ratio between rigid (MR) and non-rigid (1−MR) regions.

Lbnd =
||1−MR||1
||MR||1

. (5)

In (5), l1-norm is designed to approximate the area for soft

mask and enable end-to-end differentiability.

3.3. Overall Structure

Following the proposed pipeline, we construct our over-

all EffiScene structure in Fig. 4. In our framework, optical

flow and depth are estimated by FlowCNN and DepthCNN,

respectively. FlowCNN takes two consecutive frames It
and It+1 as inputs and computes a double channel optical

flow F o
t→t+1 representing the horizontal and vertical pixel

movements from time t to t+1. DepthCNN uses stereo left-

right view image pair It and IRt at time t, and generates a

single channel depth map D. Any existing deep models can

be employed here for FlowCNN and DepthCNN. Camera

pose P = [R|t] is made up of a rotation matrix R ∈ R
3×3

and a translation vector t ∈ R
3×1 with respect to the world.

Since F o
t→t+1 and D are obtained, P can be computed in

(6) by minimizing the reprojection error derived from (1)

between the transformed coordinates xt+1 = xt + F o
t→t+1

and the projected 3D points KPXt = KP [xt +D]:

argmin
P

∑
||[xt+1; 1]−

1

d
·KP [Xt; 1]||2. (6)

We follow [16] to solve the argmin problem by adopt-

ing the Perspective-n-Points (PnP) method from Simulta-

neous Localization And Mapping (SLAM) community with

a Random Sample Consensus (RANSAC) scheme based

on the Levenberg-Marquardt optimization. Once D and

P determine the rigid flow F r
t→t+1 via geometrical con-

sistency from (2), RfM will then adaptively recognize the

pixel-wise scene rigidity by jointly considering the two

flows. Operator E in Fig. 4 stands for the outlier ex-

clusion step in RfM. Finally, we refine the fused flow via

Ft→t+1 = MRF
r
t→t+1 + (1−MR)F

o
t→t+1 for more accu-

rate estimation.

In EffiScene, different modules are closely coupled by

RfM, and all components can be clearly interpreted from the
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Figure 4. Overall architecture of EffiScene. The solid line and dashed line both indicate the forward propagation, but the gradient can only

flow back through the solid line during training process due to the non-differentiable operations. Loss functions are shown in the red boxes.

geometrical view. Therefore, the efficient rigidity inference

can be carried out via jointly considering the geometrical

information from flow and depth.

3.4. Losses and Regularization

Photometric error evaluates the photometric similarity

between two images I and Î as defined in (7), in which

λρ balances the l1-norm and SSIM term [49]:

ρ(I, Î) = λρl1(I − Î) + (1− λρ)SSIM(I, Î). (7)

We design different loss functions to train EffiScene in an

unsupervised manner based on photometric error.

Optical Flow Loss. Optical flow from FlowCNN is op-

timized by minimizing the photometric error between the

original image It and its reconstruction Îot from optical flow

F o
t→t+1 on non-occluded region Mnoc, which is determined

by forward-backward flow check [50].

Lf =
1∑
Mnoc

∑
Ω
Mnoc · ρ(It, Îot ). (8)

Additionally, edge-aware smooth loss is used to regularize

the optical flow on the full image domain Ω.

Ls =
∑

Ω
|▽2F o

t→t+1|e
−|▽2It|. (9)

We use 2nd order gradient to eliminate the velocity impact.

Depth Loss. Similar to optical flow, depth map from

DepthCNN is trained with photometric loss and smooth

loss, but for stereo pairs instead, e.g. left-view image It
and synthesized image Ĩt from right-view frame IR. Left-

right consistency from Godard et al. [6] is also adopted as

penalty to ensure the stereo depth coherence below

Ld =
∑

Ω
ρ(It, Ĩt) + |▽2D|e−|▽2It| + |D − D̃L|, (10)

where D̃L is the projected left-view depth from the right.

RfM Loss. As discussed in Sec. 3.2, the boundary loss

Lbnd in (5) and the rigid photometric loss Lr in (11) are

both used to train RfM. In Lr, error between It and rigid

reconstruction Îrt from rigid flow F r
t→t+1 are evaluated on

the rigid map MR as

Lr =
1∑
MR

∑
Ω
MR · ρ(It, Îrt ). (11)

Regularization. Minimizing Lf may cause the discontinu-

ity of optical flow at image boundary due to the uncov-

ered area between two frames. We use rigid flow to rec-

tify the optical flow by enforcing flow consistency based

on the learned rigid map MR from RfM. However, MR

might cover undesired moving objects at the beginning of

the training. We improve MR via generating robust un-

cover region Ωunc by fusing occlusion mask (Mocc), valid

optical flow mask (Mopt) and valid rigid flow mask (Mrig)

as shown in Fig. 5. The non-occluded region is defined as

Figure 5. Regularizing optical flow for boundary discontinuity.

Mocc while Mopt and Mrig indicate valid motion from op-

tical flow and rigid flow. Next, the uncover loss for flow

regularization is defined as:

Lunc =
∑

Ωunc

||F o
t→t+1 − F r

t→t+1||
2

2
. (12)

All losses are combined to train EffiScene as an energy
minimization optimization as follows:

E = λfLf + λsLs + λrLr + λdLd + λbndLbnd + λuncLunc,

(13)

where λf/s/r/d/bnd/unc provide the weighting trade-offs.
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4. Experiments

Extensive experiments are conducted to benchmark Eff-

iScene against SOTA scene flow methods in four sub-tasks:

(i) optical flow estimation; (ii) depth prediction; (iii) visual

odometry; and (iv) motion segmentation. Qualitative results

are illustrated in Fig. 6. More results are listed in the Sup-

plementary Materials.

4.1. Implementation Details

Dataset. To keep consistency with previous works

[44, 50, 33, 41, 16, 6, 43, 21], we use the same dataset

and protocol for all experiments. Specifically, 28,968 im-

ages out of (42,382) images in KITTI raw set [4] are used

to train EffiScene, except for the scenes enrolled in KITTI

2015 [29] training set, which is reserved for optical flow

validation as well as depth estimation and motion segmenta-

tion with corresponding ground truth. Besides KITTI 2015,

KITTI 2012 [5] is also adopted for optical flow evaluation.

Different from KITTI 2015, dynamic scenes in KITTI 2012

only contains camera movements but no moving cars. For

visual odometry task, we fine-tune our model on sequences

00-08 in KITTI Odometry split [5], then test it on sequences

09 and 10.

Network deployment. For FlowCNN, we employ

RAFT [36] as the baseline due to its excellent performance

in supervised optical flow estimation and make a few mod-

ifications for the unsupervised setting. We also modify

PWC-Net [34] for DepthCNN by changing the output of

the last convolutional layer from 2 channels to 1 channel

to generate a single channel depth map, and replace the de-

conv layer by bilinear upsampling to avoid the checkerboard

artifacts. In RfM, g(fF |θ) is obtained from two fully con-

nected layers with size 100-32 and 32-1 followed by ReLU

and Sigmoid activation, respectively.

Training. We train EffiScene from scratch in three

stages without any ground truth. By default, photo-

metric balance λρ in (7) is set to 0.003 for all ex-

periments. Weighting for loss functions denoted by

{λf , λs, λr, λd, λbnd, λunc} in (13) are initialized to all ze-

ros, then we adjust them in different stages. In the first

stage, we train FlowCNN and fix DepthCNN and RfM to

obtain a coarse optical flow F o
t→t+1 by setting λf = 1.0 and

λs = 0.5 for 20 epochs. In parallel, we train DepthCNN in-

dependently for depth D by setting λd = 1.0 for 50 epochs

as suggested in [6]. Once we achieve a reasonable opti-

cal flow and depth, we fix FlowCNN and DepthCNN, and

train RfM for 10 epochs in the second stage. Here, we set

λr = 1.0 and λbnd = 0.023, and others to zeros. Finally,

in the last stage, we jointly fine-tune all the networks based

on the fused flow Ft→t+1 by setting {λr, λd, λbnd, λunc} =
{1.0, 1.0, 0.023, 1.0} for 10 epochs.

All input images are resized to 256 × 832, and the

AdamW optimizer [20] is utilized for optimization with mo-

mentum [0.9, 0.99] and weight decay 1e-5. Batch size is set

to 4. The initial learning rate is first set to 1e-4 for the first

two training stages, reduced to 1.25e-5 for the last stage,

and it is decreased by a factor of 2 for every 50K batch.

All models are trained on a single Tesla P40 GPU for about

150 GPU hours. Unlike existing methods [16, 41] whose

performances are highly relied on the prefixed thresholds,

there is no empirical parameter needed to be set by the user

in EffiScene in both training and testing.

4.2. Evaluation

Optical flow estimation. Optical flow comparisons with

supervised and unsupervised methods are summarized in

Tab. 1. On KITTI 2015, our method achieves the best

performances on averaged end-point-error (EPE) across all

image regions, e.g. moving area, static area . . . Specifi-

cally, for the most vital metric EPE-All, EffiScene signif-

icantly reduces the existing error by a considerable mar-

gin from 5.19 [16] to 4.20 (19.1% relative improvement).

We also achieve the best and the second best Fl-all error

14.31% and 13.08% among all approaches on training and

testing set, respectively. On KITTI 2012 dataset, EffiScene

consistently surpasses UnRigidFlow [16] by 12.5% relative

EPE growth (1.68 vs. 1.92), which validates the general-

ization ability of our method. Unfortunately, since there is

no moving object in KITTI 2012, the learned rigidity mask

MR from RfM will cover almost the full image, leading to

that the fused flow Ft→t+1 will be dominated by the rigid

flow F r
t→t+1 (from depth and pose). Hence, it is challeng-

ing for EffiScene to benefit from FlowCNN, resulting in a

slight drop of EPE to 1.68, comparing to the best achiev-

able EPE=1.64 [41]. However, for occluded region, motion

can be better inferred by more accurate depth and pose, and

we obtain the best result EPE-Occ of 4.71 (vs. 5.18 [41]).

In addition, we also design a variation model EffiScene (-

pwc) based on the popular PWC-Net [34] backbone for fur-

ther evaluation. PWC-based EffiScene also achieves SOTA

results for both datasets, demonstrating the consistency as

well as robustness of the proposed framework.

Ablation. Optical flow from different training stages are

listed in Tab. 2. It is not surprising that optical flow F o

from the 1st training stage yields the worst performance

since the geometrical rigidity constraint has not been con-

sidered. With the help of RfM, in the 3rd stage, FlowCNN

and DepthCNN are jointly optimized based on specific rigid

regions MR, and lower errors can be achieved in mov-

ing area (EPE-Move=3.09) as well as static regions (EPE-

Static=2.09). By jointly fusing F o and F r, the final out-

put F generates a much better result for all regions with

EPE=4.20 and Fl-all=14.31%.

Stereo-depth prediction. Depth estimation is evalu-

ated on KITTI train set with standard metrics [23] in Tab.

3. By jointly considering the inherent relation between
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Figure 6. Qualitative results of the proposed method for scene flow estimation (denoted by ’est.’.).

Table 1. Quantitative results of optical flow estimation. Averaged end-point-error (EPE) is used for evaluation except for the last two

columns which tabulate the percentage of erroneous pixels (Fl-all). ’Noc’ and ’Occ’ mean non-occluded region and occluded region.

Method

KITTI 2012 KITTI 2015

Stereo Super-

vised

Train Average EPE Train Average EPE Train

Fl-all

Test

Fl-allNoc Occ All Move Static All

FlowNet2 [12] X - - 4.09 - - 10.06 30.37% -

PWC-Net [34] X - - 4.14 - - 10.35 33.67% -

UnFlow-CSS [26] 1.26 - 3.29 - - 8.10 23.27% -

DF-Net [50] - - 3.54 - - 8.98 26.01% 25.70%

Self-Mono-SF [11] - - - - - 7.51 23.49% 23.54%

CC [33] - - - 5.67 5.04 6.21 26.41% -

CC-uft [33] - - - - - 5.66 20.93% 25.27%

EPC++ [21] X - - 1.91 - - 5.43 - 20.52%

UnOS [41] X 1.04 5.18 1.64 5.30 5.39 5.58 - 18.00%

UnRigidFlow [16] X 1.09 4.87 1.92 7.92 3.85 5.19 14.68% 11.66%

EffiScene (-pwc) X 1.19 4.74 1.71 7.63 3.72 4.92 14.55% -

EffiScene X 1.19 4.71 1.68 5.15 3.69 4.20 14.31% 13.08%

Table 2. Ablation study on optical flow. Subscript t→t+1 of

F o
t→t+1, F r

t→t+1 and Ft→t+1 has been omitted for clarity.

Flow Type
Train

Stage

Train Average EPE Train

Fl-allMove Static All

F o (FlowCNN) 1st 4.38 6.80 6.76 18.89%

F o (FlowCNN) 3rd 3.09 4.81 4.70 15.87%

F r (DepthCNN) 3rd 38.10 2.09 10.42 21.44%

F (EffiScene) 3rd 5.15 3.69 4.20 14.31%

flow, pose, rigidity and depth, superior depth maps can be

predicted comparing with both monocular or stereo based

methods. Surprisingly, EffiScene even outperforms SsSM-

net [47] and MonoDepth [6] which are specifically designed

for the depth estimation task. Since there is no new depth-

specific components designed in EffiScene, we hypothesize

that the gain in depth estimation may come from the col-

laborative training process, where optical flow, camera pose

and depth are coupled by RfM for mutual reinforcement.

Motion segmentation. Results from RfM is also used

to evaluate motion segmentation with advanced scene flow

approaches as listed in Tab. 4. We achieve the best pixel ac-

curacy and mean accuracy by surpassing the baseline UnOS

[41] 4.5% and 2.8%. However, considering that moving

cars just make up only a small portion of the full image in

KITTI 2015 (usually less than 5%), high accuracy does not

always imply a superior segmentation ability due to severe

class imbalance. Therefore, Intersection-Over-Union (IoU)

could be a fairer and more compelling benchmark as listed

in the last two columns of Tab. 4. Our method improves

the mean IoU from SOTA 0.570 [16] to 0.615, and the fre-

quency weighted (f.w.) IoU from 0.900 to 0.926. Note

that CC [33] adopts a much more complex and deep auto-

encoder for segmentation, but it is still 4.6% lower than the

proposed method because of the independent segmentation

inference structure.

Visual odometry. Absolute Trajectory Error (ATE) in

[30, 48] is utilized for camera pose evaluation in Tab. 5.

Two types of technical strategies are summarized: Deep

Neural Netwrok (DNN) based and PnP based pose es-

timation. Usually, DNN based methods run faster than

optimization-based PnP, but offer lower accuracy [40, 24,

41]. Since only 2 frames are used in our method, we follow

[41, 16] and average the accumulated poses from neighbor-

ing 5 frames for fair comparison with multi-frame competi-

tors. For PnP based methods, we outperform all existing

methods in both sequences. Note that the performance of

PnP heavily depends on the quality of predicted flow and

depth, better optical flow and depth estimation from previ-

ous steps will definitely contribute to improvement in cam-

era pose accuracy. For DNN approaches, we also give a

variation model EffiScene (-dnn) for fair comparison – re-

placing the PnP method with a 9-layer fully convolutional

network with channels [16, 32, 64, 128, 256*4, 6] to regress

the 6-DoF pose matrix P = [R|t]. It achieves competitive

results by surpassing [48] and [50], but it narrowly trails

[44] and [33], both having access to more frames than us.

5544



Table 3. Quantitative results of depth estimation conducted on the KITTI 2015 training set. Depth errors (middle columns) and prediction

accuracy (right columns) are used for evaluation. All valid depth ranges are capped at 80m.

Method Stereo
Error (lower is better) Accuracy, δ (higher is better)

AbsRel SqRel RMSE RMSlog < 1.25 < 1.252 < 1.253

CC [33] 0.140 1.070 5.326 0.217 0.826 0.941 0.975

Self-Mono-SF [11] 0.125 0.978 4.877 0.208 0.851 0.950 0.978

EPC [43] X 0.109 1.004 6.232 0.203 0.853 0.937 0.975

EPC++ [21] X 0.127 0.936 5.008 0.209 0.841 0.946 0.979

SsSMnet [47] X 0.075 1.726 4.857 0.165 0.956 0.976 0.985

MonoDepth [6] X 0.068 0.835 4.392 0.146 0.942 0.978 0.989

UnRigidFlow [16] X 0.051 0.532 3.780 0.126 0.957 0.982 0.991

EffiScene X 0.049 0.522 3.461 0.120 0.961 0.984 0.992

Table 4. Quantitative results of motion segmentation. IoU based

metrics (last two columns) are more meaningful for KITTI 2015.

Method
Pixel

Acc.

Mean

Acc.

Mean

IoU

f.w.

IoU

EPC [43] 0.890 0.750 0.520 0.870

EPC++ [21] 0.910 0.760 0.530 0.870

UnOS (full) [41] 0.900 0.820 0.560 0.880

CC [33] - - 0.569 -

UnRigidFlow [16] 0.930 0.840 0.570 0.900

EffiScene 0.945 0.848 0.615 0.926

Table 5. Comparisons of visual odometry on KITTI Odometry.

Method Frames Pose
Sequence

09

Sequence

10

DF-Net [50] 5 DNN 0.017±0.007 0.015±0.009

sfMLearner [48] 5 DNN 0.016±0.009 0.013±0.009

GeoNet [44] 5 DNN 0.012±0.007 0.012±0.009

CC [33] 5 DNN 0.012±0.007 0.012±0.008

EffiScene (-dnn) 2 DNN 0.013±0.006 0.013±0.008

ORB-SLAM [30] all PnP 0.014±0.008 0.012±0.011

Vid2Depth [23] 3 PnP 0.013±0.010 0.012±0.011

UnOS [41] 2 PnP 0.012±0.006 0.013±0.008

UnRigidFlow [16] 2 PnP 0.012±0.007 0.012±0.006

EffiScene 2 PnP 0.011±0.006 0.011±0.008

Figure 7. High errors caused by inaccurate RM and occlusion.

4.3. Analysis

Complexity analysis. Running time and model size are

listed in Tab. 6. Our method runs more than 2 times faster

than UnOS, but is slower than CC due to the time consum-

ing PnP step as discussed in Sec. 4.2. By replacing PnP

with a deep network, EffiScene (-dnn) significantly speeds

up the inference with acceptable performance drop (0.002

drop from Tab. 5). EffiScene requires much fewer number

of learnable parameters in the full model (#Params) and the

segmentation module (#SegParams).

Table 6. Model complexity analysis. Experiments are performed

on the same computing platform with a single Tesla P40 GPU.

Method
RunTime

(ms)

FPS

(f/s)

#Params

(Mb)

#SegParams

(Mb)

CC [33] 49.55 20.18 74.26 5.22

UnOS [41] 228.16 4.38 17.06 -

UnRigidFlow [16] 87.57 11.42 10.22 -

EffiScene 93.11 10.74 10.36 0.0032

EffiScene (-dnn) 47.06 21.25 12.54 0.0032

Limitations. Although promising EPE (=4.20) is

achieved in our model, test Fl-all error (13.08%) is still

1.42% higher than [16] as depicted in Tab. 1. This in-

dicates that EffiScene learns better optical flow for those

’good’ regions (lower EPE), but not for all pixels (higher

Fl). One reason is that the learned rigidity map MR could

be wrongly estimated at occluded regions, where local mo-

tion is difficult to optimize due to missing pixels, result-

ing in unreliable motion correlation for RfM. For example,

in Fig. 7, backgrounds occluded by the moving cars have

much higher errors. Therefore, improving RfM in the large

occlusion case seems to be a logical next step.

5. Conclusion

In summary, we propose EffiScene for unsupervised

scene flow estimation by coupling several low-level vision

sub-tasks. We demonstrate that per-pixel rigidity can be ef-

ficiently inferred by jointly exploiting optical flow, depth

and camera pose, since they share the same inherent geo-

metrical structure with scene rigidity. By exploring joint

rigidity learning, more accurate rigid constraint and effi-

cient network training can be achieved. Extensive exper-

iments on scene flow benchmarks produce SOTA results

with simpler model for all four sub-tasks, demonstrating the

effectiveness of the proposed method. In our future work,

long term dependency will be explored in EffiScene to solve

the rigidity inference with large occlusions.
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and Hervé Jégou, editors, Computer Vision – ECCV 2016

Workshops, pages 3–10, Cham, 2016. Springer International

Publishing. 2

[46] Huangying Zhan, Ravi Garg, Chamara Saroj Weerasekera,

Kejie Li, Harsh Agarwal, and Ian Reid. Unsupervised learn-

ing of monocular depth estimation and visual odometry with

deep feature reconstruction. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), June 2018. 2

[47] Yiran Zhong, Yuchao Dai, and Hongdong Li. Self-

supervised learning for stereo matching with self-improving

ability. ArXiv, abs/1709.00930, 2017. 7, 8

[48] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G.

Lowe. Unsupervised learning of depth and ego-motion from

video. In CVPR, 2017. 3, 7, 8

[49] Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simon-

celli. Image quality assessment: from error visibility to struc-

tural similarity. IEEE Transactions on Image Processing,

13(4):600–612, 2004. 5

[50] Yuliang Zou, Zelun Luo, and Jia-Bin Huang. Df-net: Un-

supervised joint learning of depth and flow using cross-task

consistency. In Proceedings of the European Conference on

Computer Vision (ECCV), September 2018. 3, 5, 6, 7, 8

5547


