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Abstract

In this paper, we study a novel knowledge transfer task in

the domain of graph neural networks (GNNs). We strive to

train a multi-talented student GNN, without accessing hu-

man annotations, that “amalgamates” knowledge from a

couple of teacher GNNs with heterogeneous architectures

and handling distinct tasks. The student derived in this

way is expected to integrate the expertise from both teach-

ers while maintaining a compact architecture. To this end,

we propose an innovative approach to train a slimmable

GNN that enables learning from teachers with varying fea-

ture dimensions. Meanwhile, to explicitly align topolog-

ical semantics between the student and teachers, we in-

troduce a topological attribution map (TAM) to highlight

the structural saliency in a graph, based on which the stu-

dent imitates the teachers’ ways of aggregating informa-

tion from neighbors. Experiments on seven datasets across

various tasks, including multi-label classification and joint

segmentation-classification, demonstrate that the learned

student, with a lightweight architecture, achieves gratifying

results on par with and sometimes even superior to those

of the teachers in their specializations. Our code is pub-

licly available at https://github.com/ycjing/

AmalgamateGNN.PyTorch.

1. Introduction

An increasing number of pre-trained deep neural net-

works (DNNs) have been generously released online for the

sake of handy reproducibility [49]. As such, reusing these

pre-trained models to alleviate training effort or to enhance

performance, has emerged as a trending research topic in

recent years. The seminal work of Hinton et al. [12], for

instance, first raises Knowledge Distillation, where a pre-

trained teacher model is utilized to generate soft labels

so as to learn a lightweight student model with compe-

tent performance. Following this student-teacher paradigm,

many other distillation-based approaches have been applied
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Figure 1. Illustrations of amalgamating knowledge from heteroge-

neous teacher GNN models. “Teacher GNN (Segmentation)” and

“Teacher GNN (Classification)” are pre-trained point cloud part

segmentation and classification models, respectively. Knowledge

amalgamation aims to learn a multi-talented and lightweight stu-

dent GNN from teacher GNNs without human annotations.

to various domains and have demonstrated promising re-

sults [7, 30, 47, 48, 55].

Almost all existing approaches on knowledge transfer

from pre-trained models have been focused on convolu-

tional neural networks (CNNs), which take data in regu-

lar domains, like images, as input. Nevertheless, many

other data samples take irregular forms and thereby re-

sort to graph representations, calling for graph neural net-

works (GNNs). The work of [43], as the first attempt, gen-

eralizes knowledge distillation to GNNs, and introduces a

customized approach tailored for irregular data. In spite of

the improved performance, this approach is limited to the

scenario where the student learns from a single teacher, and

meanwhile holds a homogeneous architecture and tackles

the same task as the teacher does.

In this paper, we strive to make one step further towards

knowledge transfer from pre-trained GNNs, by studying a

novel knowledge amalgamation task. Our goal is to train a

multi-talented student GNN, from a couple of pre-trained

teacher GNNs with heterogeneous architectures and spe-

cializes in different tasks, for example one working on point

cloud segmentation and the other on classification, as shown

in Fig. 1. We further assume that, in the knowledge amal-

gamation process, no human annotations are available. The
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student learned in this way is anticipated to integrate both

teachers’ expertise yet comes with a compact size, making

it competent for resource-constrained applications such as

edge computing.

Nevertheless, such an ambitious goal is accompanied

with challenges. The first challenge regards handling graph

features with varying dimensions. Unlike CNNs that take as

input grid-structured data with fixed channel numbers, such

as RGB images, in our scenario, GNNs pre-trained on dif-

ferent datasets work with distinct feature dimensions. For

example, nodes in the citation network dataset Cora have

1433 features, while those in Citeseer have 3703 features.

The student GNN would therefore have to accommodate the

diverse feature dimensions. The second challenge lies in en-

coding topological semantics of graphs. As GNNs are de-

signed to explicitly account for the topological information

concealed in the graph data, aligning the topological seman-

tics between teachers and the student emerges as a critical

issue to be addressed in GNN knowledge amalgamation.

Towards this end, we propose a slimmable graph con-

volutional operation that enables adaptive activation or de-

activation of layer channels; graph data of different input

channels can therefore be simultaneously accounted for un-

der one student model. Furthermore, we introduce topo-

logical attribution map (TAM), a general graph represen-

tation scheme to highlight structural saliency in terms of

information propagation from neighbors. The derived stu-

dent model is enforced to produce a TAM that resembles

those from the teachers, in which way the student imitates

the teachers’ fashions of aggregating features to the center

node. Notably, TAM is free of data labels and readily ap-

plied to heterogeneous GNN architectures.

Our contribution is therefore a novel GNN-based knowl-

edge amalgamation approach to train a versatile student

model that covers the specialties from heterogeneous-task

teachers, without human annotations. This is typically ac-

complished through a slimmable graph convolutional op-

eration to accommodate varying-dimension features from

teachers, together with a TAM scheme for learning the

teachers’ topological semantics. We evaluate the proposed

method on four different tasks across various domains, in-

cluding single- and multi-label node classifications, 3D ob-

ject recognition, and part segmentation. Experimental re-

sults demonstrate that, the learned student GNN model is

competent to handle all different tasks of the heterogeneous

teachers, sometimes with a performance even superior to

those of the teachers, and meanwhile comes at a significant

reduction in computational cost.

2. Related Work

Graph Neural Network. Graph neural networks (GNNs)

have achieved unprecedented advances in recent years,

showing promising performance in handling graph data ly-

ing in the non-Euclidean domain [16, 37, 53, 44, 6, 41, 19,

23, 36, 13, 18, 25, 42]. Since the seminal work of Kipf et al.

[16], a large number of approaches have been proposed for

an enhanced GNN model. Specifically, GraphSAGE, pro-

posed by Hamilton et al. [9], provides a general inductive

framework towards scalable GNN for huge graphs. Graph

attention network (GAT) [35], on the other hand, focuses

on introducing a novel attention mechanism for GNN, al-

lowing for efficient graph processing without knowing the

graph structure upfront. Furthermore, [52] and [29] pro-

pose a novel PairNorm layer and a DropEdge strategy to

alleviate the oversmoothing problem in GNNs. Despite the

encouraging progress in the field of GNN, there is a lack of

research on reusing pre-trained GNN models.

Multi-task Learning. The proposed task of graph knowl-

edge amalgamation is also related to multi-task learning.

Multi-task learning aims to leverage task relatedness to

jointly learn a group of tasks with shared architectures

[1, 4, 5, 8, 17, 50]. In the past few years, multi-task

learning has been widely studied in various areas, such

as bioinformatics [10, 20], ubiquitous computing [39, 40],

natural language processing [4, 38] and computer vision

[21, 54, 15, 14]. Specifically, He et al. [11] develop a multi-

task framework that combines object detection and segmen-

tation. Also, in [51], Zhang et al. devise a convolutional

neural network architecture for joint face detection, pose

estimation, and landmark localization. Another work in [3]

constructs a multi-task recurrent neural network, of which

the output layer has multiple units to simultaneously esti-

mate the relative distance, interactions, and standing orien-

tations. A more recent work [21] further proposes a multi-

task collaborative network that achieves joint learning of re-

ferring expression comprehension and segmentation.

Model Reusing. Reusing pre-trained models has become

increasingly prevalent in recent years. The seminal work

of Hinton et al. [12] proposes the concept of knowledge

distillation, where the soft labels obtained from a cum-

bersome teacher model are used for training a compact

student model. Following this pioneering teacher-student

framework, plenty of algorithms are proposed to fully uti-

lize the knowledge concealed in the pre-trained teachers

[30, 28, 48, 7, 55, 26, 33]. In particular, Rusu et al. [30]

propose a novel progressive neural network to learn useful

features from multiple teachers. The work in [26], on the

other hand, proposes an Actor-Mimic scheme to reuse sev-

eral teacher models specializing in diversified tasks. Also,

the works in [32, 34, 22, 45] propose to reuse multiple

trained teacher CNNs, working on different tasks, to learn a

versatile student model, but built upon a strong assumption

that the teacher models share the same CNN architecture.

Given the promising advances of model reusing techniques,

however, none of these existing algorithms investigates a

solution for reusing heterogeneous GNN models.

15710



Graphs Node Features

GCN_T1

GCN_T2

GCN_S

Deactivate

Deactivate

Slimmable

GCN

⋯

⋯

T

S

A

GCN_T1

GCN_T2

(Input) (Knowledge Amalgamation) (Output)

⋯

⋯

R
e
a
d

O
u

t
R

e
a
d

O
u

t
R

e
a
d

O
u

t

Soft Labels

Soft Labels

Predictions

Predictions

Intermediate Layers Final LayerTopological Attribution Map

T

S

A
STL

STL

Derivative

Derivative

Figure 2. The overall framework of the proposed knowledge amalgamation method tailored for GNNs. For illustration, we take two pre-

trained teacher GCNs as an example. On the input side, the dimensions of input node features would vary with different graph samples.

GCN T1, GCN S and GCN T2 represent the graph convolutional layers from pre-trained teacher #1, lightweight student, and pre-trained

teacher #2, respectively. TSA and STL denote the proposed topological semantics alignment module and the soft target learning module,

respectively. The topological attribution map is obtained by computing the edge gradients of the constructed unary edge features, as

explained in Sect. 4.3.

3. Problem Definition

The problem we aim to address here is to learn a versatile

and lightweight student GNN model, with only unlabeled

graph data, that amalgamates topology-aware knowledge

from multiple task-wise heterogeneous teachers. Specifi-

cally, assume that we are given N pre-trained GNN models

G = {g1, g2, · · · , gN}, each of which specializes in dif-

ferent tasks, such as paper classifications on specific topics

[31] or predictions of various protein functions [56]. We

use T (gi) to represent the specific task handled by teacher

gi. The goal of knowledge amalgamation is then formulated

as learning a student GNN model gs that has the following

three properties:

• The student gs covers the expertise of all heteroge-

neous teachers.

• The model size of the student is smaller than the sum of

teachers, preferably even smaller than a single teacher.

• Learning of gs requires only raw graph data without

human-labeled annotations.

The target student GNN model is therefore expected to be

capable of simultaneously handling heterogeneous tasks,

and meanwhile more portable for deployment on the

mobile-terminal side.

Also, for different pre-trained teachers gi, we impose no

constraints on gi’s architectures being the same, meaning

that gi can have diversified layer numbers, different fea-

ture dimensions, or even distinct layer mechanisms, such

as graph convolutional layers by Kipf et al. [16] and graph

attention layers by Veličković et al. [35].

4. Proposed Method

Towards addressing the proposed problem of knowledge

amalgamation, we introduce the proposed dedicated ap-

proach tailored for GNN models. In what follows, we start

by giving an overview of the proposed method, and then de-

tail the key modules. Finally, we propose a dedicated train-

ing strategy that trains the student GNN intertwined with

teacher GNNs.

4.1. Overview

The overall workflow of the proposed method is shown

in Fig. 2. The task of knowledge amalgamation imposes

three major challenges, respectively on input data, interme-

diate features, and output labels. The challenge on the input

side concerns handling multiple teacher GNNs with differ-

ent feature dimensions. This dilemma is solved by equip-

ping the student with the proposed slimmable graph convo-

lutions (Fig. 2 (Input)).

The second challenge lies in the effective extraction and

transfer of topological information from teachers. In our

proposed approach, this issue is tackled by the proposed

topological semantics alignment module (Fig. 2 (TSA)).

The last challenge relates to the lack of human-labeled

annotations: how to obtain supervision information from

unlabeled graph data. We address this issue by explic-

itly imitating the soft predictions of heterogeneous teachers

(Fig. 2 (STL)), as is also done in CNN-based model reusing

technique [12].

Therefore, in what follows, we put our emphasis upon
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Figure 3. Illustrations of the proposed slimmable graph convolu-

tional operation, where X and Y denote graph nodes. The neu-

rons in multi-layer perceptrons (MLPs) of GNN are adaptively ac-

tivated or deactivated based on the feature dimensions of the input

graph data.

the slimmable graph convolutional modules and the topo-

logical semantics alignment module, both of which are spe-

cific to the task of GNN model reusing.

4.2. Slimmable Graph Convolution

On the input side, unlike CNNs that always receive grid-

like RGB images with constant channel numbers, GNN

models, depending on the handled tasks, vary in the fea-

ture dimensions of input nodes. Taking the three popular

paper-citation datasets, Cora, Citeseer and Pubmed as ex-

amples [31], all of these three datasets contain publications

as graph nodes. Nevertheless, they contain distinct channel

numbers for each node: 1433 for Cora, 3703 for Citeseer,

and 500 for Pubmed. This challenge of diversified feature

dimensions makes it infeasible to simply use a naive GNN

architecture for the target multi-talented student model.

To solve this dilemma, we devise a dedicated slimmable

graph convolutional layer, where the layer channels can be

adaptively activated or deactivated depending on different

input feature dimensions, as shown in Fig 3. To further il-

lustrate the proposed slimmable graph convolutional layer,

we take the task of node classification as an example.

Assume that we have separate input graph nodes Xi and

Yj from different graphs with Ci and Cj feature dimen-

sions (Ci 6= Cj) to concurrently account for. Firstly, before

training, we set a maximum channel number Cmax for the

proposed slimmable graph convolutions, so as to define the

shape of weights in GNN layers. Then, given input nodes

Xi with the node feature dimension of Ci, the slimmable

graph convolution adaptively deactivates the |Cmax − Ci|
neurons and uses only the Ci-channel filter to deal with Xi.

For the processing of the node Yj with Cj feature chan-

nels, a similar scheme is also applied, where the slimmable

graph convolution dynamically switches to Cj-channel fil-

ter to manage the corresponding input node of Yj .

In knowledge amalgamation, by replacing the first layer

with slimmable graph convolutional layer, the student GNN

can simultaneously handle graph samples with varying in-

put feature dimensions; while also equipped with slimmable

graph convolutions in the intermediate layers, the student
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Figure 4. Visualizations of the scaled topological attribution map

(TAM) of two teacher GNNs given the same input graph data.

As an example, two teachers here are pre-trained multi-label node

classification models that handle a different set of classes. Colors

encode the importance of each connection for the corresponding

task of each teacher.

GNN model can also trade off between accuracy and la-

tency at runtime, by switching between models with differ-

ent numbers of active layer channels, thus making it possi-

ble to adapt the learned student model across different de-

vices with limited response time budgets.

4.3. Topological Semantics Alignment

Unlike conventional convolutional layers that only re-

ceive grid-structured data as input and generate high-level

semantic representations, graph convolutional layers are de-

signed to process the graph data, either in the form of grid

or non-grid structures. To this end, the intrinsical mech-

anism of graph convolutions is to generate representations

for each node by collectively aggregating its own features

and its neighboring nodes’ features. As a result, the gen-

erated feature maps from graph convolutional layers con-

tain both the topological properties of the input graph and

also the high-level node content information. Simply ap-

plying prior CNN-based model reusing techniques, regard-

less of topological connections among different nodes, for

GNN-based knowledge amalgamation, will inevitably lead

to lossy knowledge transfer [37].

Towards addressing this challenge, the key issue to be

considered is: how to derive a structure-aware graphical

representation, tailored for aligning the concealed topologi-

cal information between teachers and the student. One pos-

sible solution to this issue could be using the pairwise fea-

ture distance between every two connected nodes as the po-

tential structure-aware representation to perform alignment

between the student and teacher, as is done in [43]. This

solution might be feasible for topology-aware knowledge

transfer from a single teacher.

However, this possible graphical representation does not

fit our case of amalgamating multiple streams of knowledge

from heterogeneous teachers. Take the amalgamation of

multi-label node classification models as an example, where

each teacher handles a separate set of classes. The goal of

the student GNN is to concurrently deal with all the classes

covered by the teachers. In this case, given the same graph
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as input, different teachers would have distinct aforemen-

tioned possible representations, whereas the student would

derive only one single representation. As a result, simulta-

neously aligning these multiple distinct representations of

teachers with a single student GNN will make the learn-

ing of different knowledge compete with each other, which

will be validated in the experiments. This competitive situ-

ation is contradictory to our goal, where we expect that the

learning of different teachers’ knowledge could potentially

benefit and cooperate with each other for improved perfor-

mance.

Motivated by this observation, we propose a novel

topological representation, termed as topological attribu-

tion map (TAM), for the structural semantics alignment

in knowledge amalgamation from heterogeneous teacher

GNNs. Specifically, the proposed TAM is derived by com-

puting the gradients of the given GNN’s output class scores

with respect to the adjacency matrix, as shown in Fig. 4. As

a result, the obtained TAM contains the structural saliency

in propagating information from neighbor nodes, indicating

the importance of each individual connection on the final

GNN predictions. Compared with the aforementioned pos-

sible representation, the design of the proposed TAM offers

two benefits in knowledge amalgamation:

• The proposed TAM can be readily applied to heteroge-

neous GNN architectures, including the models with

distinct aggregating mechanisms like graph convolu-

tional network (GCN) [16] and graph attention net-

work (GAT) [35], and also those with different layer

numbers and channels.

• The proposed TAM can be extracted in a teacher-

aware manner, meaning that a student GNN can derive

multiple TAMs, which correspond to different teach-

ers that handle separate classes. Specifically, this is

achieved by using the specific subset of class scores,

corresponding to the task of each teacher, to compute

the teacher-specific TAMs. This manner alleviates the

aforementioned competitive dilemma in amalgamating

multiple teacher GNNs.

The workflow of computing the proposed TAM is given

as follows. Consider a graph represented by a tuple G =
{V, E}, where V is the set of unordered vertices and E rep-

resents the set of edges connecting different vertices v ∈ V .

Let A ∈ R
n×n denote the adjacency matrix, where n is

the number of graph nodes. Given an input graph G0 and a

GNN model g, the proposed TAM representation F can be

generally computed as:

F =
∂P

∂A

∣

∣

∣

∣

G0

∈ R
n×n, P = g(G0), (1)

where P is the predicted class scores with the input G0.

Based on Eq. 1, given a set of pre-trained teacher GNNs

{T }, we propose a topological semantics alignment loss for

Algorithm 1 GNN-based Knowledge Amalgamation from

Heterogeneous Teachers

Input: T = {Ti}
M
i=1: M trained teacher GNNs; G =

{Gk}
K
k=1

: unlabeled graph samples.

Output: S: Target versatile and lightweight student GNN.

1: Set Cmax as the maximum feature dimension in G;

2: Initilize student model S;

3: for m = 1 to M do

4: // Obtain topological representation and soft labels

from Teacher Tm
5: Feed G with matched input dimensions into Tm;

6: Compute topological representation FTm by Eq. 1;

7: Compute the soft labels PTm from the output layer

of teacher Tm;

8: // Obtain topological representation and output pre-

dictions from Student S
9: Feed the same G into S and process G with

slimmable graph convolutions in S;

10: Compute topological representation FS by Eq. 1;

11: Compute soft labels PS from the output layer of S;

12: // Compute two losses

13: Compute LTm

topology from FTm and FS by Eq. 2;

14: Compute LTm

soft from PTm and PS ;

15: end for

16: Compute total loss over {Ti}
M
i=1 by Eq. 3;

17: Optimize S with Adam for epochs.

knowledge amalgamation:

LTi

topology = ‖
∂PS

dS∩dTi

∂A
−

∂PTi

dTi

∂A
‖, (2)

where dS and dTi
represent the set of classes handled by

the student S and the i-th teacher Ti, respectively. PS
dS∩dTi

represents a subset of the student’s predicted class scores

corresponding to those of the teacher Ti, thus leading to

a teacher-aware topological representation for knowledge

amalgamation. The total topological alignment loss can

then be computed as the sum of Eq. 2 over multiple teach-

ers: Ltopology =
∑

i L
Ti

topology .

For implementations, there are two specific issues to be

considered when using the naive computation method in

Eq. 1 to obtain TAM. Firstly, there is a lack of a unified ap-

proach for computing the derivative of network outputs with

respect to the adjacency matrix for heterogeneous GNN ar-

chitectures like GCN and GAT. Different types of GNNs

have different ways to incorporate the adjacency matrix in

information aggregations, leading to inconsistent ways to

obtain TAM.

Thus, we devise here a unified implementation method

to compute TAM across various GNN architectures. Our

idea is to first construct unary edges within the network

based on the adjacency matrix, where the corresponding

edge features are all equal to 1. The constructed unary edges
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Table 1. Results of amalgamating knowledge from multi-label

node classifications GAT models, in terms of micro-averaged F1

score. The obtained student achieves competitive performance

compared with the teachers, yet with a moderately compact size.

Methods Model Size PPI Set1 PPI Set2

Teacher 1 11.61M 98.73 N/A

Teacher 2 11.56M N/A 98.62

Student {MTL+AT} [48] 14.57M 97.03 96.99

Student {MTL+LSP} [43] 14.57M 97.27 97.22

Student Ours (w/o TSA) 14.57M 97.95 97.98

Student Ours (w/ TSA) 14.57M 98.44 98.42

are then involved in the graph computations by multiplying

with the node features in aggregating features from neigh-

bors. In this way, the proposed TAM in Eq. 1 can be equally

obtained by directly computing the edge gradients of the

constructed unary edges, of which the computation flow is

shown as the red arrows in Fig. 2.

The other issue in implementations is related to the scale

of the computed unary edge gradients. We experimentally

observe that for some teacher GNNs, the obtained gradients

could be large in magnitude, leading to a relatively large

topological semantics alignment loss that would dominate

other loss terms at the initial stage of training. As a re-

sult, the convergence speed of the student GNN would be

slowed down. To address this issue, we propose to perform

topological-aware edge gradient normalization before com-

puting the topological semantics alignment loss. Specifi-

cally, we firstly compute the mean µi({F}) and the stan-

dard deviation σi({F}) of the unary edge gradients around

each center node vi. The normalized unary edge gradi-

ents around vi can then be obtained by computing
{F}−µi

σi+ǫ
,

where ǫ is a constant that avoids zero denominator.

4.4. Loss Function and Training Strategy

The total loss function for amalgamating knowledge

from heterogeneous teachers can be formulated as:

Ltotal = Lsoft + λLtopology, (3)

where Lsoft is the soft target loss computed as the mean

squared error among the soft predictions from the student

and the heterogeneous teachers, which is shown as the soft

target learning (STL) module in Fig. 2. The definition of

Ltopology can be found in Sect. 4.3.

We also propose a training strategy, tailored for the pro-

posed approach. As a whole, the detailed process of training

a student GNN model from multiple heterogeneous teacher

GNNs is concluded in Alg. 1. For each iteration, we accu-

mulate the loss from all heterogeneous teachers and jointly

optimize the student model, so as to make sure that the stu-

dent simultaneously learns from all the teachers.

Table 2. Results of amalgamating teachers with heterogeneous

GNN architectures, in terms of micro-averaged F1 score.

Type Teacher 1 (GAT) Teacher 2 (GAT) Student (GAT)

Task {PPI 1} {PPI 2} {PPI 1, PPI 2}

F1 Score 98.73 98.62 98.44 / 98.42

Type Teacher 1 (GCN) Teacher 2 (GAT) Student (GAT)

Task {PPI 1} {PPI 2} {PPI 1, PPI 2}

F1 Score 69.48 98.62 70.01 / 98.01

Type Teacher 1 (GAT) Teacher 2 (GCN) Student (GAT)

Task {PPI 1} {PPI 2} {PPI 1, PPI 2}

F1 Score 98.73 63.62 98.05 / 62.96

Type Teacher 1 (GCN) Teacher 2 (GCN) Student (GAT)

Task {PPI 1} {PPI 2} {PPI 1, PPI 2}

F1 Score 69.48 63.62 69.64 / 62.51

5. Experiments

To evaluate the performance of the proposed approach,

we conduct experiments on seven publicly available bench-

marks across various tasks, including node classifications,

point cloud classifications and part segmentation. Here, we

clarify that in the experiments, our goal is not to achieve

the state-of-the-art performance on each benchmark, but

rather transferring as much as knowledge from heteroge-

neous teachers.

5.1. Experimental Settings

Datasets and Implementation Details. We evaluate the

proposed knowledge amalgamate method on seven datasets

across various tasks. Specifically, for multi-label node clas-

sification, we use protein-protein interaction (PPI) dataset

[56], containing biological graphs with nodes labeled with

various protein functions. Each node can concurrently have

several labels. We further divide PPI into two subsets,

termed as PPI Set1 and PPI Set2 with 60 and 61 biologi-

cal labels, respectively, which are used to train two corre-

sponding teachers. The student GNN aims to amalgamate

the knowledge from the two teachers, capable of predicting

all 121 labels.

For the amalgamation of single-label node classifica-

tion models, we adopt Amazon Computers (10 classes)and

Amazon Photo (8 classes) datasets [24], where the nodes

represent various goods, labeled by the corresponding prod-

uct categories. We randomly split the dataset with a ratio of

2:2:6 for training, validation and testing, respectively. We

also use three citation network datasets for single-label node

classification, i.e., Cora (7 classes), Citeseer (6 classes) and

Pubmed (3 classes) [31]. The papers involved in these three

datasets are all scientific publications, but with different

subjects. We adjust the training/validation/testing split for

the training of teachers in the supervised scenario, as is also

done in [2].

For knowledge amalgamation from point cloud classifi-
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Figure 5. Visualization results of joint part segmentation (Seg) and classification (Cls). From left to right: the results of the learned student

GNN without the proposed topological semantics alignment (TSA) module, those of the student with TSA, and the results of the two

teacher GNNs. We use red texts to highlight the misclassified outputs. For some cases, our student GNN even achieves results superior to

those of the teachers, as shown in the classification result of Knife and the segmentation results of Ear Phone.

cation and part segmentation models, we use the ShapeNet

part dataset [46], containing 16, 881 shapes from 16 cate-

gories, annotated with 50 parts in total. The labeled cate-

gories and annotated parts are used to pre-train the teacher

classification model and segmentation model.

For the unlabeled data sampling for the student GNN,

we clarify that for a fair comparison with the pre-trained

teacher GNNs, the training of the student in our experi-

ments still uses the same training samples as those of the

teachers, but without accessing ground truth labels, as ex-

plained in Sect. 3. Sampling more unlabeled graph samples

from external datasets for training could further improve the

performance of the learned student GNN.

We use heterogeneous architectures for the teachers and

students in the task of node classifications, such as GCN

[16] and GAT [35]. In particular, all the student GNNs

are built with the proposed slimmable graph convolutional

layer, so as to support graph inputs of varying feature di-

mensions. For the task of point cloud classification and part

segmentation, we adopt the architecture of PointNet++ [27]

for both the teachers and the student. The hyperparameter ǫ

is set to 10−5.

Comparison Methods. Since there are few existing knowl-

edge amalgamation methods tailored for GNNs in the lit-

erature, we derive two possible solutions based on [48, 43]

and the multi-task learning (MTL) scheme for comparisons.

Specifically, upon the idea of attention transfer method

[48] and MLT scheme, we devise a “Student {MTL+AT}”

method that amalgamates knowledge by matching the at-

tention maps with heterogeneous teacher GNNs. Further-

more, we take the local structure preserving (LSP) mod-

ule from [43] and develop a “Student {MTL+LSP}” knowl-

edge amalgamation approach by replacing our topological

semantics alignment module with LSP. Specifically, “Stu-

dent {MTL+LSP}” uses the pairwise feature distance be-

tween every two connected nodes as the structure-aware

representation to perform topological alignment, as men-

tioned as the possible solution in Sect. 4.3.

6. Results

Amalgamating Node Classification Models. Tab. 1 shows

the results of amalgamating two pre-trained multi-label

node classification model. In particular, to validate the ef-
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Table 4. Results of amalgamating knowledge from point cloud classification and part segmentation models. The learned student GNN is

even more compact than each of the teacher GNNs, yet competent to simultaneously handle all the tasks of teachers.

Method Model mAcc mIoU Aero Bag Cap Car Chair Ear Guitar Knife Lamp Laptop Motor Mug Pistol Rocket Skate Table

Size (Cls) (Seg) Phone Board

# shapes – – – 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 66 152 5271

Teacher Cls 17.69M 97.83 N/A – – – – – – – – – – – – – – – –

Teacher PartSeg 17.01M N/A 81.72 82.34 81.92 86.12 78.33 90.54 72.18 91.25 86.09 83.57 95.48 70.63 94.98 81.98 55.99 73.73 82.34

Student {MTL+AT} 6.37M 97.06 77.58 80.40 72.50 81.84 75.58 89.66 64.24 89.92 85.02 82.29 95.39 55.94 93.20 78.20 44.13 70.48 82.52

Student {MTL+LSP} 6.37M 97.30 77.79 81.04 74.07 79.21 75.97 89.32 59.89 90.15 86.73 82.61 95.40 55.97 93.29 78.80 47.04 72.67 82.52

Student Ours (w/o TSA) 6.37M 97.23 77.76 80.62 73.08 83.41 76.07 89.54 60.37 90.37 85.19 81.74 95.17 55.32 91.82 79.50 46.94 72.44 82.57

Student Ours (w/ TSA) 6.37M 97.67 78.96 81.82 76.07 81.17 76.91 89.59 70.56 90.17 85.69 82.95 94.92 57.06 94.02 79.24 48.05 72.67 82.50

Table 3. Results of amalgamating single-label node classification

models, in terms of average classification accuracies (%).

Teacher 1 Teacher 2 Teacher 3 Teacher 4 Teacher 5

Type GCN GCN GAT GAT GAT

Task {Computers} {Photo} {Cora} {Citeseer} {Pubmed}

Model Size 25.84K 25.06K 739.6K 1.901M 259.8K

Accuracy 89.36 92.48 87.90 79.00 85.70

Student 1 Student 2

Type GCN GAT

Task {Computers, Photo} {Cora, Citeseer, Pubmed}

Model Size 20.29K 1.450M

Accuracy 88.81 / 91.79 87.10 / 77.30 / 83.20

fectiveness of the proposed TSA module, we conduct the

ablation study by only using soft target learning for amal-

gamation, i.e., setting λ = 0 in Eq. 3, which is termed as

the method of “Student Ours (w/o TSA)” in the table.

The student model learned with the proposed method, as

shown in Tab. 1 (Student Ours (w/ TSA)), achieves grat-

ifying performance on par with that of the two teacher

models, and meanwhile maintains a compact model size.

Also, the results in the last two lines of Tab. 1 validate the

effectiveness of the proposed TAM-based topological se-

mantics alignment module, where Student Ours (w/ TSA)

outperforms Student Ours (w/o TSA) by about 0.5 in F1

score. The proposed knowledge amalgamation method also

achieves favorable performance compared with the two de-

rived comparison methods.

In Tab. 2, we also show the corresponding multi-label

classification results by amalgamating knowledge from var-

ious types of GNN models. The notation “{PPI 1}” means

that the teacher can only handle the task of PPI Set1, while

“{PPI 1, PPI 2}” indicates the capability of simultaneously

handling the two tasks. Despite the heterogeneous types of

trained teachers, the obtained student model still achieves

encouraging results, sometimes even superior to those of

the teacher, as shown in the sixth and the last rows of Tab. 2

for the specific task of PPI 1.

Tab. 3 shows the knowledge amalgamation results from

pre-trained single-label node classification teacher GNNs.

The first student model, Student 1 in Tab. 3, is obtained

by amalgamating two teachers that handle the classifica-

tion tasks of Computers and Photos, respectively. With a

lightweight architecture which is even smaller than every

single teacher, the obtained Student 1 still yields competi-

tive results compared with those of the teachers. We also

perform knowledge amalgamation on three teachers that

deal with Cora, Citeseer, and Pubmed, respectively. The

obtained Student 2 also delivers comparable results with

those of teachers, yet maintaining a more compact size.

Amalgamating Point Cloud Classification and Segmen-

tation Models. The results of amalgamating pre-trained

classification and part segmentation teacher models are

shown in Tab. 4. We also demonstrate in Fig. 5 the cor-

responding visualization results of the teachers and stu-

dent. With the proposed TSA module, the learned versa-

tile student gains boost by at least 0.4 in mean class accu-

racy and 1.2 in mean class IoU. as shown in the last two

lines of Tab. 4. Also, as can be observed in Fig. 5, the

learned lightweight and multi-talented student can some-

times achieve even superior performance to those of the

cumbersome teachers, demonstrating that the knowledge

from one teacher can potentially benefit the task of the other.

7. Conclusions

In this paper, we introduce a novel model reusing task

tailored for heterogeneous GNNs. Our goal is to learn a ver-

satile and lightweight student GNN that masters the com-

plete set of expertise of multiple heterogeneous teachers,

yet without human-labeled annotations. Towards this end,

we identified two key challenges, and propose a dedicated

slimmable graph convolutional operation as well as a novel

topological attribution map (TAM) to solve the dilemma.

Experiments on single- and multi-label classification and

point cloud segmentation-classification demonstrate that,

the obtained student GNN, with a moderately compact size,

achieves performances on par with or even superior to those

of the individual teachers on their specialized tasks. In the

our future work, we will strive to generalize the proposed

TAM to other tasks beyond knowledge amalgamation.
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