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Figure 1. Influence of temporal frequency on the performance of VSR. A higher frame rate, and hence a smaller displacement between

consecutive frames, yields enhanced VSR results obtained by a state-of-the-art approach [53], as evidenced by the rising PSNRs.

Abstract

State-of-the-art video super-resolution (VSR) methods

focus on exploiting inter- and intra-frame correlations

to estimate high-resolution (HR) video frames from low-

resolution (LR) ones. In this paper, we study VSR from

an exotic perspective, by explicitly looking into the role of

temporal frequency of video frames. Through experiments,

we observe that a higher frequency, and hence a smaller

pixel displacement between consecutive frames, tends to de-

liver favorable super-resolved results. This discovery moti-

vates us to introduce Event Cameras, a novel sensing de-

vice that responds instantly to pixel intensity changes and

produces up to millions of asynchronous events per second,

to facilitate VSR. To this end, we propose an Event-based

VSR framework (E-VSR), of which the key component is an

asynchronous interpolation (EAI) module that reconstructs

a high-frequency (HF) video stream with uniform and tiny

pixel displacements between neighboring frames from an

event stream. The derived HF video stream is then encoded

into a VSR module to recover the desired HR videos. Fur-

thermore, an LR bi-directional interpolation loss and an HR

self-supervision loss are also introduced to respectively reg-

ulate the EAI and VSR modules. Experiments on both real-

world and synthetic datasets demonstrate that the proposed

approach yields results superior to the state of the art.

1. Introduction

The goal of video super-resolution (VSR) is to recover a

high-resolution (HR) video frame from a sequence of low-

resolution (LR) frames. With the prevalence of recent HR

display technology, VSR techniques have been attracting in-

creasing attention from both the academic and the industrial

community. Various applications of VSR include entertain-

ment [21], surveillance [26], as well as medical and satellite

imaging [8]. Recently, VSR has also been applied to facili-

tate high-level vision tasks like action recognition [63].

State-of-the-art VSR techniques have relied on deep neu-

ral networks to model intra-frame correlations and inter-

frame coherence, so as to recover HR frames. They can

be broadly categorized into two streams, the ones based on

convolutional neural network (CNN) [53, 50, 24, 61, 18, 13]

and those based on recurrent neural network (RNN) [11, 48,

37, 4, 12, 9]. The former category retains temporal informa-

tion by concatenating multiple consecutive frames as inputs

to produce a single HR estimate. The latter category, on the

other hand, relies on recurrent connections to capture the

temporal dependencies across a sequence of video frames.

Both categories have demonstrated visually plausible and

quantitatively encouraging results.

Unlike existing approaches that focus on spatial and tem-

poral dependencies, we study the VSR task from an exotic
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Figure 2. The proposed event-based VSR (E-VSR) system re-

ceives low-resolution (LR) videos and high-frequency (HF) event

streams as input, and produces high-resolution (HR) video frames.

It comprises a general VSR module as well as a EAI module,

which exploits event data to generate asynchronous frames with

tiny pixel displacements to facilitate VSR.

aspect by exploring the impact of temporal frequency on

super-resolved results. We found that a higher frequency

or frame rate, and consequently a smaller pixel displace-

ment between successive frames, leads to superior super-

resolved results. A couple of examples are demonstrated

in Fig. 1, where we simulate the varying frame rates of

the same videos by sampling frames with different inter-

vals from a high-speed camera [46]. We observe that as the

frame rate increases, the super-resolved results derived from

a state-of-the-art VSR approach [9] also improve, both visu-

ally and quantitatively. This is not totally unexpected, since

the larger pixel displacements would, intuitively, make the

VSR system harder to capture longer-range temporal depen-

dencies and to utilize the contextual information between

frames, resulting in inferior results.

Inspired by this discovery, we introduce to the VSR task

a novel sensing modality, Event Camera, in the aim to boost

the VSR performance by injecting high-frequency (HF)

event data into the super-resolving process. In contrast to

conventional cameras that capture images at a fixed frame

rate, Event Cameras asynchronously respond to intensity

changes of each pixel in the microsecond level [5, 32], and

produce up to millions of asynchronous events each second.

The generated asynchronous event data, therefore, precisely

measure the pixel variants within an extremely short tempo-

ral interval. Apart from the very high speed, Event Cameras

also offer numerous other benefits, such as high dynamic

range and ultra-low power.

We further propose a novel event-based VSR (E-VSR)

system that explicitly accounts for event data, as shown in

Fig. 2. It takes as input both a high-frequency (HF) event

stream and a regular LR video stream, and then feeds the

data of two modalities to a general VSR module along-

side with an event-based asynchronous interpolation (EAI)

module. The goal of the EAI module is to leverage the

HF event stream to synthesize asynchronous neighboring

frames with tiny and uniform RGB pixel displacements in

a given video context. Specifically, within EAI we intro-

duce an event-based dynamic conventional layer to handle

the spatially- and temporally-varying thresholds in event

data. The outputs of EAI are encoded into the VSR module

to establish correspondences between consecutive frames.

Moreover, we pose a novel LR bi-directional interpolation

loss and an HR self-supervised loss, so as to enforce the

consistency between the predicted HR frames and the event

stream.

We evaluate the proposed E-VSR on the CED color

event dataset [42], where the RGB frames and the corre-

sponding color events are collected in a wide range of nat-

ural scenes. Due to the novelty of color event data, the

CED dataset is currently the only public dataset that con-

tains real color events captured in practical scenarios. To

address this issue of limited event data, we build a sim-

ulated color event dataset, which is publicly available at

https://osf.io/6c3d9/, using an event simula-

tor [34, 6]. Experiments on both datasets demonstrate that

E-VSR yields super-resolved results superior to the state of

the art, both qualitatively and quantitatively.

In sum, our contribution is a novel scheme that ex-

ploits the asynchronous HF event data, delivered by event

cameras, to boost the VSR performance. Its rationale is

grounded by the observation that HF streams, and hence

smaller pixel displacements, tend to yield favorable VSR re-

sults. The proposed E-VSR system generates neighboring

frames with tiny and uniform pixel displacements derived

from the event streams, which facilitate the establishment

of temporal correspondence and further strengthen the VSR

process. Both quantitative and qualitative results showcase

that the proposed E-VSR consistently outperforms the state

of the art.

2. Related Work

We briefly review here several topics that are related to

our work, including video super-resolution, event cameras,

as well as event-based vision algorithms.

Video Super-resolution. VSR has been a long-standing re-

search topic in computer vision [62, 3, 17, 44, 60, 59]. In

recent years, various VSR approaches have been proposed

to effectively utilize the contextual information among suc-

cessive frames [2, 27, 48, 9, 53, 61, 18, 23, 13, 50, 12, 24].

These algorithms can be divided into two groups. The idea

of the first group is to use an elaborated pipeline, including

feature extraction, alignment, fusion and feature reconstruc-

tion, to explicitly establish accurate correspondences among

different frames, so as to effectively utilize the temporal in-

formation [2, 48, 37]. For example, in [53], Wang et al.

design a pyramid, cascading and deformable module for the

superior feature alignment, and also propose a temporal and

spatial attention module for the effective feature fusion.

By contrast, the second group of VSR implicitly uti-

lizes the motion information among neighboring frames

7773



[9, 18, 61]. For example, the work in [18] proposes to ex-

ploit dynamic upsampling filters to implicitly compensate

motion among neighboring frames. Haris et al. also propose

a recurrent back-projection network (RBPN) to effectively

exploit the temporal contexts for high-quality results [9].

However, most existing VSR algorithms do not consider

the case where there are large pixel displacements among

adjacent frames, which remains an open challenge.

Event Cameras and Event-based Vision. Event cam-

eras are neuromorphically inspired sensing devices [5]. In

contrast to conventional cameras that capture synchronized

frames at a fixed frame rate, event cameras produce event

outputs asynchronously at the exact time they occur with

a microsecond-level latency [55]. The most recent type of

event camera is Color-DAVIS346, which combines a con-

ventional RGB camera sensor to simultaneously produce

RGB frames and color event streams without viewpoint dif-

ferences [49]. The CED dataset [42], which will be used in

the experiment, is collected with this Color-DAVIS346.

With the nature of extreme low latency (∼ 1µs), very

high temporal resolution, significantly larger dynamic range

(140dB) and low power consumption (order of 10mW )

[38, 40], event cameras have been used in a wide range of

applications [66, 56, 31, 57, 15, 28, 45, 41, 33, 47, 51, 10].

For example, in [55], Wang et al. propose the first event-

based gait recognition network, termed as EV-Gait, to rec-

ognize gait from pure event data. Another work proposed

by Pan et al. [32, 30] pioneers the use of event data in

video deblurring. Specifically, they propose an event-based

double integral model, which can generate sharp and high-

frame-rate videos using a DAVIS event camera. In [64],

Zhu et al. present a self-supervised optical flow estimation

pipeline using only the event streams, which achieves com-

parable performance with image-based self-supervised esti-

mation method. They further develop a novel event-based

framework [65], which can be used to predict depth, ego-

motion and optical flow. Another work by Kim et al. [20]

utilizes event data for 3D reconstruction. A summary of

more event-based vision algorithms can be found in [5].

However, to our knowledge, there is no literature that in-

vestigates the use of event cameras to benefit the VSR task.

3. Problem Formulation and Pre-analysis

The goal of a VSR model g is to estimate a high-

resolution frame IHR
t from a set of corresponding consec-

utive low-resolution frames {ILR
t }, which can be modeled

as IHR
t = gθ∗({ILR

t }).

Fig. 1 has qualitatively shown that the size of pixel dis-

placements among {ILR
t } has an influence on the quality

of IHR
t . To further validate this observation, in Fig. 3,

we conduct more comprehensive experiments with two

state-of-the-art VSR algorithms, termed as Recurrent Back-
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(a) Results of RBPN [9] (2×) (b) Results of EDVR [53] (4×)

Figure 3. Quantitative results of the influence of pixel displace-

ments among neighboring frames on VSR for 2× upscaling (a)

and 4× upscaling (b), respectively. The horizontal axis represents

different 240 FPS video clips [46]. The blue, orange, green, red,

and purple blocks (i.e., from left to right) correspond to the video

sequences with sampling intervals of 5, 10, 20, 35, and 50 from

the same 240 FPS video. Larger sampling intervals correspond to

larger pixel displacements among consecutive frames.

Projection Network (RBPN) [9] and Enhanced Deformable

Convolutional Network (EDVR) [53]. We simulate different

sizes of pixel displacements from ten high-quality 240 FPS

video sequences [46]. As shown in Fig. 3, the peak signal-

to-noise ratios (PSNR) of both RBPN and EDVR decrease

with the larger pixel displacements in input videos.

This work aims to alleviate this deficiency by introduc-

ing auxiliary high-temporal-resolution event data E . The

feed-forward super-resolved process of the proposed uni-

fied event-based model g′ can be formulated as: IHR
t =

g′θ∗({ILR
t }, {E}). Unlike existing VSR models that learn

the temporal correlations by optical flow estimation, the

proposed event-based VSR model explicitly uses high-

frequency event streams at microsecond resolutions for a

more effective utilization of contextual information.

4. Event-based Video Super-resolution

4.1. Overview

To incorporate event streams into VSR, the first issue to

be considered is how to convert asynchronous and sparse

event data (Fig. 4(a)) into fixed-size representations. To

address this issue, we adopt a uniform event aggregation

scheme, which will be detailed in Sect. 4.2.

With the obtained event representations, in Sect. 4.3, we

introduce the network design of the proposed event-based

VSR system. At the heart of the proposed network is an

event-based asynchronous interpolation (EAI) module and a

VSR module. Specifically, EAI acts as an assistant for VSR,

which manipulates raw event representations and feeds the

obtained event-based features to the VSR module.

For the training of the two modules, we propose a self-

supervised asynchronous interpolation loss upon the pre-

dicted consecutive HR frames and HR events, as well as

an event-based hierarchical training strategy, which will be

further explained in Sect. 4.4.
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Figure 4. (a) Visualization of asynchronous raw events. Red and

blue points correspond to the polarity p = 1 and p = −1, respec-

tively. (b) Visualization of the uniform event representation. The

corresponding RGB frame can be found in Fig. 2.

4.2. Preliminaries and Event Representations

We briefly introduce here the event sensing preliminar-

ies and then derive the uniform event representations for

the use of the event-based VSR system. Event cameras are

neuromorphically inspired devices that asynchronously re-

spond to logarithmic image intensity changes in microsec-

onds. Let d denote the intensity change at a specific pixel

(x, y), which can be formulated as:

d = log I(x, y, t)− log I(x, y, t−∆t). (1)

An event E will be triggered whenever d exceeds a specific

threshold C in logarithm. The output format of the event

data E is a tuple containing four elements, defined as:

E = (x, y, t, p), p =

{

1, d ≥ C

−1, d ≤ −C
, (2)

where p is the polarity that denotes the changing direction.

t is the timestamp of the corresponding event. Compared

with conventional camera outputs, one distinctive property

of event data is that each pixel acts independently and asyn-

chronously, as can be observed in Fig. 4(a). Because of this

asynchronous property of event data, it remains a challeng-

ing problem in designing an effective event representation

for different event-based tasks [5, 7].

To process the asynchronous events with the proposed

network, we use here a specialized uniform event aggrega-

tion scheme. As analyzed in Sect. 3, for better extraction

and utilization of temporal dependencies, there should not

be large pixel displacements among successive frames. This

concept of pixel displacement just matches the principle of

event data, where each event corresponds to one single in-

tensity change at a specific pixel. Thus, for the use of events

in VSR, we should guarantee that the number of triggered

events in each consecutive event representation along the

time axis would not differ too much from each other.

Based on this observation, we design a uniform event

aggregation scheme to uniformly distribute event streams.

Assume that in a given time interval ∆t, there is a sequen-

tial list of Ne events, sorted by the time each event occurs.

We first uniformly divide these Ne events into B bins. A

uniform event representation can then be derived by aggre-

gating every Ne

B
events. The set of uniform event represen-

tations during ∆t can be formulated as:

{

Eu(x, y)
}

∆t
=

{

∑ne+
Ne

B

i=ne

pi(x, y)
}

, (3)

where ne = (k−1)Ne

B
, k = {1, 2, . . . , B}. pi(x, y) means

that the corresponding event of pi is triggered at the pixel

(x, y). The visualization of an example uniform event rep-

resentation is shown in Fig. 4(b).

4.3. Network Architecture

The network architecture of the proposed event-based

VSR system is shown in Fig. 5. There are primarily three

components in the proposed architecture, termed as Pre-

and Post-processing Module, Event-based Asynchronous

Interpolation (EAI) Module, and Video Super-resolution

(VSR) Module.

Pre- and Post-processing Module. The pre- and post-

processing module aims to handle the specialized 4-channel

data from the event camera. The imaging system in Color-

DAVIS346 event camera relies on an 8× 6mm CMOS chip

patterned with RGBG filters [49]. As a result, the cap-

tured raw color events generally have 4 event channels (i.e.,

RGBG). In correspondence to the 4-channel events, the as-

sociated color image frames should also have the raw im-

age form with 4 image channels, differing from normal 3-

channel data.

To process these 4-channel events and image frames,

one possible solution is to address this issue on the input

side, i.e., converting 4-channel events and image frames

into 3 channels (RGB) by developing a specialized event-

based ISP system [43, 58]. However, an effective event-

based ISP pipeline is an independent research topic, which

is beyond the focus of this work. Instead, we resort to an-

other more straightforward solution, which is to directly

feed the 4-channel data into the subsequent modules. Then,

on the final output side, we conduct image demosaicking

and gamma correction to transform the 4-channel super-

resolved results into the RGB ones, as done in [36].

Event-based Asynchronous Interpolation (EAI) Mod-

ule. The primary challenge towards an event-based VSR

system is how to incorporate the information contained

in high-temporal-resolution event streams to facilitate the

learning process of the VSR module. To address this is-

sue, we propose here a baseline method for the utilization

of event data. Specifically, based on the analysis in Sect. 3,

we build a specialized EAI module, which aims to utilize

high-frequency asynchronous events to synthesize the cor-

responding consecutive asynchronous frames with uniform

and tiny pixel displacements among each other. The archi-
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Figure 5. Network Architecture of the proposed event-based VSR system, where the pre- and post-processing module is omitted for clarity.

Iti−1
, Iti , and Iti+1

represent the consecutive video frames. {Eu}[ti−1,ti] is the corresponding uniform event representation for the time

interval [ti−1, ti]. L
HR
BAI denotes the HR bi-directional asynchronous interpolation loss, as described in Sect. 4.4. For the sake of clarity,

we also omit the illustration of LLR
BAI , which is similar to LHR

BAI but replaces all the HR ones with the input LR ones.

tecture of the proposed EAI module is shown in the upper

part of Fig. 5.

To further demonstrate the design of EAI, we firstly pro-

pose a mathematical model for event-based asynchronous

interpolation using the uniform event representations in

Sect. 4.2. Assume that Eui
is the i-th uniform event rep-

resentation in a given time interval ∆t. The corresponding

image frames are I(x, y, t) and I(x, y, t−∆t), respectively.

From Eq. 1 and Eq. 3, we can derive the relationship be-

tween the uniform event representations and image frames

as:

I(x, y, t) = I(x, y, t−∆t)

B
∏

i=1

exp
(

CEui
(x, y)

)

, (4)

where B is the number of bins, defined in Eq. 3. C is the

intensity threshold. Eq. 4 is, in fact, an approximated form

that holds except for extreme conditions [32].

Based on Eq. 4, one possible solution to obtain the k-

th asynchronous frame (i.e., the target output of EAI), is

to simply compute I(x, y, t − ∆t)
∏k

i=1 exp(CEui
(x, y))

(k ≤ B) by using a manually selected threshold C. How-

ever, this possible approach of incorporating event informa-

tion is not optimal, since the threshold C is not a constant

[5, 35, 39]. In practice, C would vary with many factors,

including temperature, lighting conditions, and electronic

noise [29]. In particular, the intensity threshold C would

even vary both temporally and spatially from pixel to pixel

[1]. To address this issue, Pan et al. [32] propose to model

the estimation of C as an optimization problem. In their

approach, C is regularized based on image priors like to-

tal variation. However, this iterative optimization process

is computationally expensive, which is not feasible for the

task of VSR.

To alleviate this deficiency, we approximate the burden-

some optimization process by using dynamic convolutional

operations [14, 16]. As shown in Fig. 5, a parameter gener-

ation network receives the exponential uniform event repre-

sentations as inputs and produces the corresponding param-

eters for the dynamic convolutional layers, which are then

used to convolve with image frames to generate the event-

based asynchronous frames. In this way, the per-pixel value

of C is learned adaptively in a data-driven manner, requir-

ing only one single network forward pass for estimation in

inference. Also, the proposed approach has the additional

benefit of VSR-orientated estimation of the intensity thresh-

old C. Specifically, in training, the dynamic convolutional

part will be jointly optimized with the rest of the whole

event-based VSR network. As a result, C can be learned

in a VSR-orientated manner.

In summary, the proposed EAI module receives uniform

event representations and image frames as inputs. The out-

puts of EAI are directly forwarded to the subsequent VSR

module to facilitate the utilization of inter-frame temporal

information. The reverse dynamic convolutional operation

in Fig. 5 is designed for the use in the loss functions, which

will be detailed in Sect. 4.4.

Video Super-resolution (VSR) Module. The VSR module

7776



in the proposed event-based VSR system is designed pri-

marily based on a state-of-the-art model termed as RBPN

[9], but removes the optical flow inputs. Here, we need to

clarify that the proposed event-based VSR system can be

equally applicable to many existing VSR networks. Con-

sidering that RBPN is currently one of the state-of-the-art

VSR methods, we use the architecture of RBPN as a prelim-

inary example to validate the effectiveness of the proposed

event-based system. As illustrated in Fig. 5, the RBPN-

based VSR module receives the asynchronous outputs of

the EAI module and also the synchronous video frames as

inputs. The output of the VSR module is the target super-

resolved video frame.

4.4. Loss Function and Training Strategy

Loss Function. The proposed loss function comprises

three components, termed as Low-resolution Bi-directional

Asynchronous Interpolation (LR-BAI) loss, Self-supervised

High-resolution Interpolation (HR-BAI) loss, and Mean-

square-error (MSE) VSR loss. Specifically, LR-BAI aims

to regularize the EAI module, while both the HR-BAI loss

and MSE loss are designed to regularize the VSR module.

Derived from the input LR video frames ILR, Low-

resolution Bi-directional Asynchronous Interpolation (LR-

BAI) loss is devised in correspondence to the proposed EAI

module on the LR side. LR-BAI loss aims to regularize the

parameter generation network in EAI to produce the feasi-

ble parameters for dynamic convolutions, which are further

used to generate event-based asynchronous LR frames that

can facilitate the learning in VSR module.

Specifically, given a set of successive LR frames {ILR
ti

}
and also the uniform event representations {Eu}

LR
[ti−1,ti]

in

the corresponding time intervals, the proposed LR-BAI loss

can then be formulated as:

LLR
BAI =

∑

i

(
∥

∥

∥
fθ∗

(

ILR
ti−1

, {Eu}
LR

[ti−1,ti]

)

− ILR
ti

∥

∥

∥
+

∥

∥

∥
f−1
θ∗

(

ILR
ti

, {Eu}
LR

[ti−1,ti]

)

− ILR
ti−1

∥

∥

∥
),

(5)

where fθ∗ is the dynamic convolutional operation. Accord-

ing to the property of event data, with the optimal adap-

tively generated parameters θ∗ from {Eu}
LR
[ti−1,ti]

, the LR

frame ILR
ti−1

at a specific timestamp can be convolved into

the frame ILR
ti

at the next timestamp, which inspires the de-

sign of the proposed loss function. Furthermore, we impose

a bi-directional interpolation constraint in Eq. 5, where the

aforementioned transformation should be conducted in both

directions via a pair of dynamic convolution fθ∗ and reverse

dynamic convolution f−1
θ∗ , as shown in Fig. 5.

Also, a Self-supervised High-resolution Interpolation

(HR-BAI) loss is proposed to regularize the VSR module,

based on the predicted HR video frames and HR event data.

The idea of HR-BAI is to encourage the generated neigh-

boring HR frames to be transformed into each other with

HR events, as shown in Fig. 5. Specifically, the mathemati-

cal model of HR-BAI, termed as LHR
BAI , has a similar form

to that of LR-BAI in Eq. 5, but replaces all the LR ones with

the predicted HR ones.

In addition to LR-BAI and HR-BAI loss terms, we also

use a mean-square-error (MSE) loss like other VSR algo-

rithms. The total loss for the event-based VSR system is

a weighted sum of these three loss terms, formulated as

Ltotal = LMSE + αLLR
BAI + βLHR

BAI , where α and β are

balancing factors.

Hierarchical Training Strategy. We design a hierarchical

training strategy to train the proposed multi-module event-

based VSR system, as done in the multimodal learning

method of [54]. Specifically, for the first K epochs, we

train the EAI module and the VSR module separately with

the corresponding MSE loss and LR-BAI loss. This de-

sign aims to avoid the situation where the optimizations

of the EAI and VSR modules compete with each other

at the initial stage. Then, in the following K/2 epochs,

we jointly optimize the entire system with the loss terms

LMSE+αLLR
BAI , such that the information contained in the

high-frequency event data is utilized to facilitate the learn-

ing of the target VSR process. Afterwards, the proposed

VSR system is trained for another K/2 epochs with the to-

tal loss LMSE + αLLR
BAI + βLHR

BAI to further improve the

VSR performance with the self-supervised loss term.

5. Experiments

5.1. Experimental Settings

Datasets. We train and primarily evaluate the proposed

event-based system on the first and the only real color event

dataset, the Color Event Camera Dataset (CED). The CED

dataset contains a set of color event streams and video se-

quences in real scenes, as illustrated in Fig. 6(a). More

details of the CED dataset can be found in [42]. Also,

we try to build an open event-based VSR dataset by us-

ing the event simulator [34, 6]. In particular, the simula-

tion of color events requires HF video inputs, where exist-

ing VSR datasets do not meet this requirement. Therefore,

we first use an iPhone 11 to capture 240 FPS videos with

fast motions and challenging textures (Fig. 6(b)) and then

apply the event simulator [34, 6] with the setting of random

thresholds to generate the corresponding simulated events.

Specifically, the set of positive and negative contrast thresh-

olds for each sequence is randomly sampled from a normal

distribution, according to the measurements in [25].

Since the variations of the threshold and the distributions

of the event data in the real CED dataset are much closer

to the practical situation, we primarily use this dataset to

evaluate the performance of the proposed system in real-
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Table 1. Quantitative results (PSNR/SSIM) of the proposed event-based system (E-VSR) and other methods on the CED dataset for 2×.

Clip Name SPMC* [48] DUF* [18] SOF [52] TDAN [50] RBPN [9] E-VSR (Ours)

people dynamic wave 24.87 / 0.7915 32.02 / 0.9333 33.32 / 0.9360 35.83 / 0.9540 40.07 / 0.9868 41.08 / 0.9891

indoors foosball 2 23.16 / 0.7548 30.55 / 0.9262 30.86 / 0.9253 32.12 / 0.9339 34.15 / 0.9739 34.77 / 0.9775

simple wires 2 22.60 / 0.7789 30.08 / 0.9387 30.12 / 0.9326 31.57 / 0.9466 33.83 / 0.9739 34.44 / 0.9773

people dynamic dancing 24.44 / 0.7973 31.64 / 0.9369 32.93 / 0.9388 35.73 / 0.9566 39.56 / 0.9869 40.49 / 0.9891

people dynamic jumping 24.42 / 0.7886 31.57 / 0.9334 32.79 / 0.9347 35.42 / 0.9536 39.44 / 0.9859 40.32 / 0.9880

simple fruit fast 29.87 / 0.8575 37.46 / 0.9442 37.22 / 0.9390 37.75 / 0.9440 40.33 / 0.9782 40.80 / 0.9801

outdoor jumping infrared 2 19.35 / 0.6463 25.33 / 0.8162 26.67 / 0.8746 28.91 / 0.9062 30.36 / 0.9648 30.70 / 0.9698

simple carpet fast 25.91 / 0.6883 31.43 / 0.8811 31.83 / 0.8774 32.54 / 0.9006 34.91 / 0.9502 35.16 / 0.9536

people dynamic armroll 24.41 / 0.7885 31.38 / 0.9311 32.79 / 0.9345 35.55 / 0.9541 40.05 / 0.9878 41.00 / 0.9898

indoors kitchen 2 23.45 / 0.7732 29.92 / 0.9273 29.61 / 0.9192 30.67 / 0.9323 31.51 / 0.9551 31.79 / 0.9586

people dynamic sitting 23.56 / 0.7842 30.62 / 0.9331 32.13 / 0.9367 35.09 / 0.9561 39.03 / 0.9862 39.97 / 0.9884

Average PSNR/SSIM 24.19 / 0.7681 31.09 / 0.9183 31.84 / 0.9226 33.74 / 0.9398 36.66 / 0.9754 37.32 / 0.9783

Note: * denotes that values are obtained from the pre-trained model released by the authors, since the official training code is unavailable.

Table 2. Quantitative results of the proposed E-VSR and other

methods on the simulated color event dataset for the scale of 2×.

VSR Methods SPMC* [48] DUF* [18] SOF [52]

Average PSNR/SSIM 21.98 / 0.7581 28.34 / 0.9081 28.56 / 0.9135

VSR Methods TDAN [50] RBPN [9] E-VSR (Ours)

Average PSNR/SSIM 29.86 / 0.9236 31.57 / 0.9526 32.10 / 0.9557

scene situations. We randomly split the sequences in CED

into training, validation and testing sets, and report the cor-

responding comparison results against the state-of-the-art

models by retraining them with the same setting.

Implementation Details. The event-based system is

trained on two NVIDIA Tesla V100 GPUs with a mini-

batch size of 2 per GPU. In our implementation, we set

α, β, and K as 0.1, 0.01, and 100, respectively. For uni-

form event representations, the number of bins B is set to

2. During training, we adopt the Adam optimizer [22]. The

learning rates for both the EAI and VSR modules are set to

0.0001. We downscale the HR video frames for 2× with

bicubic interpolation to produce the LR input frames. In

evaluations, following the settings in [9, 18, 48], we exclude

8 pixels near the image boundary and use the RGB channels

for measurements.

5.2. Experimental Results

Comparison with State-of-the-art Methods. We com-

pare the proposed VSR system (E-VSR) with several state-

of-the-art VSR methods, including SPMC [48], DUF [18],

RBPN [9], SOF [52], and TDAN [50]. Specifically, we use

the authors’ official implementations to retrain the models

of [9, 52, 50] on the CED dataset. For [48, 18], since the

official training code is not available, we report the results

by using the authors’ provided models.

Quantitative comparison results on the CED dataset and

the simulated dataset for the upsampling factor of 2 are

shown in Tab. 1 and Tab. 2, respectively. Essentially, most

of the state-of-the-art VSR methods implicitly or explic-

itly utilize estimated optical flow to capture motion cues,

Table 3. Quantitative results of the proposed E-VSR and other

VSR methods for the scale of 4×, corresponding to Tab. 1.

VSR Methods SPMC* [48] DUF* [18] SOF [52]

Average PSNR/SSIM 18.32 / 0.4831 24.43 / 0.8177 27.00 / 0.8050

VSR Methods TDAN [50] RBPN [9] E-VSR (Ours)

Average PSNR/SSIM 27.88 / 0.8231 29.80 / 0.8975 30.15 / 0.9053

(a)

(b)

Figure 6. Examples of (a) CED dataset and (b) simulated dataset.

so as to incorporate multi-frame contextual information in

the process of VSR. The proposed event-based VSR sys-

tem, however, explicitly learns to exploit high-temporal-

resolution and high-dynamic-range event streams for VSR,

making it possible to capture fast and accurate motions for

more effective utilization of inter-frame temporal informa-

tion. As shown in Tab. 1 and Tab. 2, the proposed E-VSR

outperforms other approaches in terms of PSNR and SSIM,

which is consistent with our assumption. Tab. 3 shows the

corresponding quantitative comparison results for 4× up-

scaling on the CED dataset, where the proposed E-VSR also

achieves the state-of-the-art VSR performance.

Fig. 7 shows the qualitative results of different methods,

corresponding to Tab. 1. We zoom in on the same region

(i.e., red and blue frames) to observe the details. The pro-

posed event-based VSR system, as shown in Fig. 7, recov-

ers finer and more accurate details and textures, such as the

yellow edges in the first line and also the black wires in

the second line. In Fig. 8, we also try to explain this favor-

able qualitative performance by providing the visualizations

of the corresponding uniform event representations used in

the proposed event-based system. The event streams, as can

be observed from the zoom-in regions, have a higher event
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Table 4. Ablation study of the proposed modules, loss terms, and the uniform event representations with different numbers of bins.

Video Super-resolution

(VSR) Module

Event-based Asynchronous Interpolation (EAI) Module Uniform Event Representation
Average PSNR/SSIM

[LR-BAI Loss] [HR-BAI Loss] [Dynamic Conv] [Bins (B) = 2] [Bins (B) = 3]
√

× × × × × 36.66 / 0.9754
√ √

×
√ √

× 37.04 / 0.9771
√ √ √

×
√

× 36.98 / 0.9773
√ √ √ √

×
√

37.18 / 0.9782
√ √ √ √ √

× 37.32 / 0.9783

TDAN

RBPN

E-VSR (Ours)

GT

DUF

SOFSPMC

Bicubic

TDAN

RBPN

E-VSR (Ours)

GT

DUF

SOFSPMC

Bicubic

Figure 7. Qualitative VSR results of the proposed E-VSR and other approaches [48, 18, 52, 50, 9] on the CED dataset for the scale of 2×.

Figure 8. Visualizations of the uniform event representations, cor-

responding to the qualitative VSR results shown in Fig. 7.

density for the textural and challenging regions, which pos-

sibly contributes to the establishment of more accurate cor-

respondences among consecutive frames.

Abalation Study. We perform extensive ablation studies

to further validate the effectiveness of the proposed event-

based VSR system. Tab. 4 shows the results of the abla-

tion studies on each individual module and loss function.

Specifically, by using the event-based asynchronous inter-

polation module and the LR bi-directional interpolation loss

for training, the corresponding model outperforms the one

with only the VSR module by about 0.4 dB in PSNR on

average. Furthermore, by combining the proposed self-

supervised HR interpolation loss to regularize the outputs

of VSR, the event-based model can gain further boost by

about 0.3 dB in terms of average PSNR.

We also conduct more ablation studies on the design of

dynamic convolutions in the EAI module and the number of

bins in the uniform event representation in Tab. 4. It can be

observed that having more bins does not necessarily lead to

superior performance, possibly due to the influence of event

noise [5, 19].

6. Conclusions

In this paper, we propose a novel video super-

resolution (VSR) scheme that explicitly looks into the role

of temporal frequency and utilizes Event Cameras to en-

hance VSR. The proposed approach exploits the high-

frequency and event-aware asynchronous property of event

data to reconstruct successive frames with tiny and uniform

pixel displacements, leading to the establishment of precise

correspondence among consecutive frames in a given video

context. Moreover, to address the issue of limited event

data, we make an open simulated color event dataset with

the event simulator, which will be released for further re-

search. Experimental results demonstrate that the proposed

approach achieves performance superior to the state of the

art on real-world and synthetic datasets. The proposed sys-

tem also sheds light on the potential of using both event and

RGB sensors on mobile and embedded devices for raising

low-level vision performance, which we also look forward

to exploring in our future work.
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