
Practical Single-Image Super-Resolution Using Look-Up Table

Younghyun Jo Seon Joo Kim

Yonsei University

Abstract

A number of super-resolution (SR) algorithms from in-

terpolation to deep neural networks (DNN) have emerged to

restore or create missing details of the input low-resolution

image. As mobile devices and display hardware develops,

the demand for practical SR technology has increased. Cur-

rent state-of-the-art SR methods are based on DNNs for bet-

ter quality. However, they are feasible when executed by

using a parallel computing module (e.g. GPUs), and have

been difficult to apply to general uses such as end-user soft-

ware, smartphones, and televisions. To this end, we propose

an efficient and practical approach for the SR by adopting

look-up table (LUT). We train a deep SR network with a

small receptive field and transfer the output values of the

learned deep model to the LUT. At test time, we retrieve

the precomputed HR output values from the LUT for query

LR input pixels. The proposed method can be performed

very quickly because it does not require a large number of

floating point operations. Experimental results show the ef-

ficiency and the effectiveness of our method. Especially, our

method runs faster while showing better quality compared

to bicubic interpolation.

1. Introduction

The goal of single-image super-resolution (SR) is to

generate high-resolution (HR) results with sufficient high-

frequency details from the corresponding low-resolution

(LR) input image. Interpolation based methods were dom-

inant early on, where the missing pixel values were esti-

mated by the weighted average of the nearby pixels with

known values. Some examples of the interpolation based

approach include bilinear, bicubic [19], and Lanczos. The

methods are intuitive and fast, however, they hardly restore

missing details as the same interpolation weights are ap-

plied regardless of the image structure. As a result, the re-

sults of interpolation based SR look overly blurry.

To create HR images with better quality, diverse ap-

proaches have been proposed. Example based methods

exploit a database of LR-HR image patch pairs generated

from a number of external training images [3, 11, 10],

Nearest

Bilinear

Bicubic

Ours-F
Ours-S

Ours-V

FSRCNN

CARN-M

RRDB

NE+LLE

Zeyde et al.

ANR

A+

24

25

26

27

28

29

1 10 100 1000 10000 100000

P
S

N
R

 (
d

B
)

Runtime (ms)

Figure 1. PSNR comparison on Set14 testset for ×4 SR

and runtime is measured for generating 1280 × 720 out-

put image on a Samsung Galaxy S7 smartphone (except for

sparse coding based methods). We compare our method

with several interpolation based methods (square), sparse

coding based methods (triangle), and deep learning based

methods (circle). Our methods show faster or comparable

runtime compared to bicubic interpolation while achieving

much better PSNR quality.

or exploit self-similarity from a test image itself [12, 47].

One downside is that searching for the nearest neighbor

patch is time consuming [5]. Sparse coding based meth-

ods [48, 50, 42, 43], which learn a compact representation

of the patches, have also been popular and showed promis-

ing results. However, computing the sparse representation

of the input patch requires a high computational cost.

As deep learning showed powerfulness in various com-

puter vision tasks, attempts to use deep neural networks

(DNN) for SR exploded [8, 20, 9, 22, 26, 2, 13, 53, 52,

44, 25, 36, 31, 33]. They achieve state-of-the-art SR perfor-

mance in terms of peak signal-to-noise ratio (PSNR), how-

ever, it comes with a number of multiplication operations

from numerous convolutional layers. Therefore, a special

parallel computing device such as graphic processing units

(GPU) or tensor processing units (TPU) is essential to han-

dle high computational complexity and memory consump-

tion. The DNN based solutions are difficult to apply in prac-

tice without the special hardware, and this is one of the ma-

691



jor obstacles for practical SR.

Despite the emergence of a variety of approaches for SR,

the interpolation based methods are still commonly used as

the base algorithm in image processing software such as

Photoshop, Matlab, and OpenCV, because they are simple

and practical. While much effort has been made to improve

the visual quality of SR, relatively little consideration has

been paid for the feasibility of practical SR to be applied

in end-user software and hardware like consumer cameras,

surveillance cameras, mobile phones, and televisions which

have a limited number of calculation units. Recently, run-

ning deep models on mobile devices is becoming practical

thanks to GPU attached mobile processors and many efforts

in optimizations [16]. Still, as another line of study, it is im-

portant to develop practical methods for more general situ-

ations when GPUs are not available.

To this end, we propose a practical single-image SR

method which runs faster or comparably compared to bicu-

bic interpolation while achieving much better quality. We

employ a look-up table (LUT) approach, which is com-

monly used in embedded systems to accelerate computa-

tion. For a complicated function or a series of computa-

tions, if we compute output values once and put them in a

LUT, then all we need to do afterward is to just retrieve the

values without performing the computation again. There-

fore, LUTs are effective when the computation time is much

longer than the memory access time. In image processing,

LUTs have long been used in a variety of color transfer tasks

and within the standard profiles of the International Color

Consortium because of their excellence [34]. In addition,

LUTs have been used in camera imaging pipeline due to

the hardware friendly property [17]. Similarly, LUTs can

accelerate the overall runtime of an SR algorithm by just

retrieving the precomputed outputs from the memory, be-

cause a series of floating point operations is much slower

than memory access.

In this paper, we train a deep SR network under certain

constraints to map output values of the learned deep model

to a LUT. We constrain the receptive field (RF) of a deep SR

network to be small (up to 4 pixels). With the small RF, we

can compute all possible output values of the learned net-

work as the output value is determined only depending on a

small number of input values. After the training, the output

values are saved into the LUT (up to 4D LUT, same as RF

size). We name the built LUT as SR-LUT. In practice, our

SR-LUTs have uniformly sampled points of values. There-

fore, at test time, we first look-up the precomputed values

of the nearby sampling points and they are properly merged

by an interpolation technique for the final output. In partic-

ular, for the efficiency in 4D LUT, we extend the tetrahedral

interpolation in 3D space to 4D. In Fig. 1, we compare our

method with several SR methods. Compared to bicubic in-

terpolation, our very fast and fast models with RF size 2 and

3 (Ours-V and Ours-F respectively) run faster and our slow

model with RF size 4 (Ours-S) runs in comparable time,

and all of our models achieve better PSNR value. Also, our

methods have comparable PSNR values with faster speed

than sparse coding based methods (triangle). Although deep

learning based methods (circle) obviously achieve better ac-

curacy, they have difficulty in achieving faster runtime be-

yond a certain level, restricting their practical use.

In summary, the contributions of this paper are:

• We introduce a simple and novel method for fast and

practical single-image SR by transferring input and out-

put values from a learned deep SR model to a LUT (SR-

LUT). To the best of our knowledge, this is the first time

to demonstrate the benefits of LUTs for single-image SR.

• Our method is inherently faster because we just retrieve

the precomputed values from the LUT on memory, in-

stead of executing heavy computations composed of a

large number of floating point multiplication and addition

operations as in the previous SR methods. We verify the

efficiency of our method in experiments on a smartphone,

and our fast model runs faster than bicubic interpolation.

• Our method can be easily implemented on both software

and hardware as a memory array, without a special com-

puting module such as GPUs. We believe that this merit

will enable our approach to be used in diverse practical

SR applications.

2. Related Work

2.1. Fast SuperResolution

As sparse coding based methods showed good SR per-

formance [48, 50, 4], several methods for running those ap-

proaches faster have been introduced. In ANR [42] and A+

[43], the authors computed a projection matrix, which maps

LR input feature to the HR output patch, in advance from

a learned sparse dictionary. At test time, the HR output is

obtained by using the precomputed projection matrix. This

approach improved the speed by 5-10 times from the base-

line method [50]. Specifically, ANR takes more than a sec-

ond for generating 1280×720 output image from 320×180
input image on our desktop computer (Intel Xeon CPU E3-

1230 v3 @ 3.30GHz with 32GB RAM).

RAISR [37] learned a set of filters for the SR task with

low computational complexity and achieved faster runtime

than the previous works. However, the method is not fast as

the interpolation because the method computes image gra-

dient and singular value decomposition for each patch of the

input image for hash table keys. In addition, there are also

other types of fast SR methods [35, 38, 41].

While there were efforts for fast SR, the methods still

take a long time compared to bicubic interpolation, which

is executed in almost constant time. In contrast, our LUT

based approach is inherently faster than the above methods

692



C
o
n
v
2
d
, 

R
eL

U

2×2

64

1×1

64

C
o
n
v
2
d
, 

R
eL

U

C
o
n
v
2
d

1×1𝑟2
…

𝐼0 𝐼1𝐼2 𝐼3
𝑉0𝑉1𝑉2𝑉3

…

𝑉0 𝑉1𝑉2 𝑉3
𝐼0 𝐼1 𝐼2 𝐼3
𝐼0 𝐼1 𝐼2 𝐼3

…D
ep

th
 t

o
 s

p
ac

e
(a) Training.

× × ×𝑟2
…

𝐼0 𝐼1𝐼2 𝐼3
𝑉0𝑉1𝑉2𝑉3

…
SR

net

𝑉0 𝑉1𝑉2 𝑉3
LUT[𝐼0][𝐼1][𝐼2][𝐼3][0][0]

LUT[𝐼0][𝐼1][𝐼2][𝐼3][1][1]

…

SR-LUT

Input

value

Output

coordinate

(b) Transferring.

𝑃00 𝑃10

𝑃01 𝑃11
SR-LUT

Interpolated

output

Look

up 𝑉0 𝑉1𝑉2 𝑉3

𝐼0𝐼1

𝐼0 𝐼1𝐼2 𝐼3

𝑤2 𝑤1
𝑤0

(c) Testing.

Figure 2. The overview of our method. The figure is depicted for ×2 SR (r = 2) and RF size 4 with 2 × 2 convolutional

kernel (Ours-S). (a) A small deep SR network is trained with the limited RF size, to transfer the outputs to a LUT after the

training. 2 × 2 kernel (solid line) covers 3 × 3 area (dotted line) by rotational ensemble (Sec. 3.1), and green colored 4

pixels are the output of blue colored input pixel. (b) The output values of the learned network are saved to 4D SR-LUT at the

location indexed by the corresponding 4 input values. (c) At test time, SR is performed solely using the SR-LUT.

as it only requires very little computation for generating the

output. As shown in Fig. 1, our methods run faster or are as

fast as bicubic interpoloation on a mobile device. Note that

researches combining DNN and LUT for efficiency have

been emerging, such as in photo enhancement [49].

2.2. RealTime Deep SuperResolution

Real-time SR algorithms based on deep learning with

GPUs have also been proposed. In early DNN based SR

works, faster runtime is achieved by using a small number

of convolutional layers. ESPCN [39] and FSRCNN [9] used

3 and 8 convolutional layers respectively with small feature

dimension size. However, it is difficult to achieve state-of-

the-art performance by using a small model capacity.

Following researches have focused on reducing large

models while minimizing the performance degradation [15,

51, 28]. CARN-M [2] reduced the number of parameters

and multiplication-addition operations of their original big

model CARN by replacing the conventional convolutions

with group convolutions. PAMS [24] quantized original full

precision 32bit SR models to 8 or 4bit for the model com-

pression. BSRN [46] further quantized the original model

to binary precision. In addition, FALSR [7], ESRN [40] and

TPSR [23] employ neural architecture search algorithms to

find fast and accurate lightweight deep SR networks from

given efficient convolutional building blocks.

As we have seen, there have been a variety of efforts

toward practical SR. Some of the methods are executed in

real-time on CPUs, however, none has targeted to run on

limited computing resources such as mobile devices. As

they consist of convolutional layers that require a good

number of floating point multiplication and addition opera-

tions, the runtime will increase in devices with limited com-

puting resources. In practice, FSRCNN takes 77ms on our

desktop and 371ms on a Samsung Galaxy S7 smartphone.

In contrast, our proposed SR-LUTs do not require such

computational overhead, and our fast model takes 34ms

on the smartphone without too much degradation in per-

formance. Our method can be an appropriate choice for

devices with low computational capability where the deep

methods are difficult to be applied.

3. Method

The overview of our method is shown in Fig. 2 To obtain

an SR-LUT, we first train a lightweight deep SR network

with a small RF size (Fig. 2a), and transfer the output values

of the deep model to the SR-LUT (Fig. 2b). At test time,

for an input LR patch, corresponding HR pixel values are

obtained from the SR-LUT (Fig. 2c).

For a practical SR-LUT, the RF size of the deep model

should be small because the size of SR-LUT increases ex-

ponentially as the RF size increases. Note that, it is very dif-

ficult to exploit existing deep models to LUT as the range of

possible input and output values is too large. In Table 1, we

estimate the size of SR-LUTs for upscaling factor r when

storing 8bit input and output values. For example, when the

RF size is 2 and r = 4, the full LUT size is calculated as

(28)2 × 42 × 8bit = 1MB because (28)2 LUT entries are

needed (28 bins for 8bit input value) and each entry has 42

number of 8bit output values. Similarly, the full SR-LUTs

take 256MB, 64GB, and 16TB when the RF size is 3, 4, and

693



RF LUT Full size Sampled size

1 pixel 1D 4KB 272B

2 pixels 2D 1MB 4.516KB

3 pixels 3D 256MB 76.766KB

4 pixels 4D 64GB 1.274MB

5 pixels 5D 16TB 21.665MB

n pixels nD (28)n × r
2B (24 + 1)n × r

2B

Table 1. SR-LUT size estimation when storing 8bit output

value for 8bit input image with upscaling factor r = 4. Full

LUT has 28 entries for each input pixel and sampled LUT

size is calculated for 24 entries. Sampled LUT is necessary

when RF size is greater than or equal to 3 for practicality.

5 pixels respectively. Because the full SR-LUT size is too

large when the RF size is greater than or equal to 3, we use

a sampled LUT in practice. We empirically found that the

RF size should be less than or equal to 4 pixels for practi-

cal implementation because it affects the runtime. We set

the RF size as 2, 3, and 4 for Ours-V, Ours-F, and Ours-S

respectively. Ours-V and Ours-F are faster than Ours-S, but

the visual quality of Ours-S is better. The following con-

tents in this section will be explained based on RF size 4

with 2× 2 convolutional kernel (Ours-S configuration), but

other RF sizes are also applicable. Due to the limited RF

size, each color channel has to be processed independently.

3.1. Training Deep SR Network

Network Architecture Because the network is con-

strained by a very small RF size, a large number of convo-

lution layers does not increase the accuracy boundlessly but

converges faster. Therefore, we make use of a deep network

consisting of 6 convolutional layers followed by ReLU ac-

tivation except for the last layer (Fig. 2a). For the RF size

4, the kernel size of the first layer is set to 2× 2 and that of

the rest layers is set to 1× 1. A different kernel shape (e.g.

1×4) can be used for the first layer. However, 2×2 shape is

the most appropriate as it takes into account the most 4 rele-

vant adjacent input pixels, and it shows better visual quality

in experiments (Sec. 4.3). The number of features in the

convolutional layers is set to 64 and that of the last layer

is set to r2. The output blob of the network is reshaped to

the desired size through the depth to space operation [39].

We note that the number of layers does not affect the final

runtime as the deep model is only used for building the cor-

responding SR-LUT.

Rotational Ensemble Training In general, the perfor-

mance of the SR task can be improved when more pixels

are considered. However, our RF size 4 (2× 2) is too small

for accurate HR image estimation. For example, the RF size

of FSRCNN [9] is 169 pixels (13×13) and even bicubic in-

terpolation exploits 16 (4 × 4) nearest neighbor pixels. In

order to exploit more area in LR input, we use a rotational

ensemble in the training phase. For our deep network, 4 ro-

tational ensemble with 0, 90, 180, and 270 degrees covers

total 9 (3× 3) LR pixels (blue dotted area shown in Fig. 2a

with respect to blue colored reference pixel). Each output

from the 4 rotations is summed up for generating the final

output. Formally, the final output ŷi can be expressed as

follows:

ŷi =
1

4

3
∑

j=0

R−1
j

(

f
(

Rj(xi)
)

)

, (1)

where xi is LR input patch, f is the deep SR network, Rj

is image rotation operation to j× 90 degree, and R−1
j is the

reverse rotation operation. The SR network f is trained by

using a pixel reconstruction loss:

∑

i

ℓ(ŷi, yi), (2)

where yi is GT target patch and ℓ is the mean squared error.

The rotational self-ensemble strategy has been used to

maximize the accuracy only at test time in previous deep SR

works [26, 52]. We apply this strategy further at the training

time to improve the performance while having a small RF

size. This is very effective for our directional kernel shape,

which helps to achieve good results. Even the RF is too

small compared to other SR methods, we can effectively

consider more area for accurate SR without increasing the

LUT size through this strategy.

3.2. Transferring to LUT

After training the deep SR network, we build a 4D SR-

LUT for the RF size 4 (Fig. 2b). Note that Fig. 2b shows

a 6D LUT but we call it 4D LUT by only considering the

input value dimensions. For the full LUT, we compute the

output values of the learned deep network for all possible

input values and save them to the LUT. The input value is

used as the index of the LUT, and the corresponding out-

put value is stored at that location. In practice, we use a

uniformly sampled LUT as the size of the full LUT is very

large (64GB). Specifically, we uniformly divide the origi-

nal input space of 28 bins (0-255 for 8bit input image) into

24+1 bins. In other words, we sample the points by equally

spacing the original input space with the sampling inter-

val size of 24. As a result, the uniformly sampled 4D SR-

LUT has the output values at input points of 0, 16, ..., 240,

and 255 (the last point) for all dimensions, and the size is

reduced to 1.274MB (4D LUT[256][256][256][256] is re-

duced to LUT[17][17][17][17]). At test time, the values of

nonsampled points are interpolated by using the values of

the nearest sampled points. We have tested the sampling

interval range from 22 to 28 and verified the original perfor-

mance is almost maintained until the interval size of 24 in

experiments (Sec. 4.3).

694



LUT Interpolation Multiplications Comparisons

2D
Bilinear 4 0

Triangular 3 1

3D
Trilinear 11 0

Tetrahedral 4 2.5

4D
Tetralinear 26 0

4-simplex 5 4.5

Table 2. The number of multiplication and comparison op-

erations of linear interpolation and tetrahedral interpolation

equivalents for multidimensional LUTs. We use the latter

approach as it takes overall faster runtime in practice.

For better accuracy, nonuniform sampling techniques

have been often used in color transfer tasks [27, 32]. How-

ever, the overall runtime increases as they require extra

computation and comparison to locate the index of the near-

est sampled points. This contrasts with our goal of a fast

and practical SR approach. Therefore, we use the uniform

sampling for ease of implementation and faster runtime.

3.3. Testing Using SRLUT

Once the SR-LUT is built, SR is performed solely with

the SR-LUT (Fig. 2c). In case of using a full LUT, the out-

put HR value is directly retrieved from the LUT. On the

other hand, in case of using a sampled LUT, an appropri-

ate interpolation technique is required to generate the out-

put value by using the values of the nearest sampled points.

To index the nearest sampled points, we simply take most

significant bits (MSB) of the input pixel value as we use

equally sampled LUT. This can be just done by masking

and shifting the bits. For the 8bit input pixel value, we take

4 MSBs then it locates one of the nearest sampled points.

To interpolate the values of the found nearest sam-

pled points, one can use linear interpolation as a baseline

method. Namely, bilinear, triliear, tetralinear, and pentalin-

ear interpolation for 2D, 3D, 4D, and 5D SR-LUTs respec-

tively. Instead, we use well known tetrahedral interpolation

approach [18] as it is faster than trilinear interpolation for

3D LUT. Tetrahedral interpolation calculates the weighted

sum of the values of bounding 4 vertices of a tetrahedron

in 3D space. In Table 2, we compare the number of op-

erations of linear interpolation and tetrahedral interpolation

equivalents for multidimensional LUTs. For 3D LUT, tri-

linear interpolation needs at least 11 multiplications while

tetrahedral interpolation only needs 4 multiplications with

2.5 comparison operations (if-else). The overall runtime

of tetrahedral interpolation including the comparison oper-

ations is faster than trilinear interpolation in practice [18],

and it is also same to other dimensions.

For easy understanding of the 4D equivalent of tetra-

𝑃00=LUT[1][3] 𝑃10= LUT[2][3]

𝑃01= LUT[1][4] 𝑃11= LUT[2][4]

𝑉0 𝑉1𝑉2 𝑉3

𝐼0=24𝐼1=60

𝐼0 𝐼1𝐼2 𝐼3

𝑤2=8 𝑤1=4

𝑤0=4

Figure 3. An example of triangular interpolation for a sam-

pled 2D LUT with the sampling interval of 24. For query

input I0 = 24 and I1 = 60, the nearest points P00, P01,

and P11, and the corresponding weights w0, w1, and w2 are

determined. The output value is calculated as the weighted

sum. The same principle applies to 3D and 4D LUTs.

Condition w0 w1 w2 w3 w4 O1 O2 O3

Lx>Ly>Lz>Lt W−Lx Lx−Ly Ly−Lz Lz−Lt Lt P1000 P1100 P1110

Lx>Ly>Lt>Lz W−Lx Lx−Ly Ly−Lt Lt−Lz Lz P1000 P1100 P1101

Lx>Lt>Ly>Lz W−Lx Lx−Lt Lt−Ly Ly−Lz Lz P1000 P1001 P1101

Lt>Lx>Ly>Lz W−Lt Lt−Lx Lx−Ly Ly−Lz Lz P0001 P1001 P1101

Lx>Lz>Ly>Lt W−Lx Lx−Lz Lz−Ly Ly−Lt Lt P1000 P1010 P1110

Lx>Lz>Lt>Ly W−Lx Lx−Lz Lz−Lt Lt−Ly Ly P1000 P1010 P1011

Lx>Lt>Lz>Ly W−Lx Lx−Lt Lt−Lz Lz−Ly Ly P1000 P1001 P1011

Lt>Lx>Lz>Ly W−Lt Lt−Lx Lx−Lz Lz−Ly Ly P0001 P1001 P1011

Lz>Lx>Ly>Lt W−Lz Lz−Lx Lx−Ly Ly−Lt Lt P0010 P1010 P1110

Lz>Lx>Lt>Ly W−Lz Lz−Lx Lx−Lt Lt−Ly Ly P0010 P1010 P1011

Lz>Lt>Lx>Ly W−Lz Lz−Lt Lt−Lx Lx−Ly Ly P0010 P0011 P1011

Lt>Lz>Lx>Ly W−Lt Lt−Lz Lz−Lx Lx−Ly Ly P0001 P0011 P1011

Ly>Lx>Lz>Lt W−Ly Ly−Lx Lx−Lz Lz−Lt Lt P0100 P1100 P1110

Ly>Lx>Lt>Lz W−Ly Ly−Lx Lx−Lt Lt−Lz Lz P0100 P1100 P1101

Ly>Lt>Lx>Lz W−Ly Ly−Lt Lt−Lx Lx−Lz Lz P0100 P0101 P1101

Lt>Ly>Lx>Lz W−Lt Lt−Ly Ly−Lx Lx−Lz Lz P0001 P0101 P1101

Ly>Lz>Lx>Lt W−Ly Ly−Lz Lz−Lx Lx−Lt Lt P0100 P0110 P1110

Ly>Lz>Lt>Lx W−Ly Ly−Lz Lz−Lt Lt−Lx Lx P0100 P0110 P0111

Ly>Lt>Lz>Lx W−Ly Ly−Lt Lt−Lz Lz−Lx Lx P0100 P0101 P0111

Lt>Ly>Lz>Lx W−Lt Lt−Ly Ly−Lz Lz−Lx Lx P0001 P0101 P0111

Lz>Ly>Lx>Lt W−Lz Lz−Ly Ly−Lx Lx−Lt Lt P0010 P0110 P1110

Lz>Ly>Lt>Lx W−Lz Lz−Ly Ly−Lt Lt−Lx Lx P0010 P0110 P0111

Lz>Lt>Ly>Lx W−Lz Lz−Lt Lt−Ly Ly−Lx Lx P0010 P0011 P0111

else W−Lt Lt−Lz Lz−Ly Ly−Lx Lx P0001 P0011 P0111

Table 3. Tetrahedral interpolation equivalent for 4D space

(interpolation inside a 4-simplex). There are total 24 cases

depending on the values of the LSBs of input values.

hedral interpolation, we explain the 2D equivalent trian-

gular interpolation in Fig. 3. For query input I0 = 24
(00011000(2)) and I1 = 60 (00111100(2)), we first split the

input values by 4 MSBs and 4 least significant bits (LSB).

The values of MSBs, 1 and 3 for I0 and I1 respectively, are

used for determining the nearest sampled points. The values

of LSBs, Lx = 8 and Ly = 12 for I0 and I1 respectively,

are used for determining the bounding triangle and the

weights of the bounding vertices. Two bounding vertices

are fixed at P00 = LUT[1][3] and P11 = LUT[1+1][3+1],
and the other vertex is determined by comparing Lx and

695



Ly . In this example, P01 = LUT[1][3 + 1] is selected

because Lx < Ly , otherwise, P10 is selected (We omit

the output value coordinate for simplicity). The weight of

each vertex is the area of the opposite triangle and calcu-

lated as w0 = W − Ly , w1 = Ly − Lx, and w2 = Lx,

where W = 24 (the sampling interval). Finally, the out-

put value is calculated as weighted sum as follows: V̂ =
(w0P00 + w1P01 + w2P02)/W .

Likewise, tetrahedral interpolation can be extended to

4D space by using the values of bounding 5 vertices of 4-

simplex geometry. One 4-simplex is selected among total

24 cases depending on the values of the LSBs (Lx, Ly , Lz ,

Lt for I0, I1, I2, and I3 respectively). In Table 3, we show

the weights wi and the bounding vertices Oi for each case.

The output value is then calculated as weighted sum as fol-

lows:

V̂ =
1

W

4
∑

i=0

wiOi, (3)

where O0 = P0000 and O4 = P1111.

We can also apply the same approach for 5D LUT. Just

6 multiplications are needed for interpolation within 5-

simplex geometry. However, the total case increases to 120

and we empirically found this affects the runtime. There-

fore, we set the maximum RF size as 4.

4. Experiments

4.1. Experimental Setting

For training, we use DIV2K [1] dataset which has been

widely used in deep SR methods. The DIV2K dataset con-

tains 800 training images with 2K resolution and covers di-

verse contents from cityscapes to natural sceneries. In ex-

periments, we fix the upscaling factor to 4 (i.e. r = 4). Our

SR deep model is trained for 2× 105 iterations using Adam

optimizer [21] with learning rate of 10−4 and mini-batch

size of 32. After the training, we transfer the output values

of the learned deep model to the SR-LUT.1

For testing, we use 5 common testsets which have been

widely used in single-image SR task evaluation – Set5,

Set14, BSDS100 [29], Urban100 [14] and Manga109 [30].

For quantitative evaluation, we use PSNR and structural

similarity index (SSIM) [45], which are traditionally used

for image quality assessment. In addition, we measure the

runtime of each method on a Samsung Galaxy S7 smart-

phone to verify the feasibility for real application.

4.2. Comparison with Others

We compare our method with various single-image SR

methods from interpolation to DNN based methods. We

choose 3 interpolation based methods – nearest neighbor,

bilinear, and bicubic interpolation, 4 sparse coding based

1Code is available at https://github.com/yhjo09/SR-LUT.

methods – NE + LLE [6], Zeyde et al. [50], ANR [42],

and A+ [43], and 3 DNN based methods – FSRCNN [9],

CARN-M [2], and RRDB [44]. Note that all the sparse

coding based methods used the same dictionary learned in

[50]. FSRCNN is one of the fastest deep single-image SR

models, CARN-M is one that balances the speed and the

accuracy, and RRDB is one that shows the best accuracy.

The quantitative results are shown in Table 4. Ours-V,

Ours-F, and Ours-S use 2D full LUT, 3D sampled LUT, and

4D sampled LUT respectively. The runtime is measured for

generating 1280× 720 output RGB image from 320× 180
input, and is measured 10 times and then averaged. We use

Pytorch for implementing the DNN based methods on the

smartphone. However, it is difficult to implement the sparse

coding based methods on the smartphone. The runtimes

of the sparse coding based methods are measured by using

Matlab on the desktop computer with Intel Xeon E3-1230

v3 CPU and 32GB RAM, and it may be worse if executed

on the smartphone. One key merit of our method is that

LUT can be implemented without any special framework

such as Matlab or Pytorch, and it makes our method easy to

implement in software and hardware.

Compared to bicubic interpolation, Ours-V achieves

much faster runtime (-45ms) and better PSNR and SSIM

values with a good margin (+0.8dB and +0.0203 respec-

tively for Set5 testset). Similary, Ours-F also runs faster (-

26ms) and shows a considerable performance gap (+1.35dB

and +0.0328 for Set5). Ours-S takes a little more run-

time (+31ms), but shows the best visual quality among

our models. Compared to the sparse coding based meth-

ods, our results show better PSNR and SSIM performance

while having smaller size LUTs than their dictionary, ex-

cept for A+. A+ shows better PSNR and SSIM values than

Ours-S (+0.45dB and +0.0124 for Set5), however, Ours-S

runs faster and takes about 12 times smaller memory space.

The DNN based methods show state-of-the-art PSNR and

SSIM, but require a longer runtime. FSRCNN shows a

performance gap compared to our method (+0.89dB and

+0.0178 better than Ours-S for Set5), but shows 4, 11, and

25 times slower runtime compared to Ours-S, Ours-F, and

Ours-V respectively. To sum up, we verify the faster run-

time with the moderate accuracy for practical usage, as our

method has much less computation overhead in theory.

Visual comparisons are shown in Fig. 4. We show 3 im-

ages of natural texture, text, and artificial structure. For the

first two rows, Ours-V and Ours-F results show some ar-

tifacts due to limited RF sizes. For the last row, Ours-F

result looks partly better than Ours-S. This is because the

kernel shapes of Ours-V and Ours-F (1×2 and 1×3 respec-

tively) can consider more pixels horizontally and vertically,

whereas the kernel of Ours-S (2 × 2) can consider pixels

diagonally. Compared to bicubic interpolation, our results

generally look sharper. In some examples, Ours-S shows

696



Method Runtime Size
Set5 Set14 BSDS100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Interpolation

Nearest 4ms - 26.25 0.7372 24.65 0.6529 25.03 0.6293 22.17 0.6154 23.45 0.7414

Bilinear 16ms - 27.55 0.7884 25.42 0.6792 25.54 0.6460 22.69 0.6346 24.21 0.7666

Bicubic 60ms - 28.42 0.8101 26.00 0.7023 25.96 0.6672 23.14 0.6574 24.91 0.7871

SR-LUT

Ours-V 15ms 1MB 29.22 0.8304 26.65 0.7258 26.33 0.6880 23.68 0.6852 26.30 0.8246

Ours-F 34ms 77KB 29.77 0.8429 26.99 0.7372 26.57 0.6990 23.94 0.6971 26.87 0.8367

Ours-S 91ms 1.274MB 29.82 0.8478 27.01 0.7355 26.53 0.6953 24.02 0.6990 26.80 0.8380

Sparse coding

NE + LLE [6] 7016ms* 1.434MB 29.62 0.8404 26.82 0.7346 26.49 0.6970 23.84 0.6942 26.10 0.8195

Zeyde et al. [50] 8797ms* 1.434MB 26.69 0.8429 26.90 0.7354 26.53 0.6968 23.90 0.6962 26.24 0.8241

ANR [42] 1715ms* 1.434MB 29.70 0.8422 26.86 0.7368 26.52 0.6992 23.89 0.6964 26.18 0.8214

A+ [43] 1748ms* 15.171MB 30.27 0.8602 27.30 0.7498 26.73 0.7088 24.33 0.7189 26.91 0.8480

DNN

FSRCNN [9] 371ms 12K† 30.71 0.8656 27.60 0.7543 26.96 0.7129 24.61 0.7263 27.91 0.8587

CARN-M [2] 4955ms 412K† 31.82 0.8898 28.29 0.7747 27.42 0.7305 25.62 0.7694 29.85 0.8993

RRDB [44] 31717ms 16698K† 32.68 0.8999 28.88 0.7891 27.82 0.7444 27.02 0.8146 31.57 0.9185

Table 4. Quantitative comparisons on 5 common single-image SR testsets for r = 4. Best values are shown in bold among

our models. Ours-V and Ours-F are faster than bicubic interpolation and achieve better PSNR and SSIM values with a good

margin. Ours-S is slower but shows better visual quality. Runtime is measured on a Samsung Galaxy S7 smartphone for

generating 1280× 720 output image. *: Runtime is measured on the desktop. †: The number of parameters of DNN.

Bicubic ANR [42] Ours-V Ours-F Ours-S A+ [43] FSRCNN [9] GT

Figure 4. Qualitative results. All of our results show improved sharpness compared to bicubic interpolation. Ours-S shows

the best visual quality among our models, by having smooth edge especially for diagonal direction.

improved clarity than A+ (the second row) and shows a sim-

ilar level of sharpness to FSRCNN (the first row). Please see

supplementary for more results.

4.3. Analysis

RF Size and Kernel Shape Experiments are conducted

on various configurations of our method to analyze the ef-

fect of RF size. We test for the RF size from 2 to 4, and

the detailed configurations and the results for Set5 testset

are shown in Table 5. The RF size of 2 with 1 × 2 ker-

nel (Ours-V) exploits total 5 input pixels by using the ro-

tational ensemble. Similarly, the RF size of 3 with 1 × 3

kernel (Ours-F) covers 9, and the RF size of 4 with 1 × 4
kernel (configuration B) covers 13 input pixels. Larger RF

sizes result in better image quality, but require longer run-

time due to the higher computational complexity for inter-

polating output values. Expanding from 2D to 3D SR-LUT

increases the runtime by 19ms, and expanding from 3D to

4D SR-LUT increases the runtime by 57ms. Likewise, the

runtime for 5D SR-LUT will be much larger, making prac-

tical use difficult. For practical implementation, the tradeoff

between accuracy and speed should be considered.

We also experiment on different kernel shapes. Configu-

ration A and Ours-F have the same RF size of 3 with 1× 3

697



Configuration Runtime Size PSNR SSIM

Ours-V 1× 2 / 4 / 5 15ms 1MB 29.22 0.8304

A 1× 3 / 2 / 5 22ms 77KB 27.75 0.7892

Ours-F 1× 3 / 4 / 9 34ms 77KB 29.77 0.8429

B 1× 4 / 4 / 13 91ms 1.274MB 29.88 0.8463

Ours-S 2× 2 / 4 / 9 91ms 1.274MB 29.82 0.8478

Ours-S w/o RE 2× 2 / 1 / 4 29ms 1.274MB 28.32 0.8118

Ours-V A Ours-F B

Table 5. Experiments on different RF sizes and kernel

shapes. The numbers in configuration mean kernel shape,

the number of rotations, and total covering pixels, in order.

We also depict the kernel shape (solid line) and covering

area (dotted line) by using the rotational ensemble.

Ours-V A Ours-F B Ours-S w/o RE

Figure 5. Visual comparison for different RF sizes and ker-

nel shapes. Ours-S shows the best visual quality.

kernel, but the A has the symmetric kernel shape with 2 ro-

tations. Ours-F shows much better PSNR and SSIM values

than the A, and we infer this is because the asymmetric ker-

nel needs to only focus on single direction information at a

time. This seems to more noticeable in our very small RF

size setting. Configuration B and Ours-S has the same RF

size of 4, however, the kernel shape of B and Ours-S is 1×4
and 2×2 respectively. They show almost equivalent perfor-

mance in quantitative comparison. However, Ours-S shows

more visually pleasing results as shown in Fig. 5 as 2 × 2
kernel considers the most 4 relevant adjacent input pixels.

In addition, the performance degrades if the rotational en-

semble is not applied (Ours-S w/o RE).

Sampling Interval Here, we conduct the experiments on

the sampling interval sizes (bin sizes) of the SR-LUT based

on Ours-S model. Increasing the sampling size reduces the

size of LUT, however, the original accuracy is damaged be-

cause nonsampled points should be interpolated from the

sampled points. The results for the sampling size from

22 to 28 on Set5 testset are summarized in Table 6. For

sampling size 23, the size of LUT decreases from 64GB to

18MB while maintaining the original PSNR and SSIM val-

ues. For sampling size 24, the size of LUT greatly decreases

to 1.274MB while minimizing the loss of the origianl per-

formance (-0.08dB and -0.0026 for PSNR and SSIM re-

Sampling Size PSNR SSIM

2
0 (Full LUT) 64GB 29.90 0.8504

2
2 272MB 29.90 0.8505

2
3 18MB 29.89 0.8500

2
4 (Ours-S) 1.274MB 29.82 0.8478

2
5 102KB 29.62 0.8419

2
6 9.891KB 29.18 0.8293

2
7 1.392KB 28.50 0.8097

2
8 384B 26.64 0.7495

Table 6. Comparisons of different sampling interval sizes.

We use the size 24 for our SR-LUT to reduce the LUT size,

minimizing the loss of the original performance.

Full 22 23 24 25 26 27 28

Figure 6. Visual comparison for different sampling interval

sizes. Noticeable artifacts appear from the size 26 to 28.

spectively). Therefore, we choose the size 24 as our default

setting for Ours-V, Ours-F, and Ours-S. If the LUT size mat-

ters, sampling size 25 and 26 could be a better option. From

the sampling size 26 to 28, we should pay attention to use

because noticeable artifacts appear as shown in Fig. 6. For

practical implementation, again, the tradeoff between the

accuracy and the size should be considered.

5. Conclusion

We proposed a simple and practical single-image SR

method by using LUT (SR-LUT). Our method is inherently

faster as precomputed HR values are just retrieved from the

SR-LUT and a few calculations is conducted for the final

output. Compared to bicubic interpolation, our fast models

(Ours-V and Ours-F) run faster while achieving better quan-

titative performance by a good margin, and our slow model

(Ours-S) shows the better visual quality with a little more

runtime. We believe our method is likely to be preferred

in practical usages due to its speed and ease of implemen-

tation. In the future, using larger RF sizes to increase the

quality and accelerating the interpolation step would make

our approach more practical.

Acknowledgement This work was supported by Insti-

tute of Information & Communications Technology Plan-

ning & Evaluation (IITP) grant funded by the Korea gov-

ernment (MSIT) (No. 2014-3-00123, Development of High

Performance Visual BigData Discovery Platform for Large-

Scale Realtime Data Analysis, and No. 2020-0-01361, Ar-

tificial Intelligence Graduate School Program (Yonsei Uni-

versity)).

698



References

[1] Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge

on single image super-resolution: Dataset and study. In

CVPR Workshops, July 2017. 6

[2] Namhyuk Ahn, Byungkon Kang, and Kyung-Ah Sohn. Fast,

accurate, and lightweight super-resolution with cascading

residual network. In ECCV, pages 252–268, 2018. 1, 3,

6, 7

[3] Simon Baker and Takeo Kanade. Hallucinating faces. In Pro-

ceedings Fourth IEEE international conference on automatic

face and gesture recognition (Cat. No. PR00580), pages 83–

88. IEEE, 2000. 1

[4] Chenglong Bao, Jian-Feng Cai, and Hui Ji. Fast sparsity-

based orthogonal dictionary learning for image restoration.

In ICCV, pages 3384–3391, 2013. 2

[5] Marco Bevilacqua, Aline Roumy, Christine Guillemot, and

Marie line Alberi Morel. Low-complexity single-image

super-resolution based on nonnegative neighbor embedding.

In BMVC, pages 135.1–135.10. BMVA Press, 2012. 1

[6] Hong Chang, Dit-Yan Yeung, and Yimin Xiong. Super-

resolution through neighbor embedding. In CVPR, 2004. 6,

7

[7] Xiangxiang Chu, Bo Zhang, Hailong Ma, Ruijun Xu,

and Qingyuan Li. Fast, accurate and lightweight super-

resolution with neural architecture search. arXiv preprint

arXiv:1901.07261, 2019. 3

[8] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou

Tang. Learning a deep convolutional network for image

super-resolution. In ECCV, pages 184–199, 2014. 1

[9] Chao Dong, Chen Change Loy, and Xiaoou Tang. Acceler-

ating the super-resolution convolutional neural network. In

ECCV, pages 391–407. Springer, 2016. 1, 3, 4, 6, 7

[10] William T Freeman, Thouis R Jones, and Egon C Pasztor.

Example-based super-resolution. IEEE Computer graphics

and Applications, 22(2):56–65, 2002. 1

[11] William T Freeman, Egon C Pasztor, and Owen T

Carmichael. Learning low-level vision. IJCV, 40(1):25–47,

2000. 1

[12] Daniel Glasner, Shai Bagon, and Michal Irani. Super-

resolution from a single image. In ICCV, pages 349–356.

IEEE, 2009. 1

[13] Muhammad Haris, Gregory Shakhnarovich, and Norimichi

Ukita. Deep back-projection networks for super-resolution.

In CVPR, pages 1664–1673, 2018. 1

[14] Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Single

image super-resolution from transformed self-exemplars. In

CVPR, pages 5197–5206, 2015. 6

[15] Zheng Hui, Xiumei Wang, and Xinbo Gao. Fast and accu-

rate single image super-resolution via information distilla-

tion network. In CVPR, pages 723–731, 2018. 3

[16] Andrey Ignatov, Radu Timofte, Andrei Kulik, Seungsoo

Yang, Ke Wang, Felix Baum, Max Wu, Lirong Xu, and Luc

Van Gool. Ai benchmark: All about deep learning on smart-

phones in 2019. In ICCV Workshops, pages 3617–3635.

IEEE, 2019. 2

[17] Hakki Can Karaimer and Michael S Brown. A software

platform for manipulating the camera imaging pipeline. In

ECCV, pages 429–444. Springer, 2016. 2

[18] James M Kasson, Sigfredo I Nin, Wil Plouffe, and James Lee

Hafner. Performing color space conversions with three-

dimensional linear interpolation. Journal of Electronic Imag-

ing, 4(3):226–251, 1995. 5

[19] Robert Keys. Cubic convolution interpolation for digital im-

age processing. IEEE transactions on acoustics, speech, and

signal processing, 29(6):1153–1160, 1981. 1

[20] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate

image super-resolution using very deep convolutional net-

works. In CVPR, pages 1646–1654, 2016. 1

[21] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In ICLR, 2015. 6

[22] Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-

Hsuan Yang. Deep laplacian pyramid networks for fast and

accurate super-resolution. In CVPR, pages 624–632, 2017. 1

[23] Royson Lee, Łukasz Dudziak, Mohamed Abdelfattah,

Stylianos I Venieris, Hyeji Kim, Hongkai Wen, and

Nicholas D Lane. Journey towards tiny perceptual super-

resolution. In ECCV, 2020. 3

[24] Huixia Li, Chenqian Yan, Shaohui Lin, Xiawu Zheng,

Baochang Zhang, Fan Yang, and Rongrong Ji. Pams: Quan-

tized super-resolution via parameterized max scale. In

ECCV, 2020. 3

[25] Zhen Li, Jinglei Yang, Zheng Liu, Xiaomin Yang, Gwang-

gil Jeon, and Wei Wu. Feedback network for image super-

resolution. In CVPR, pages 3867–3876, 2019. 1

[26] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and

Kyoung Mu Lee. Enhanced deep residual networks for single

image super-resolution. In CVPR Workshops, pages 136–

144, 2017. 1, 4

[27] Hai Ting Lin, Zheng Lu, Seon Joo Kim, and Michael S

Brown. Nonuniform lattice regression for modeling the cam-

era imaging pipeline. In ECCV, pages 556–568. Springer,

2012. 5

[28] Xiaotong Luo, Yuan Xie, Yulun Zhang, Yanyun Qu, Cui-

hua Li, and Yun Fu. Latticenet: Towards lightweight image

super-resolution with lattice block. In ECCV, 2020. 3

[29] David Martin, Charless Fowlkes, Doron Tal, and Jitendra

Malik. A database of human segmented natural images and

its application to evaluating segmentation algorithms and

measuring ecological statistics. In ICCV, volume 2, pages

416–423. IEEE, 2001. 6

[30] Yusuke Matsui, Kota Ito, Yuji Aramaki, Azuma Fujimoto,

Toru Ogawa, Toshihiko Yamasaki, and Kiyoharu Aizawa.

Sketch-based manga retrieval using manga109 dataset. Mul-

timedia Tools and Applications, 76(20):21811–21838, 2017.

6

[31] Yiqun Mei, Yuchen Fan, Yuqian Zhou, Lichao Huang,

Thomas S Huang, and Honghui Shi. Image super-resolution

with cross-scale non-local attention and exhaustive self-

exemplars mining. In CVPR, pages 5690–5699, 2020. 1

[32] Rang MH Nguyen and Michael S Brown. Raw image recon-

struction using a self-contained srgb-jpeg image with only

64 kb overhead. In CVPR, pages 1655–1663, 2016. 5

699



[33] Ben Niu, Weilei Wen, Wenqi Ren, Xiangde Zhang, Lianping

Yang, Shuzhen Wang, Kaihao Zhang, Xiaochun Cao, and

Haifeng Shen. Single image super-resolution via a holistic

attention network. In CVPR, 2020. 1

[34] Matt Pharr and Randima Fernando. Gpu gems 2: pro-

gramming techniques for high-performance graphics and

general-purpose computation. Addison-Wesley Profes-

sional, 2005. 2

[35] Guoping Qiu. Interresolution look-up table for improved

spatial magnification of image. Journal of Visual Commu-

nication and Image Representation, 11(4):360–373, 2000. 2

[36] Yajun Qiu, Ruxin Wang, Dapeng Tao, and Jun Cheng.

Embedded block residual network: A recursive restoration

model for single-image super-resolution. In ICCV, pages

4180–4189, 2019. 1

[37] Yaniv Romano, John Isidoro, and Peyman Milanfar. Raisr:

rapid and accurate image super resolution. IEEE Transac-

tions on Computational Imaging, 3(1):110–125, 2016. 2

[38] Samuel Schulter, Christian Leistner, and Horst Bischof. Fast

and accurate image upscaling with super-resolution forests.

In CVPR, pages 3791–3799, 2015. 2

[39] Wenzhe Shi, Jose Caballero, Ferenc Huszar, Johannes Totz,

Andrew P. Aitken, Rob Bishop, Daniel Rueckert, and Zehan

Wang. Real-time single image and video super-resolution

using an efficient sub-pixel convolutional neural network. In

CVPR, pages 1874–1883, 2016. 3, 4

[40] Dehua Song, Chang Xu, Xu Jia, Yiyi Chen, Chunjing Xu,

and Yunhe Wang. Efficient residual dense block search for

image super-resolution. In AAAI, pages 12007–12014, 2020.

3

[41] Qiang Song, Ruiqin Xiong, Dong Liu, Zhiwei Xiong, Feng

Wu, and Wen Gao. Fast image super-resolution via local

adaptive gradient field sharpening transform. IEEE TIP,

27(4):1966–1980, 2018. 2

[42] Radu Timofte, Vincent De Smet, and Luc Van Gool.

Anchored neighborhood regression for fast example-based

super-resolution. In ICCV, pages 1920–1927, 2013. 1, 2, 6,

7

[43] Radu Timofte, Vincent De Smet, and Luc Van Gool. A+:

Adjusted anchored neighborhood regression for fast super-

resolution. In ACCV, pages 111–126. Springer, 2014. 1, 2,

6, 7

[44] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu,

Chao Dong, Yu Qiao, and Chen Change Loy. Esrgan: En-

hanced super-resolution generative adversarial networks. In

ECCV Workshops, September 2018. 1, 6, 7

[45] Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli.

Image quality assessment: from error visibility to structural

similarity. IEEE TIP, 13(4):600–612, 2004. 6

[46] Jingwei Xin, Nannan Wang, Xinrui Jiang, Jie Li, Heng

Huang, and Xinbo Gao. Binarized neural network for sin-

gle image super resolution. In ECCV, 2020. 3

[47] Jianchao Yang, Zhe Lin, and Scott Cohen. Fast image super-

resolution based on in-place example regression. In CVPR,

pages 1059–1066, 2013. 1

[48] Jianchao Yang, John Wright, Thomas S Huang, and Yi Ma.

Image super-resolution via sparse representation. IEEE TIP,

19(11):2861–2873, 2010. 1, 2

[49] Hui Zeng, Jianrui Cai, Lida Li, Zisheng Cao, and Lei Zhang.

Learning image-adaptive 3d lookup tables for high perfor-

mance photo enhancement in real-time. IEEE TPAMI, 2020.

3

[50] Roman Zeyde, Michael Elad, and Matan Protter. On sin-

gle image scale-up using sparse-representations. In Interna-

tional conference on curves and surfaces, pages 711–730.

Springer, 2010. 1, 2, 6, 7

[51] Kai Zhang, Martin Danelljan, Yawei Li, Radu Timofte, Jie

Liu, Jie Tang, Gangshan Wu, Yu Zhu, Xiangyu He, Wenjie

Xu, et al. Aim 2020 challenge on efficient super-resolution:

Methods and results. In ECCV Workshops, 2020. 3

[52] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng

Zhong, and Yun Fu. Image super-resolution using very deep

residual channel attention networks. In ECCV, pages 286–

301, 2018. 1, 4

[53] Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and

Yun Fu. Residual dense network for image super-resolution.

In CVPR, pages 2472–2481, 2018. 1

700


