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Abstract

Humans have a natural instinct to identify unknown ob-

ject instances in their environments. The intrinsic curiosity

about these unknown instances aids in learning about them,

when the corresponding knowledge is eventually available.

This motivates us to propose a novel computer vision prob-

lem called: ‘Open World Object Detection’, where a model

is tasked to: 1) identify objects that have not been intro-

duced to it as ‘unknown’, without explicit supervision to do

so, and 2) incrementally learn these identified unknown cat-

egories without forgetting previously learned classes, when

the corresponding labels are progressively received. We

formulate the problem, introduce a strong evaluation pro-

tocol and provide a novel solution, which we call ORE:

Open World Object Detector, based on contrastive cluster-

ing and energy based unknown identification. Our experi-

mental evaluation and ablation studies analyse the efficacy

of ORE in achieving Open World objectives. As an interest-

ing by-product, we find that identifying and characterising

unknown instances helps to reduce confusion in an incre-

mental object detection setting, where we achieve state-of-

the-art performance, with no extra methodological effort.

We hope that our work will attract further research into this

newly identified, yet crucial research direction.1

1. Introduction

Deep learning has accelerated progress in Object Detec-

tion research [14, 54, 19, 31, 52], where a model is tasked

to identify and localise objects in an image. All existing ap-

proaches work under a strong assumption that all the classes

that are to be detected would be available at training phase.

Two challenging scenarios arises when we relax this as-

sumption: 1) A test image might contain objects from un-

known classes, which should be classified as unknown. 2)

As and when information (labels) about such identified un-

knowns become available, the model should be able to in-

crementally learn the new class. Research in developmen-

tal psychology [41, 36] finds out that the ability to iden-

tify what one doesn’t know, is key in captivating curiosity.

1Source code: https://github.com/JosephKJ/OWOD
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Figure 1: Open World Object Detection (F) is a novel problem

that has not been formally defined and addressed so far. Though

related to the Open Set and Open World classification, Open World

Object Detection offers its own unique challenges, which when

addressed, improves the practicality of object detectors.

Such a curiosity fuels the desire to learn new things [9, 16].

This motivates us to propose a new problem where a model

should be able to identify instances of unknown objects as

unknown and subsequently learns to recognise them when

training data progressively arrives, in a unified way. We call

this problem setting as Open World Object Detection.

The number of classes that are annotated in standard vi-

sion datasets like Pascal VOC [10] and MS-COCO [32] are

very low (20 and 80 respectively) when compared to the in-

finite number of classes that are present in the open world.

Recognising an unknown as an unknown requires strong

generalization. Scheirer et al. [57] formalises this as Open

Set classification problem. Henceforth, various methodolo-

gies (using 1-vs-rest SVMs and deep learning models) has

been formulated to address this challenging setting. Ben-

dale et al. [3] extends Open Set to an Open World classifi-

cation setting by additionally updating the image classifier

to recognise the identified new unknown classes. Interest-

ingly, as seen in Fig. 1, Open World object detection is un-

explored, owing to the difficulty of the problem setting.

The advances in Open Set and Open World image clas-

sification cannot be trivially adapted to Open Set and Open

World object detection, because of a fundamental difference

in the problem setting: The object detector is trained to de-

tect unknown objects as background. Instances of many

unknown classes would have been already introduced to

5830



the object detector along with known objects. As they are

not labelled, these unknown instances would be explicitly

learned as background, while training the detection model.

Dhamija et al. [8] finds that even with this extra training sig-

nal, the state-of-the-art object detectors results in false pos-

itive detections, where the unknown objects end up being

classified as one of the known classes, often with very high

probability. Miller et al. [43] proposes to use dropout sam-

pling to get an estimate of the uncertainty of the object de-

tection prediction. This is the only peer-reviewed research

work in the open set object detection literature. Our pro-

posed Open World Object Detection goes a step further to

incrementally learn the new classes, once they are detected

as unknown and an oracle provides labels for the objects of

interest among all the unknowns. To the best of our knowl-

edge this has not been tried in the literature. Fig. 1 shows a

taxonomy of existing research work in this space.

The Open World Object Detection setting is much more

natural than the existing closed-world, static-learning set-

ting. The world is diverse and dynamic in the number, type

and configurations of novel classes. It would be naive to

assume that all the classes to expect at inference are seen

during training. Practical deployments of detection systems

in robotics, self-driving cars, plant phenotyping, healthcare

and surveillance cannot afford to have complete knowledge

on what classes to expect at inference time, while being

trained in-house. The most natural and realistic behav-

ior that one can expect from an object detection algorithm

deployed in such settings would be to confidently predict

an unknown object as unknown, and known objects into

the corresponding classes. As and when more information

about the identified unknown classes becomes available, the

system should be able to incorporate them into its existing

knowledge base. This would define a smart object detection

system, and ours is an effort towards achieving this goal.

The key contributions of our work are:

• We introduce a novel problem setting, Open World Ob-

ject Detection, which models the real-world more closely.

• We develop a novel methodology, called ORE, based on

contrastive clustering, an unknown-aware proposal net-

work and energy based unknown identification to address

the challenges of open world detection.

• We introduce a comprehensive experimental setting,

which helps to measure the open world characteristics

of an object detector, and benchmark ORE on it against

competitive baseline methods.

• As an interesting by-product, the proposed methodology

achieves state-of-the-art performance on Incremental Ob-

ject Detection, even though not primarily designed for it.

2. Related Work

Open Set Classification: The open set setting considers

knowledge acquired through training set to be incomplete,

thus new unknown classes can be encountered during test-

ing. Scheirer et al. [58] developed open set classifiers in

a one-vs-rest setting to balance the performance and the

risk of labeling a sample far from the known training exam-

ples (termed as open space risk). Follow up works [23, 59]

extended the open set framework to multi-class classifier

setting with probabilistic models to account for the fading

away classifier confidences in case of unknown classes.

Bendale and Boult [4] identified unknowns in the fea-

ture space of deep networks and used a Weibull distribu-

tion to estimate the set risk (called OpenMax classifier). A

generative version of OpenMax was proposed in [13] by

synthesizing novel class images. Liu et al. [35] consid-

ered a long-tailed recognition setting where majority, mi-

nority and unknown classes coexist. They developed a met-

ric learning framework identify unseen classes as unknown.

In similar spirit, several dedicated approaches target on de-

tecting the out of distribution samples [30] or novelties [48].

Recently, self-supervised learning [46] and unsupervised

learning with reconstruction [65] have been explored for

open set recognition. However, while these works can rec-

ognize unknown instances, they cannot dynamically update

themselves in an incremental fashion over multiple training

episodes. Further, our energy based unknown detection ap-

proach has not been explored before.

Open World Classification: [3] first proposed the open

world setting for image recognition. Instead of a static clas-

sifier trained on a fixed set of classes, they proposed a more

flexible setting where knowns and unknowns both coexist.

The model can recognize both types of objects and adap-

tively improve itself when new labels for unknown are pro-

vided. Their approach extends Nearest Class Mean classi-

fier to operate in an open world setting by re-calibrating the

class probabilities to balance open space risk. [47] studies

open world face identity learning while [64] proposed to use

an exemplar set of seen classes to match them against a new

sample, and rejects it in case of a low match with all pre-

viously known classes. However, they don’t test on image

classification benchmarks and study product classification

in e-commerce applications.

Open Set Detection: Dhamija et al. [8] formally studied

the impact of open set setting on popular object detectors.

They noticed that the state of the art object detectors of-

ten classify unknown classes with high confidence to seen

classes. This is despite the fact that the detectors are ex-

plicitly trained with a background class [55, 14, 33] and/or

apply one-vs-rest classifiers to model each class [15, 31]. A

dedicated body of work [43, 42, 17] focuses on developing

measures of (spatial and semantic) uncertainty in object de-

tectors to reject unknown classes. E.g., [43, 42] uses Monte

Carlo Dropout [12] sampling in a SSD detector to obtain

uncertainty estimates. These methods, however, cannot in-

crementally adapt their knowledge in a dynamic world.
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3. Open World Object Detection

Let us formalise the definition of Open World Object De-

tection in this section. At any time t, we consider the set of

known object classes as Kt = {1, 2, ..,C} ⊂ N
+ where

N
+ denotes the set of positive integers. In order to realis-

tically model the dynamics of real world, we also assume

that their exists a set of unknown classes U = {C + 1, ...},

which may be encountered during inference. The known

object classes Kt are assumed to be labeled in the dataset

Dt = {Xt,Yt} where X and Y denote the input im-

ages and labels respectively. The input image set com-

prises of M training images, Xt = {I1, . . . , IM} and as-

sociated object labels for each image forms the label set

Y
t = {Y1, . . . ,YM}. Each Yi = {y1,y2, ..,yK} encodes

a set of K object instances with their class labels and lo-

cations i.e., yk = [lk, xk, yk, wk, hk], where lk ∈ Kt and

xk, yk, wk, hk denote the bounding box center coordinates,

width and height respectively.

The Open World Object Detection setting considers an

object detection model MC that is trained to detect all the

previously encountered C object classes. Importantly, the

model MC is able to identify a test instance belonging to

any of the known C classes, and can also recognize a new

or unseen class instance by classifying it as an unknown,

denoted by a label zero (0). The unknown set of instances

U
t can then be forwarded to a human user who can identify

n new classes of interest (among a potentially large num-

ber of unknowns) and provide their training examples. The

learner incrementally adds n new classes and updates it-

self to produce an updated model MC+n without retraining

from scratch on the whole dataset. The known class set

is also updated Kt+1 = Kt + {C + 1, . . . ,C + n}. This

cycle continues over the life of the object detector, where it

adaptively updates itself with new knowledge. The problem

setting is illustrated in the top row of Fig. 2.

4. ORE: Open World Object Detector

A successful approach for Open World Object Detection

should be able to identify unknown instances without ex-

plicit supervision and defy forgetting of earlier instances

when labels of these identified novel instances are presented

to the model for knowledge upgradation (without retraining

from scratch). We propose a solution, ORE which addresses

both these challenges in a unified manner.

Neural networks are universal function approximators

[22], which learn a mapping between an input and the out-

put through a series of hidden layers. The latent represen-

tation learned in these hidden layers directly controls how

each function is realised. We hypothesise that learning clear

discrimination between classes in the latent space of ob-

ject detectors could have two fold effect. First, it helps the

model to identify how the feature representation of an un-

known instance is different from the other known instances,

which helps identify an unknown instance as a novelty. Sec-

ond, it facilitates learning feature representations for the

new class instances without overlapping with the previous

classes in the latent space, which helps towards incremen-

tally learning without forgetting. The key component that

helps us realise this is our proposed contrastive clustering

in the latent space, which we elaborate in Sec. 4.1.

To optimally cluster the unknowns using contrastive

clustering, we need to have supervision on what an un-

known instance is. It is infeasible to manually annotate even

a small subset of the potentially infinite set of unknown

classes. To counter this, we propose an auto-labelling

mechanism based on the Region Proposal Network [54] to

pseudo-label unknown instances, as explained in Sec. 4.2.

The inherent separation of auto-labelled unknown instances

in the latent space helps our energy based classification head

to differentiate between the known and unknown instances.

As elucidated in Sec. 4.3, we find that Helmholtz free en-

ergy is higher for unknown instances.

Fig. 2 shows the high-level architectural overview of

ORE. We choose Faster R-CNN [54] as the base detec-

tor as Dhamija et al. [8] has found that it has better open

set performance when compared against one-stage Retina-

Net detector [31] and objectness based YOLO detector [52].

Faster R-CNN [54] is a two stage object detector. In the first

stage, a class-agnostic Region Proposal Network (RPN)

proposes potential regions which might have an object from

the feature maps coming from a shared backbone network.

The second stage classifies and adjusts the bounding box

coordinates of each of the proposed region. The features

that are generated by the residual block in the Region of In-

terest (RoI) head are contrastively clustered. The RPN and

the classification head is adapted to auto-label and identify

unknowns respectively. We explain each of these coherent

constituent components, in the following subsections:

4.1. Contrastive Clustering

Class separation in the latent space would be an ideal

characteristic for an Open World methodology to identify

unknowns. A natural way to enforce this would be to model

it as a contrastive clustering problem, where instances of

same class would be forced to remain close-by, while in-

stances of dissimilar class would be pushed far apart.

For each known class i ∈ Kt, we maintain a prototype

vector pi. Let fc ∈ R
d be a feature vector that is generated

by an intermediate layer of the object detector, for an object

of class c. We define the contrastive loss as follows:

Lcont(fc) =

C
X

i=0

`(fc,pi), where, (1)

`(fc,pi) =

(

D(fc,pi) i = c

max{0,∆−D(fc,pi)} otherwise
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Figure 2: Approach Overview:

Top row: At each incremental

learning step, the model iden-

tifies unknown objects (denoted

by ‘?’), which are progressively

labelled (as blue circles) and

added to the existing knowledge

base (green circles). Bottom

row: Our open world object de-

tection model identifies poten-

tial unknown objects using an

energy-based classification head

and the unknown-aware RPN.

Further, we perform contrastive

learning in the feature space to

learn discriminative clusters and

can flexibly add new classes in a

continual manner without forget-

ting the previous classes.

where D is any distance function and ∆ defines how close

a similar and dissimilar item can be. Minimizing this loss

would ensure the desired class separation in the latent space.

Mean of feature vectors corresponding to each class is

used to create the set of class prototypes: P = {p0 · · ·pC}.

Maintaining each prototype vector is a crucial component

of ORE. As the whole network is trained end-to-end, the

class prototypes should also gradually evolve, as the con-

stituent features change gradually (as stochastic gradient

descent updates weights by a small step in each iteration).

We maintain a fixed-length queue qi, per class for stor-

ing the corresponding features. A feature store Fstore =
{q0 · · · qC}, stores the class specific features in the corre-

sponding queues. This is a scalable approach for keeping

track of how the feature vectors evolve with training, as

the number of feature vectors that are stored is bounded by

C × Q, where Q is the maximum size of the queue.

Algorithm 1 provides an overview on how class proto-

types are managed while computing the clustering loss. We

start computing the loss only after a certain number of burn-

in iterations (Ib) are completed. This allows the initial fea-

ture embeddings to mature themselves to encode class in-

formation. Since then, we compute the clustering loss us-

ing Eqn. 1. After every Ip iterations, a set of new class

prototypes Pnew is computed (line 8). Then the existing

prototypes P are updated by weighing P and Pnew with a

momentum parameter ⌘. This allows the class prototypes

to evolve gradually keeping track of previous context. The

computed clustering loss is added to the standard detection

loss and back-propagated to learn the network end-to-end.

4.2. Auto-labelling Unknowns with RPN

While computing the clustering loss with Eqn. 1, we

contrast the input feature vector fc against prototype vec-

Algorithm 1 Algorithm COMPUTECLUSTERINGLOSS

Input: Input feature for which loss is computed: fc; Feature

store: Fstore; Current iteration: i; Class prototypes: P =
{p0 · · ·pC}; Momentum parameter: η.

1: Initialise P if it is the first iteration.

2: Lcont ← 0

3: if i == Ib then

4: P ← class-wise mean of items in FStore.

5: Lcont ← Compute using fc, P and Eqn. 1.

6: else if i > Ib then

7: if i%Ip == 0 then

8: Pnew ← class-wise mean of items in FStore.

9: P ← ηP + (1− η)Pnew

10: Lcont ← Compute using fc, P and Eqn. 1.

11: return Lcont

tors, which include a prototype for unknown objects too

(c ∈ {0, 1, ..,C} where 0 refers to the unknown class). This

would require unknown object instances to be labelled with

unknown ground truth class, which is not practically feasi-

ble owing to the arduous task of re-annotating all instances

of each image in already annotated large-scale datasets.

As a surrogate, we propose to automatically label some

of the objects in the image as a potential unknown object.

For this, we rely on the fact that Region Proposal Network

(RPN) is class agnostic. Given an input image, the RPN

generates a set of bounding box predictions for foreground

and background instances, along with the corresponding ob-

jectness scores. We label those proposals that have high ob-

jectness score, but do not overlap with a ground-truth object

as a potential unknown object. Simply put, we select the

top-k background region proposals, sorted by its objectness

scores, as unknown objects. This seemingly simple heuris-

tic achieves good performance as demonstrated in Sec. 5.
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4.3. Energy Based Unknown Identifier

Given the features (f ∈ F ) in the latent space F and

their corresponding labels l ∈ L, we seek to learn an en-

ergy function E(F,L). Our formulation is based on the En-

ergy based models (EBMs) [27] that learn a function E(·)
to estimates the compatibility between observed variables

F and possible set of output variables L using a single out-

put scalar i.e., E(f) : Rd → R. The intrinsic capability

of EBMs to assign low energy values to in-distribution data

and vice-versa motivates us to use an energy measure to

characterize whether a sample is from an unknown class.

Specifically, we use the Helmholtz free energy formula-

tion where energies for all values in L are combined,

E(f) = −T log

Z

l0
exp

✓

−
E(f , l0)

T

◆

, (2)

where T is the temperature parameter. There exists a simple

relation between the network outputs after the softmax layer

and the Gibbs distribution of class specific energy values

[34]. This can be formulated as,

p(l|f) =
exp( gl(f)

T
)

PC

i=1 exp(
gi(f)
T

)
=

exp(−E(f ,l)
T

)

exp(−E(f)
T

)
(3)

where p(l|f) is the probability density for a label l, gl(f) is

the lth classification logit of the classification head g(.). Us-

ing this correspondence, we define free energy of our clas-

sification models in terms of their logits as follows:

E(f ; g) = −T log

C
X

i=1

exp(
gi(f)

T
). (4)

The above equation provides us a natural way to transform

the classification head of the standard Faster R-CNN [54] to

an energy function. Due to the clear separation that we en-

force in the latent space with the contrastive clustering, we

see a clear separation in the energy level of the known class

data-points and unknown data-points as illustrated in Fig. 3.

In light of this trend, we model the energy distribution of the

known and unknown energy values ⇠kn(f) and ⇠unk(f),
with a set of shifted Weibull distributions. These distribu-

tions were found to fit the energy data of a held out valida-

tion set very well, when compared to Gamma, Exponential

and Normal distributions. The learned distributions can be

used to label a prediction as unknown if ⇠kn(f) < ⇠unk(f).

4.4. Alleviating Forgetting

After the identification of unknowns, an important req-

uisite for an open world detector is to be able to learn new

classes, when the labeled examples of some of the unknown

classes of interest are provided. Importantly, the train-

ing data for the previous tasks will not be present at this

stage since retraining from scratch is not a feasible solu-

tion. Training with only the new class instances will lead to

Figure 3: The energy values of the known and unknown data-

points exhibit clear separation as seen above. We fit a Weibull

distribution on each of them and use these for identifying unseen

known and unknown samples, as explained in Sec. 4.3.

catastrophic forgetting [40, 11] of the previous classes. We

note that a number of involved approaches have been devel-

oped to alleviate such forgetting, including methods based

on parameter regularization [2, 24, 29, 66], exemplar replay

[6, 51, 37, 5], dynamically expanding networks [39, 60, 56]

and meta-learning [50, 25].

We build on the recent insights from [49, 26, 62] which

compare the importance of example replay against other

more complex solutions. Specifically, Prabhu et al. [49] ret-

rospects the progress made by the complex continual learn-

ing methodologies and show that a greedy exemplar selec-

tion strategy for replay in incremental learning consistently

outperforms the state-of-the-art methods by a large margin.

Knoblauch et al. [26] develops a theoretical justification for

the unwarranted power of replay methods. They prove that

an optimal continual learner solves an NP-hard problem and

requires infinite memory. The effectiveness of storing few

examples and replaying has been found effective in the re-

lated few-shot object detection setting by Wang et al. [62].

These motivates us to use a relatively simple methodology

for ORE to mitigate forgetting i.e., we store a balanced set

of exemplars and finetune the model after each incremental

step on these. At each point, we ensure that a minimum of

Nex instances for each class are present in the exemplar set.

5. Experiments and Results

We propose a comprehensive evaluation protocol to

study the performance of an open world detector to identify

unknowns, detect known classes and progressively learn

new classes when labels are provided for some unknowns.

5.1. Open World Evaluation Protocol

Data split: We group classes into a set of tasks T =
{T1, · · ·Tt, · · · }. All the classes of a specific task will be

introduced to the system at a point of time t. While learn-
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Task 1 Task 2 Task 3 Task 4

Semantic split
VOC

Classes

Outdoor, Accessories,

Appliance, Truck

Sports,

Food

Electronic, Indoor,

Kitchen, Furniture

# training images 16551 45520 39402 40260

# test images 4952 1914 1642 1738

# train instances 47223 113741 114452 138996

# test instances 14976 4966 4826 6039

Table 1: The table shows task composition in the proposed Open

World evaluation protocol. The semantics of each task and the

number of images and instances (objects) across splits are shown.

ing Tt, all the classes of {T⌧ : ⌧<t} will be treated as

known and {T⌧ : ⌧>t} would be treated as unknown. For a

concrete instantiation of this protocol, we consider classes

from Pascal VOC [10] and MS-COCO [32]. We group all

VOC classes and data as the first task T1. The remaining

60 classes of MS-COCO [32] are grouped into three suc-

cessive tasks with semantic drifts (see Tab. 1). All im-

ages which correspond to the above split from Pascal VOC

and MS-COCO train-sets form the training data. For eval-

uation, we use the Pascal VOC test split and MS-COCO

val split. 1k images from training data of each task is kept

aside for validation. Data splits and codes can be found at

https://github.com/JosephKJ/OWOD.

Evaluation metrics: Since an unknown object easily gets

confused as a known object, we use the Wilderness Impact

(WI) metric [8] to explicitly characterises this behaviour.

Wilderness Impact (WI) =
PK

PK[U

− 1, (5)

where PK refers to the precision of the model when eval-

uated on known classes and PK[U is the precision when

evaluated on known and unknown classes, measured at a re-

call level R (0.8 in all experiments). Ideally, WI should be

less as the precision must not drop when unknown objects

are added to the test set. Besides WI, we also use Absolute

Open-Set Error (A-OSE) [43] to report the number count of

unknown objects that get wrongly classified as any of the

known class. Both WI and A-OSE implicitly measure how

effective the model is in handling unknown objects.

In order to quantify incremental learning capability of

the model in the presence of new labeled classes, we mea-

sure the mean Average Precision (mAP) at IoU threshold of

0.5 (consistent with the existing literature [61, 45]).

5.2. Implementation Details

ORE re-purposes the standard Faster R-CNN [54] object

detector with a ResNet-50 [20] backbone. To handle vari-

able number of classes in the classification head, following

incremental classification methods [50, 25, 6, 37], we as-

sume a bound on the maximum number of classes to expect,

and modify the loss to take into account only the classes of

interest. This is done by setting the classification logits of

the unseen classes to a large negative value (v), thus making

their contribution to softmax negligible (e�v → 0).

The 2048-dim feature vector which comes from the last

residual block in the RoI Head is used for contrastive clus-

tering. The contrastive loss (defined in Eqn. 1) is added to

the standard Faster R-CNN classification and localization

losses and jointly optimised for. While learning a task Ti,

only the classes that are part of Ti will be labelled. While

testing Ti, all the classes that were previously introduced

are labelled along with classes in Ti, and all classes of future

tasks will be labelled ‘unknown’. For the exemplar replay,

we empirically choose Nex = 50. We do a sensitivity anal-

ysis on the size of the exemplar memory in Sec. 6. Further

implementation details are provided in supplementary.

5.3. Open World Object Detection Results

Table 2 shows how ORE compares against Faster R-

CNN on the proposed open world evaluation protocol. An

‘Oracle’ detector has access to all known and unknown la-

bels at any point, and serves as a reference. After learn-

ing each task, WI and A-OSE metrics are used to quantify

how unknown instances are confused with any of the known

classes. We see that ORE has significantly lower WI and A-

OSE scores, owing to an explicit modeling of the unknown.

When unknown classes are progressively labelled in Task 2,

we see that the performance of the baseline detector on the

known set of classes (quantified via mAP) significantly de-

teriorates from 56.16% to 4.076%. The proposed balanced

finetuning is able to restore the previous class performance

to a respectable level (51.09%) at the cost of increased WI

and A-OSE, whereas ORE is able to achieve both goals: de-

tect known classes and reduce the effect of unknown com-

prehensively. Similar trend is seen when Task 3 classes are

added. WI and A-OSE scores cannot be measured for Task

4 because of the absence of any unknown ground-truths. We

report qualitative results in Fig. 4 and supplementary sec-

tion, along with failure case analysis. We conduct extensive

sensitivity analysis in Sec. 6 and supplementary section.

5.4. Incremental Object Detection Results

We find an interesting consequence of the ability of ORE

to distinctly model unknown objects: it performs favorably

well on the incremental object detection (iOD) task against

the state-of-the-art (Tab. 3). This is because, ORE reduces

the confusion of an unknown object being classified as a

known object, which lets the detector incrementally learn

the true foreground objects. We use the standard protocol

[61, 45] used in the iOD domain to evaluate ORE, where

group of classes (10, 5 and the last class) from Pascal VOC

2007 [10] are incrementally learned by a detector trained on

the remaining set of classes. Remarkably, ORE is used as

it is, without any change to the methodology introduced in

Sec. 4. We ablate contrastive clustering (CC) and energy

based unknown identification (EBUI) to find that it results

in reduced performance than standard ORE.
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Task IDs (→) Task 1 Task 2 Task 3 Task 4

WI A-OSE mAP (↑) WI A-OSE mAP (↑) WI A-OSE mAP (↑) mAP (↑)

(↓) (↓)
Current

known
(↓) (↓)

Previously

known

Current

known
Both (↓) (↓)

Previously

known

Current

known
Both

Previously

known

Current

known
Both

Oracle 0.02004 7080 57.76 0.0066 6717 54.99 30.31 42.65 0.0038 4237 40.23 21.51 30.87 32.52 19.27 31.71

Faster-RCNN 0.06991 13396 56.16 0.0371 12291 4.076 25.74 14.91 0.0213 9174 6.96 13.481 9.138 2.04 13.68 4.95

Faster-RCNN

+ Finetuning

Not applicable as incremental

component is not present in Task 1
0.0375 12497 51.09 23.84 37.47 0.0279 9622 35.69 11.53 27.64 29.53 12.78 25.34

ORE 0.02193 8234 56.34 0.0154 7772 52.37 25.58 38.98 0.0081 6634 37.77 12.41 29.32 30.01 13.44 26.66

Table 2: Here we showcase how ORE performs on Open World Object Detection. Wilderness Impact (WI) and Average Open Set Error

(A-OSE) quantify how ORE handles the unknown classes ( gray background), whereas Mean Average Precision (mAP) measures how

well it detects the known classes (white background). We see that ORE consistently outperforms the Faster R-CNN based baseline on all

the metrics. Kindly refer to Sec. 5.3 for more detailed analysis and explanation for the evaluation metrics.

10 + 10 setting aero cycle bird boat bottle bus car cat chair cow table dog horse bike person plant sheep sofa train tv mAP

All 20 68.5 77.2 74.2 55.6 59.7 76.5 83.1 81.5 52.1 79.8 55.1 80.9 80.1 76.8 80.5 47.1 73.1 61.2 76.9 70.3 70.51

First 10 79.3 79.7 70.2 56.4 62.4 79.6 88.6 76.6 50.1 68.9 0 0 0 0 0 0 0 0 0 0 35.59

New 10 7.9 0.3 5.1 3.4 0 0 0.2 2.3 0.1 3.3 65 69.3 81.3 76.4 83.1 47.2 67.1 68.4 76.5 69.2 36.31

ILOD [61] 69.9 70.4 69.4 54.3 48 68.7 78.9 68.4 45.5 58.1 59.7 72.7 73.5 73.2 66.3 29.5 63.4 61.6 69.3 62.2 63.15

ILOD + Faster R-CNN 70.5 75.6 68.9 59.1 56.6 67.6 78.6 75.4 50.3 70.8 43.2 68.1 66.2 65.1 66.5 24.3 61.3 46.6 58.1 49.9 61.14

Faster ILOD [45] 72.8 75.7 71.2 60.5 61.7 70.4 83.3 76.6 53.1 72.3 36.7 70.9 66.8 67.6 66.1 24.7 63.1 48.1 57.1 43.6 62.16

ORE - (CC + EBUI) 53.3 69.2 62.4 51.8 52.9 73.6 83.7 71.7 42.8 66.8 46.8 59.9 65.5 66.1 68.6 29.8 55.1 51.6 65.3 51.5 59.42

ORE 63.5 70.9 58.9 42.9 34.1 76.2 80.7 76.3 34.1 66.1 56.1 70.4 80.2 72.3 81.8 42.7 71.6 68.1 77 67.7 64.58

15 + 5 setting aero cycle bird boat bottle bus car cat chair cow table dog horse bike person plant sheep sofa train tv mAP

First 15 74.2 79.1 71.3 60.3 60 80.2 88.1 80.2 48.8 74.6 61 76 85.3 78.2 83.4 0 0 0 0 0 55.03

New 5 3.7 0.5 6.3 4.6 0.9 0 8.8 3.9 0 0.4 0 0 16.4 0.7 0 41 55.7 49.2 59.1 67.8 15.95

ILOD [61] 70.5 79.2 68.8 59.1 53.2 75.4 79.4 78.8 46.6 59.4 59 75.8 71.8 78.6 69.6 33.7 61.5 63.1 71.7 62.2 65.87

ILOD + Faster R-CNN 63.5 76.3 70.7 53.1 55.8 67.1 81.5 80.3 49.6 73.8 62.1 77.1 79.7 74.2 73.9 37.1 59.1 61.7 68.6 61.3 66.35

Faster ILOD [45] 66.5 78.1 71.8 54.6 61.4 68.4 82.6 82.7 52.1 74.3 63.1 78.6 80.5 78.4 80.4 36.7 61.7 59.3 67.9 59.1 67.94

ORE - (CC + EBUI) 65.1 74.6 57.9 39.5 36.7 75.1 80 73.3 37.1 69.8 48.8 69 77.5 72.8 76.5 34.4 62.6 56.5 80.3 65.7 62.66

ORE 75.4 81 67.1 51.9 55.7 77.2 85.6 81.7 46.1 76.2 55.4 76.7 86.2 78.5 82.1 32.8 63.6 54.7 77.7 64.6 68.51

19 + 1 setting aero cycle bird boat bottle bus car cat chair cow table dog horse bike person plant sheep sofa train tv mAP

First 19 77.8 81.7 69.3 51.6 55.3 74.5 86.3 80.2 49.3 82 63.6 76.8 80.9 77.5 82.4 42.9 73.9 70.4 70.4 0 67.34

Last 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 64 3.2

ILOD [61] 69.4 79.3 69.5 57.4 45.4 78.4 79.1 80.5 45.7 76.3 64.8 77.2 80.8 77.5 70.1 42.3 67.5 64.4 76.7 62.7 68.25

ILOD + Faster R-CNN 60.9 74.6 70.8 56 51.3 70.7 81.7 81.5 49.45 78.3 58.3 79.5 79.1 74.8 75.7 42.8 74.7 61.2 67.2 65.1 67.72

Faster ILOD [45] 64.2 74.7 73.2 55.5 53.7 70.8 82.9 82.6 51.6 79.7 58.7 78.8 81.8 75.3 77.4 43.1 73.8 61.7 69.8 61.1 68.56

ORE - (CC + EBUI) 60.7 78.6 61.8 45 43.2 75.1 82.5 75.5 42.4 75.1 56.7 72.9 80.8 75.4 77.7 37.8 72.3 64.5 70.7 49.9 64.93

ORE 67.3 76.8 60 48.4 58.8 81.1 86.5 75.8 41.5 79.6 54.6 72.8 85.9 81.7 82.4 44.8 75.8 68.2 75.7 60.1 68.89

Table 3: We compare ORE against state-of-the-art incremental Object Detectors on three different settings. 10, 5 and the last class from

the Pascal VOC 2007 [10] dataset are introduced to a detector trained on 10, 15 and 19 classes respectively (shown in blue background).

ORE is able to perform favourably on all the settings with no methodological change. Kindly refer to Sec. 5.4 for more details.

6. Discussions and Analysis

6.1 Ablating ORE Components: To study the contribu-

tion of each of the components in ORE, we design care-

ful ablation experiments (Tab. 4). We consider the setting

where Task 1 is introduced to the model. The auto-labelling

methodology (referred to as ALU), combined with energy

based unknown identification (EBUI) performs better to-

gether (row 5) than using either of them separately (row

3 and 4). Adding contrastive clustering (CC) to this con-

figuration, gives the best performance in handling unknown

(row 7), measured in terms of WI and A-OSE. There is no

severe performance drop in known classes detection (mAP

metric) as a side effect of unknown identification. In row

6, we see that EBUI is a critical component whose absence

increases WI and A-OSE scores. Thus, each component in

ORE has a critical role to play for unknown identification.

6.2 Sensitivity Analysis on Exemplar Memory Size: Our

balanced finetuning strategy requires storing exemplar im-

ages with at least Nex instances per class. We vary Nex

while learning Task 2 and report the results in Table 5. We

find that balanced finetuning is very effective in improving

the accuracy of previously known class, even with just hav-
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Row ID CC ALU EBUI WI (↓) A-OSE (↓) mAP (↑)

1 Oracle 0.02004 7080 57.76

2 × × × 0.06991 13396 56.36

3 × × X 0.05932 12822 56.21

4 × X × 0.05542 12111 56.09

5 × X X 0.04539 9011 55.95

6 X X × 0.05614 12064 56.36

7 X X X 0.02193 8234 56.34

Table 4: We carefully ablate each of the constituent component

of ORE. CC, ALU and EBUI refers to ‘Contrastive Clustering’,

‘Auto-labelling of Unknowns’ and ‘Energy Based Unknown Iden-

tifier’ respectively. Kindly refer to Sec. 6.1 for more details.

Nex WI A-OSE mAP (↑)

(↓) (↓) Previously known Current known Both

0 0.0406 9268 8.74 26.81 17.77

10 0.0237 8211 46.78 24.32 35.55

20 0.0202 8092 48.83 25.42 37.13

50 0.0154 7772 52.37 25.58 38.98

100 0.0410 11065 52.29 26.21 39.24

200 0.0385 10474 53.41 26.35 39.88

400 0.0396 11461 53.18 26.09 39.64

Table 5: The table shows sensitivity analysis. Increasing Nex by

a large value hurts performance on unknown, while a small set of

images are essential to mitigate forgetting (best row in green ).

Evaluated on → VOC 2007 VOC 2007 + COCO (WR1)

Standard Faster R-CNN 81.86 77.09

Dropout Sampling [43] 78.15 71.07

ORE 81.31 78.16

Table 6: Performance comparison with an Open Set object detec-

tor. ORE is able to reduce the fall in mAP values considerably.

ing minimum 10 instances per class. However, we find that

increasing Nex to large values does-not help and at the same

time adversely affect how unknowns are handled (evident

from WI and A-OSE scores). Hence, by validation, we set

Nex to 50 in all our experiments, which is a sweet spot that

balances performance on known and unknown classes.

6.3 Comparison with an Open Set Detector: The mAP

values of the detector when it is evaluated on closed set data

(trained and tested on Pascal VOC 2007) and open set data

(test set contains equal number of unknown images from

MS-COCO) helps to measure how the detector handles un-

known instances. Ideally, there should not be a performance

drop. We compare ORE against the recent open set detec-

tor proposed by Miller et al. [43]. We find from Tab. 6 that

drop in performance of ORE is much lower than [43] owing

to the effective modelling of the unknown instances.

6.4 Clustering loss and t-SNE [38] visualization: We vi-

sualise the quality of clusters that are formed while training

with the contrastive clustering loss (Eqn. 1) for Task 1. We

see nicely formed clusters in Fig. 5 (a). Each number in

the legend correspond to the 20 classes introduced in Task

1. Label 20 denotes unknown class. Importantly, we see

Figure 4: Predictions from ORE after being trained on Task 1.

‘elephant’, ‘apple’, ‘banana’, ‘zebra’ and ‘giraffe’

have not been introduced to the model, and hence are successfully

classified as ‘unknown’. The approach misclassifies one of the

‘giraffe’ as a ‘horse’, showing the limitation of ORE.

(a) (b)

Figure 5: (a) Distinct clusters in the latent space. (b) Our con-

trastive loss which ensures such a clustering steadily converges.

that the unknown instances also gets clustered, which re-

inforces the quality of the auto-labelled unknowns used in

contrastive clustering. In Fig. 5 (b), we plot the contrastive

clustering loss against training iterations, where we see a

gradual decrease, indicative of good convergence.

7. Conclusion

The vibrant object detection community has pushed the

performance benchmarks on standard datasets by a large

margin. The closed-set nature of these datasets and eval-

uation protocols, hampers further progress. We introduce

Open World Object Detection, where the object detector is

able to label an unknown object as unknown and gradually

learn the unknown as the model gets exposed to new labels.

Our key novelties include an energy-based classifier for un-

known detection and a contrastive clustering approach for

open world learning. We hope that our work will kindle

further research along this important and open direction.
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