This CVPR 2021 paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Time Adaptive Recurrent Neural Network

Anil Kag, Venkatesh Saligrama
Department of Electrical and Computer Engineering, Boston University
{anilkag, srv}@bu.edu

Abstract

We propose a learning method that, dynamically modi-
fies the time-constants of the continuous-time counterpart
of a vanilla RNN. The time-constants are modified based
on the current observation and hidden state. Our proposal
overcomes the issues of RNN trainability, by mitigating ex-
ploding and vanishing gradient phenomena based on placing
novel constraints on the parameter space, and by suppress-
ing noise in inputs based on pondering over informative
inputs to strengthen their contribution in the hidden state. As
a result, our method is computationally efficient overcoming
overheads of many existing methods that also attempt to
improve RNN training. Our RNNs, despite being simpler
and having light memory footprint, shows competitive per-
formance against standard LSTMs and baseline RNN models
on many benchmark datasets including those that require
long-term memory.

1. Introduction

We focus on trainability of vanilla Recurrent Neural Net-
works! (RNN). Improving vanilla RNN performance is im-
portant since they are deployed in a number of IoT appli-
cations [15] due to their light memory footprint. A funda-
mental challenge is that, during training, the gradient of loss
back-propagated in time could suffer from exponential de-
cay/explosion resulting in poor generalization for processes
exhibiting long-term dependencies (LTD).

There has been a long-line of work such as [12, 21, 2,

, 10] that propose matrix designs, gating and novel archi-
tectures, to mitigate gradient explosion/decay, and improve
handling of state-transition. Different from these are works,
which go back to [45, 18] that draw inspiration from ordi-
nary differential equations (ODEs). [10] leverages stability
theory of ODEs, to identify new transition matrices, and
proposes discretization of ODEs, to improve trainability.

While we also draw upon ODE:s to propose solutions to

By vanilla RNNs we refer to networks that sequentially update their
hidden state by means of a simple linear transformation of the previous
state and current input, followed by non-linear activation.

improve vanilla RNN trainability, our proposal differs from
existing works in fundamental ways. To build intuition, first
consider the ODE, with A € Rt, U € RP*P W ¢ RP*4,
and A € RP*P Hurwitz stable [28]:

\z(t) = Az(t) + ¢(Uz(t) + Wx,p,) 1)

where, ¢(-) is the conventional non-linear RNN activation
function such as a ReLU; This particular form, serving as an
analogue2 of vanilla RNNs, is quite old [45]. In each round,
m, we start from an initial state, z(ty) = S,,—1, which
corresponds to the current hidden state, and input, x,,,, and
evolve the ODE for a unit period of time. Subsequently, the
hidden state is updated by setting s,,, = z(tg + 1), and in
this way, mapping inputs to the hidden state sequence.

What is new? We introduce two novel aspects within
this context. First, we allow for A to be time-varying, and in
particular, a function of previous hidden state and input. Our
reasoning is that \ serves as a time-constant, and inherently
accounts for how long we evolve the ODE in response to the
current input. To see this, let us write the ODE in integral
form for a fixed A:

1
Sy 2 z(tg + 1) = exp (A)\> Sm—_1+

1
%/ exp (A1>_t> &(Uz(t) + Wxp,)dt (2)
0

Then, with A\ — oo, we deduce that, z(tg + 1) — Sy—1-
Namely, when time constant is large relative to integration
time, we barely process the new input, remaining essen-
tially at our previous solution. Alternatively, if A — 0,
namely, when the integration time is large relative to the
time-constant, we reach equilibrium, and in this process
strengthen influence of the current input. Moreover, by
letting the time-constant be a function, of s,,_1,X;,, we
selectively adapt the amount of “pondering” that we need
on each new input. Finally, we let \(-) take values in R?,
and thus allow for element-wise dependence for each hidden
state, leading to selective updates of hidden state compo-
nents. These ideas result in a time-adaptive RNN (TARNN).

2Vanilla RNNs and residual variants amount to a suitable Euler dis-
cretization (see Appendix).

15149

Next, we augment the current input with the hidden state,
and consider u,,, = [X,,,8,,_1] " as a composite input in
our ODE with initial condition, z(tg) = Sy,—1:

AMun,) 0 z(t) = Az(t) + Bu,, + ¢(Uz(t) + Wu,,) (3)

where o represents the element-wise (Hadamard) product.
To build intuition into our ODE choice, observe from the first
term in Eq. 2 that for A stable, the contribution of the hidden
state, s,,—1 decays exponentially in time, and as such, the
discrete transition process, S1, . . . , St rapidly de-correlates.
We can overcome this effect by a persistent presence of the
hidden state in the ODE. We also add the linear term, Bu,,,,
as it turns out to be important for improving partial gradient
properties for hidden state sequence. As such our choice
does not significantly increase model complexity of vanilla
RNN.

Our proposed ODE is sufficiently rich admitting param-
eter settings that completely eliminate gradient decay and
explosion, which is desirable for LTD tasks. In addition, our
method is capable of enhancing contribution from informa-
tive inputs, while suppressing noisy segments through the
pondering mechanism described above. This aspect is useful
in IoT applications [31, 15] such as keyword detection and
wearable sensing devices.

Discretization: For simplicity we discretize our ODEs
with Euler discretization to realize vanilla RNNs. Methods
that seek computational and memory efficiency in this con-
text [1 1, 46] are entirely complementary to our method. Our
novelty is in the design of state-transition with the goal of
realizing desirable ODE solutions®.

Contributions: The main contributions of this work are

* TARNN learns to modulate time constants of transition
function, allowing for selectively pondering on informative
inputs to strengthen their contribution, and ignoring noisy
inputs. This modification along with designing suitable
transition matrices yield lossless information propagation.

* TARNN improves trainability leading to better handling
of LTD tasks with a lighter memory footprint, and as such
our proposed method can be leveraged for IoT tasks.

* Our pseudo code is an RNN cell that is readily deployable
in any deep learning library. We provide a simple imple-
mentation at https://github.com/anilkagak2/TARNN.

* We conduct extensive experiments on benchmark datasets,
and show that we improve upon standard LSTM perfor-
mance as well as other recently proposed works. We also
demonstrate robustness to time-series distortions such as
noise paddings.

3[11, 46], also propose recurrent models to handle non-uniform input
sampling. While this is interesting, their proposals are unrelated to our goal
of improving RNN trainability.

2. Related Work

There is a rich literature on deep RNNSs [54, 6, 43], which
incorporate deep non-linear transition functions for complex
and richer representation, and is outside the scope of our
work. Indeed, our work is complementary, and we seek
to improve vanilla RNN trainability. More loosely related
are a growing number of works that propose to improve
RNN trainability through mitigation of vanishing and ex-
ploding gradients. First, there are works that propose im-
proving state-transitions, based on unitary transition matri-
ces [2, 25, 53,42, 27, 34], residual connections [23, 6, 31]
or gating [21, 12]. While these methods provide some evi-
dence of mitigating gradient decay, in practice, and in theory,
vanishing gradients are not eliminated (see Appendix). Dif-
ferent from these works, our method is more closely related
to works that draw insights from ODE:s.

ODE inspired RNNs. [10, 16] and [48] draw upon insights
from linear system theory to guide transition matrix designs
for the discrete-time RNN. Ideally, in the regime where
non-linear activation is essentially linear, explosion/decay
can be eliminated, but outside this regime we can expect
gradient degradation. [26] propose Incremental-RNNs, a
novel architecture, where like us they evolve the system until
equilibrium, and show mitigation of vanishing/exploding
gradients.

Different from these efforts, we are motivated by the
observation that mitigating gradient degradation while im-
portant, is by no means sufficient (see Fig. 1). This is often
the case in many IoT applications where the signal can be
bursty and there are segments that can be purely noisy. We
propose methods to suppress noisy segments in addition to
improving gradient explosion/decay.

Conditional Computation and Attention. Our pondering
perspective can be viewed as a form of conditional compu-
tation in time. Nevertheless, much of the conditional com-
putation work is aimed at gradually scaling model capacity
without suffering proportional increases in computational
(inference) cost (see [19, 13, 52, 24, 20]). Different from
these works, our focus is on improving RNN trainability
by suppressing noisy observations, so that long-term de-
pendencies can be handled by ignoring uninformative input
segments. Within this context, only [9] is closely related
to our viewpoint. Like us, [9] also proposes to skip input
segment to improve RNN training, but unlike us, since their
state-transition designs are conventional, they still suffer
vanishing and exploding gradients on segments that are not
skipped, and as a result suffer performance degradation on
benchmark datasets. Also, as [9] points out, our work can
also be viewed as a temporal version of hard attention mecha-
nisms for selecting image regions. These works (see [9]) that
deal with visually-based sequential tasks, have high model-
complexity, and are difficult to train on long input sequences.
Others [49] leverage attention to bypass RNNs. In contrast,

15150

we offer an approach that is lightweight and improves RNN
trainability on long-sequences.

There have been attempts at improving the computational
cost of the sequential models by introducing lighter recurrent
connections. [33, 4] replace the hidden-to-hidden interac-
tions in the LSTMs with linear connections in the hope of
parallelism. [7] performs similar linear interactions along
with the increased receptive field from the inputs, i.e. instead
of just using the current observation, it uses previous few in-
puts as well to compensate for the lost non-linear interaction
between the hidden states. Similar to these works, [36, 35]
introduce linear connection in vanilla RNNs and compensate
the loss of performance by allowing various architectures on
top of this light recurrent unit. These architectures include
stacked encoders, residual, and dense connections between
multiple layers. It should be noted that although being light,
the loss of non-linear interaction does result in a significant
setback and as a result these works have to rely on more than
one RNN layer to gain anything reasonable in comparison
to traditional variants. These multi-layered models will be
prohibitive for IoT devices as inference time would be larger
than vanilla RNNs. Besides, we can extend our work by
allowing only linear connections and apply their orthogonal
ideas for better parallelism and computational speed.

3. Learning Time Adaptive Recurrent Neural
Network (TARNN)

In this section we further present our objective, ODE
discretization and algorithmic details.

Notation. {(u(”,y())}, i € [N] denotes training data.
Each u” is a T—length d—dimensional sequential input.
For classification problems, y(* is a terminal label y(Ti),
taking values in a discrete set of C classes. For lan-
guage modeling tasks, we let the true label be a process,
(y%z), . ,yg,f)). The predictions (g)il), ey Q(TZ)) for each in-
put u? can be computed from the D—dimensional hidden
states (sgl), ce sg)) obtained by solving the ODE Egq. 3.
When clear from the context we omit superscripts. Unless
stated otherwise, o(-) denotes the sigmoid activation; ¢(-)
refers to any non-linear activation such as a ReLLU. We col-
lect all model parameters in 6.

Empirical Risk Minimization. Let /(7, y) be the func-
tion measuring loss incurred for predicting value ¢ on the
true value y. Our objective is to minimize the regularized em-
pirical loss, through back-propagation in any deep learning
framework. We specify the regularizer 2(6) later.

. . 11 N T . .
(2) (Z) N - § E ~7 7
L({u ’ y }’L=1) N T i=1 m=1 E(ynw ym) + Q(e)

“4)

Time-constants. We re-write the ODE Eq. 3 in terms of
B(+), the inverse of A(-), since it is convenient for describ-
ing our discretization steps. We parameterize 3(u,,) =

0(UsSm_1 + W,X,,), where U, € RP*XP W, ¢ RPxd
are parameters to be learnt. For a component j where 3, ~
1, then ((t)); ~ (Az(t) + Bu,, + 6(Uz(t) + Wu,));,
and the system responds to the input u,,, and reaches equi-
librium. On the other hand, when 3; ~ 0, then (z(t)); ~ 0,
and the corresponding state is frozen, with the input at time
m completely skipped. In this paper we limit ourselves to a
binary behavior, i.e. whether to ponder over the input obser-
vation for a long time or not ponder at all. For this reason, it
suffices to limit the range in [0, 1] with sigmoid activation.
This also avoids numerical instabilities with unbounded non-
linearities.

Setting up the ODE. To obtain a discrete implementa-
tion, first, we update the ODE Eq. 3 with the change of
variables for time-constants, resulting in the ODE:

#(t) =B ® (Az(t) + Buy, + ¢(Uz(t) + Wu,,))
£ F(z(t),u); 2z(to) = Sm—1)

where, © represents the Hadamard product. Next, we instan-
tiate the specific parameterization for transition matrices. Fi-
nally, an ODE solver is invoked, over a time-horizon [t, ¢1]
to update the state:

Sm = 2z(t1); z(t1) = ODESolve(s;,—1, Um, F(+), to, 1)

We predict the output 7, = o(w's,, + b) using a sig-
moid activation on top of a linear layer parameterized as
(w,b). Since, we need A to be Hurwitz-stable, and we im-
pose equilibrium, when a component is active, we a priori
fix A as negative identity. Other TARNN model parame-
ters (B, U, W, w, b, U;, W,,) are learnt during training by
minimizing the empirical loss in Eq. 4.

The ODE solver. A number of methods exists to numeri-
cally solve the ODE of Eq. 5 including black-box solvers
such as Neural ODEs[! 1] or advanced root-finding methods
such as the Broyden’s method [8]. While these methods
could be further employed to improve computational effi-
ciency, for exposition we limit ourselves to Euler-recursion
with K = 3 steps, since computational efficiency as such
is not the focus of our paper. We let 1 denote the step-size,
with z, denoting the recursion steps:

o Sm1 if k=1
m 2 4 n(F(zEay)) ifl<k< K
Sm = Zpy (6)

As shown in the Sec. 3.1, for suitable choice of the activation
function, ¢(-), (includes popular activations such as ReLU,
tanh, sigmoid, etc.), these recursions in the limit, for (3), >
0,2z}, = limg_ o0 zfn is an equilibrium solution to the ODE
of Eq. 5. We provide the pseudo code in Algorithm 1, which
generates the hidden states for a sequential input {z,, }Z _;.

15151

Algorithm 1 TARNN hidden states computation

Input : Sequence {zm}T _,
Model : (A,U,W,US,WS,B)
Initialize hidden state so = 0
form = 1to T do
ﬂ = U(Ussm—l + Wa:xm)
F(-) = BO (Az(t) + Buy, + ¢(Uz(t) + Wu,,))
z(t1) = ODESolve(Spm—1, Xm, F (), to,t1)
Sm = z(t1)
end for

3.1. Analysis

In this section, we show that our setup benefits from sev-
eral properties, and as a result, our proposed method leads
to a theoretically sound approach for an adaptive recurrent
system that is capable of focusing attention on informative
inputs and rejecting uninformative inputs. The first few
propositions establish properties of TARNN with the pro-
posed parameterization. We then describe a result to assert
that our adaptively recurrent system preserves information
by showing that the partial gradients of hidden states have
unit norm.

The following proposition shows that equilibrium points
for the ODE of Eq. 5 exist and are unique. Although, we a
priori fix A to be negative identity, we present a more general
result for the sake of completion. We impose the following
conditions, (i) there is a 79 > 0 such that for all n € [0, o],
there is some « € (0, 1] such that opax (I + nA) < 1 — am.
(i) Amax(A + AT) < —1. Tt s easily verified that these
conditions are satisfied in a number of cases including A
-identity, A block triangular with negative identity blocks.

Proposition 1. Consider the ODE in Eq. 5 and assumptions
on A described above. Suppose we have ||U|| < «, and
¢(+) is 1-Lipshitz function, it follows that, for any given,
B, W, an equilibrium point exists and is unique.

Remark. Note that, we impose conditions on U to derive
our result. In experiments we do not impose this condition,
since for our choices for A, o = 1, and as such, initializing
U to a Gaussian zero-mean, unit covariance often takes
care of this requirement during training, since we generally
operate with a small learning rate.

Proof Sketch. To show this we must find a solution to
the non-linear equation Az + Bu,,, — ¢(Uz + Wu,;,) =0
and show that it is unique. We do this by constructing a
fixed-point iterate, and show that the iteration is contrac-
tive. The result then follows by invoking the Banach fixed
point theorem (contraction-mapping theorem). The proof is
presented in the appendix 3.

Proposition 2. With the setup in Proposition 1, and regard-
less of B, the equilibrium point is globally asymptotically
stable, and the discrete Euler recursion converges to the
equilibrium solution at a linear rate.

We discuss the main idea and present the proof in the
appendix. Let z* be the equilibrium solution. We consider
the Lyapunov function V (z(t)) = ||z(t) — z*||?> and show
that it is monotonically decreasing along the ODE system
trajectories. Observe that, as per our setup, components
where (3); = 0 does not pose a problem, because those
states remain frozen, and serve as an additional exogenous
input in our ODE.

Lossless Information Propagation. Our goal is to show
that there exist parameter constraints in Eq. 5 that can result
in identity partial gradients of the hidden states. This will
in turn inform our regularization objective, 2(6) later. With
the constraint in place, for arbitrary values, m, n € Z*, we
will show that, g::; ((JJ)) = 1. For ease of analysis we replace
binary-valued 3 with a continuous function and let the output
be a ReLU non-linearity. Partition W = [W! W?2], B =
B!, B?], where W2 B? € RP*P are associated with the
hidden state components. To realize identity gradients for
a specific component ¢ we need to constrain the parame-
ter space. While there are many possibilities, we consider
following constraints, because they lead to concrete regu-
larization objectives, and generalize the specific A matrices
we have in mind (identity, and upper-triangular). We con-
strain |U]| < 1 < ||A||, and consider the following case:
A+B2=0,U+W?2=0.

Theorem 1. Under the above setup, as K — oo in Eq. 6,
forany m,n € ZF, |0s,, (1) /08 ()] — 1.

Proof Sketch (see Appendix for proof). Note that, when
B = 0, the jth component s, (j) = s,,,—1(j) and the result
follows trivially. Suppose now the jth component (5); >
0, we will show that, 9s,,(j)/08m—1(j) = 1, which then
establishes the result through chain rule.

Theorem 1 shows that there is a configuration with loss-
less propagation. Thus, if it is necessary, the training algo-
rithm will find a solution, that results in lossless propagation,
even without imposing parameter constraints stated in the
theorem. However, Theorem 1 suggests a natural regularizer,
with v; and 79 serving as hyperparameters. As a case in
point, we could encourage parameters to subscribe to con-
straints of theorem if we consider the following regularizer
for Eq. 4:

Q(0) = Q([A, B, U, W)) = 71[|A+Bz3+72[U+ Wo|[3

An interesting case is when B2 row-wise sparse. In this case,
states corresponding to zero rows operate as standard RNN
(no linear term). We can ensure identity gradient holds in
this case with block-wise parametric constraints, leading to
more structured regularization penalty.

4. Experiments

Toy Example. For a sneak preview of our results, we il-
lustrate the importance of both time-constants and gradient

15152

Class: (t=4)=1, (t=12)=1)

Sequence length = 16

O
2
3
|& 52|

°
o
&

log of ratio of |2

State Diff Norm or Input Value
o
o
3

— Input
—0.25 TARNN
—— SkipLSTM 1073

0 2 4 6 8 10 12 14 0 200 400
Time Steps : m

(a)

—wmeey [Algorithm Accuracy]
— Random Guess 25
FastRNN 45
LSTM 45
Antisymmetric 37
SkipLSTM 60
sooTrainﬁ](;OSteplsﬂoo 1200 1400 1600 TARNN (OuI‘S) 100

(b) ©

Figure 1: Example illustrates importance of mitigating gradient explosion/decay as well as ignoring noisy observations. Table lists test performance of
baselines focused on improving RNN training. Fig. (a) plots the noisy input, and sequential changes in hidden state norms for SkipLSTM[9] and proposed

TARNN . Only ours responds to informative locations. Fig. (b) plots the norm of partials of hidden states. Only AntisymmetricRNN[

] and ours TARNN

exhibit near identity gradients. However, only ours is effective as seen from the table. As such we infer TARNN (a) realizes near identity gradients for partials
of hidden states, thus mitigating gradient explosion/decay, (b) zooms in on informative inputs and ignores noisy observations, and (c) By jointly ensuring (a)

and (b), it improves RNN trainability, providing good generalization.

mitigation on a toy example. We construct a 16-length input
sequence with 4 class labels. Information is placed in the
form of binary {0, 1} values at locations 4, 12, correspond-
ing to the four classes, and for all other locations we assign
values from a uniform distribution in the unit interval. RNN's
with a 2-dimensional state-space are trained on 50K time-
traces. Due to low-dimension, the (terminal) state cannot
replicate the entire trace, requiring generalization. On one
hand, techniques that mitigate gradient explosion/decay like
Antisymmetric [10], do so across all input locations, but fail
to output meaningful results as seen from Figure 1(c). Thus
focusing solely on vanishing/exploding gradients is not suf-
ficient, since noise gets amplified in latent state updates. On
the other hand, SkipLSTM [9], which is capable of ponder-
ing at informative inputs and skipping uninformative inputs,
is also ineffective. SkipLSTM [9] suffers severe gradient
degradation, leading to poor control over which locations to
ponder. In contrast, TARNN exhibits near identity gradients,
skips all but locations 4, 12, and achieves 100% accuracy.
Similar trend holds for larger state space (see Appendix).

4.1. Experimental Setup and Baselines

4.1.1 Datasets

We follow earlier works [10, 26, 31] in order to setup exper-
iments. Datasets used in this work are publicly available,
except NTU RGB+d[47] (skeleton modality is available for
academic usage). We use 10% of the training data as valida-
tion set for tuning the hyper-parameters through grid search.
The grid for each method is setup as per their experimental
section. Finally, the entire training set is used to train the
model. The performance is reported on the publicly available
test set. We briefly describe each dataset here and refer the
reader to [260](Appendix:A.4) for detailed description.
1. Add & Copy tasks [22] probe the LTD capabilities of any
RNN architecture. Add task presents two input sequences,
one draws points uniformly from [0, 1], and second is a

binary sequence with exactly two entries as 1. The target
is the sum of entries in the first sequence with index same
as the two 1s in the second sequence. Copy tasks contains
sequences that embeds a random message drawn from
an alphabet, followed by many ‘blank‘ character and a
delimiter. The goal is to remember the original signal
across the timesteps.

2. Pixel & Permute MNIST [32] are sequential variants
of the popular MNIST dataset, used for evaluating the
generalization performance of RNNs. Pixel-MNIST is
generated by flattening the 28 x 28 input image into a long
784 length sequence. Permute-MNIST is generated by
applying a fixed permutation on the images generated by
the Pixel-MNIST task.

3. Noisy-MNIST & Noisy-CIFAR [10, 26] evaluate the
noise resiliency of RNNs. Popular MNIST/CIFAR images
are converted into 1000 length sequences. Each row of the
image is embedded at initial timesteps and the remaining
ones contain noise.

4. Penn Tree Bank (PTB)-300 [31, 53] is a popular word
level language modelling dataset. We use the small config-
uration proposed in [39] that uses one layer for modelling,
but with harder sequences of length 300.

5. Penn Tree Bank (PTB-w, PTB-c) [39] are two popular
datasets widely used for word level and character level lan-
guage modelling. This uses the traditional sequence length
of 70 and 150 for word and character level respectively.
Current state-of-the-art results utilize more than one layer.
We follow [51] in order to setup the word level task while
we utilize [40] to setup the character level task. We use
three layers for modelling as recommended.

6. Skeleton based Action Recognition [47] is performed on
the NTU RGB-d dataset with 60 action classes. We follow
[35, 36] in order to create the cross-subject (CS) and cross-
view (CV) datasets. After eliminating the spurious entries,
CS dataset contains 40,091 train and 16,487 test samples,
while CV dataset contains 37, 646 train and 18,932 test

15153

Sequence length = 200

CrossEntropy
o
N
o

=]
i
v

AL

LSTM

FastRNN
Antisymmetric
iRNN

TARNN

0.05 PR
Ao I{.
0.00 T r + +
0 2000 4000 6000 8000 10000
(@)
Sequence length = 200

0.40
—— LST™M

0.35 —— FastRNN
—— Antisymmetric

0.30 —— iRNN
—— TARNN

0.25

)
2 0.20

0.15

0.10

0.05

0.00 + T T T T

0 200 400 600 800 1000
(C) Training Steps

(b)

(d)

CrossEntropy

Sequence length = 500

LSTM

FastRNN
Antisymmetric
iRNN

0.40

0.35 A

0.30

0 1000

2000 5000

Sequence length = 750

6000 7000 8000

NRRN

LST™M
FastRNN
Antisymmetric
iRNN
TARNN

0.25 -

&

2 0.20
0.15
0.10

0.05

0.00 -

250 500 750 1000 1250

Training Steps

1500 1750 2000

Figure 2: We evaluate TARNN on synthetic LTD tasks: Copy task with sequence lengths : (a) 200, (b) 500, and Add task with sequence lengths: (c) 200,
(d) 750. Note that many methods perform similar to a simple fixed baselines described in [26](Appendix:A.4), while TARNN achieves significantly better

solution in fewer training steps.

samples. In this dataset, 5% of the train data is used for
hyper-parameter selection.

4.1.2 Baselines

We use various state-of-the-art methods for evaluating
TARNN °’s performance, including popular RNNs such
as: gating methods(LSTM[22], FastGRNN[31]), ODE
inspired(iRNN [26], AntisymmetricRNN [10]), condi-
tional computation (SkipRNN [9]), as well as recent Uni-
tary/Orthogonal (nnRNN[27] & expRNN[34]). For base-
lines with gated/ungated variants, we report results for the
best of the two. We also tried to incorporate SkipRNNs [9]
in our baselines, but for many of our tasks, its performance
remained similar to the corresponding RNN variant. Hence,
we do not list SkipRNNs on all our experiments. Further-
more, adaptive computation time (ACT) [19] is not tabulated
as we found that performance of SkipLSTM is significantly
better. This has also been observed in [17], who shows
repeat-RNNSs, a variant of iRNN outperforms ACT. Note that
we do not report baselines [33, 7, 36] which trade-off non-
linear hidden-to-hidden connections with linear connections,
since these interactions are complementary to our method
and can be incorporated in TARNN for computational ad-
vantages. Note that the datasets 5 and 6 (PTB-w, PTB-c
and Action recognition) are computationally expensive and

take days for a single run with standard baselines, hence we
do not run baselines on these datasets and simply cite the
current best known results. These datasets demonstrate that,
(a) TARNN can outperform baselines with smaller models,
and (b) since these datasets require stacked or other com-
plex architectures, our experiments show that multi-layered
TARNN can be trained with similar ease.

4.1.3 Code & Evaluation Metrics.

We implement TARNN in the tensorflow framework using
the pseudo code. Most of the baselines are publicly available
except Antisymmetric and Incremental RNNs which provide
pseudo code for implementation. For all the methods, we
report the accuracy, training time and the model parame-
ters. Unfortunately, we do not report train times for nnRNN
and expRNN as their code is written in PyTorch. We use
Adam([29]) for minimizing the loss function in Eq. 4. We
provide the final hyper-parameters along with the grid values
for our experiments in the appendix A.2. Our inference time
is comparable to FastRNNs and iRNNss, in contrast LSTMs
take 4x longer for inference (see Appendix A.9).

4.2. Results and Discussion

Figure 2 shows the results on Copy and Add tasks. Table 1
reports the performance on Pixel-MNIST, Permute-MNIST,

15154

Table 1: Results for Pixel MNIST, Permuted MNIST, Noise Padded CIFAR-10 and MNIST datasets. Since TARNN effectively focuses on informative
segments, it achieves better performance with faster convergence. Note that we only keep baselines which report results with single RNN layer and no batch

normalization (this excludes baselines such as [36], [14]).

Dataset [Pixel-MNIST [Permute-MNIST
Hidden Accuracy Train #Params Hidden Accuracy Train #Params
Dimension (%) Time (hr) Dimension (%) Time (hr)
FastRNN 128 97.71 16.10 18K 128 92.68 9.32 18K
LSTM 128 97.81 26.57 68K 128 92.61 19.31 68K
SkipLSTM 128 97.31 - 68K 128 93.72 23.31 68K
Antisymmetric 128 98.81 10.34 18K 128 93.59 4.75 18K
expRNN 128 97.35 - 34K 128 94.01 - 34K
nnRNN 128 97.81 - 51K 128 94.29 - 51K
iRNN 128 98.13 2.93 4K 128 95.62 241 8K
TARNN 32 98.43 2.13 10K 32 96.21 1.71 10K
TARNN 128 98.93 3.42 68K 128 97.13 2.96 68K
Dataset | Noisy-MNIST [Noisy-CIFAR

FastRNN 128 98.12 8.93 11K 128 45.76 11.61 16K
(Skip)LSTM 128 10.21 19.43 82K 128 10.41 13.31 114K
Antisymmetric 128 97.76 5.21 10K 128 54.70 7.48 41K
expRNN 128 97.92 - 37K 128 48.97 - 47K
nnRNN 128 98.06 - 54K 128 49.28 - 63K
iRNN 128 98.48 2.14 6K 128 54.50 247 12K
TARNN 32 98.78 1.31 8K 32 57.42 2.01 14K
TARNN 128 99.03 1.71 78K 128 59.06 1.05 100K

Noisy-MNIST and Noisy-CIFAR datasets. These results
show that TARNN outperforms various methods on many
benchmark LTD tasks, which can be attributed to its near
lossless gradient propagation between informative segments.
Additionally, tables 2 and 3 report TARNN ’s performance
on various PTB datasets, and table 4 lists accuracies of all
the methods on CS and CV variants of the Skeleton based
Action recognition task. These experiments demonstrate
that TARNN outperforms many baselines in learning short-
term dependencies on language modelling tasks and terminal
short term dependency task. Below we present TARNN ’s
useful properties backed by empirical evaluations.

Table 2: PTB Language Modeling: 1 Layer (standard small config except
the sequence length is 300 as per [3 1] as opposed to 70 in the conventional
PTB). TARNN achieves significantly better performance than the baselines
on this task (even with half the hidden dimensions than the baselines). Note
that embedding size is same as hidden dimension in these experiments, thus
smaller hidden dimensions result in smaller embedding storage as well.

. Hidden Test Train
Algorithm Dimension Perplexity Time (min) #params
FastRNN 256 115.92 40.33 131K
LSTM 256 116.86 56.52 524K
SkipLSTM 256 114.23 63.52 524K
iRNN 256 113.38 34.11 100K
TARNN 128 102.42 40.23 114K
TARNN 256 94.62 53.16 524K

(A) Fast convergence. Figure 2 shows the convergence
plots for various methods on the Add & Copy tasks. It
should be observed that TARNN solves both of these tasks
significantly faster than the baselines. Due to poor gradient
propagation, LSTMs only achieve the performance of fixed
strategies. While iRNN solves these two tasks, it requires
more training steps to reach the desired target error. Note

that we do not show Unitary RNNs on these tasks, as they
take significantly longer number of training steps to solve the
Addition task, and benefit from the modReLU activation on
the copy tasks [26]. Similarly, TARNN trains significantly
faster on LTD tasks presented in the Table 1 (at least 8
faster than LSTMs and at least 1.3 faster than the best).

(B) Better generalization. Table 1 shows that TARNN
outperforms the baselines resulting in better accuracies on
all the terminal prediction tasks. On Noisy-CIFAR dataset,
TARNN achieves more than four points increase in accuracy,
while on the 300-length PTB language modelling task, we
get nearly 20 points better in perplexity than the best method.

(C) Noise resiliency. In order to evaluate TARNN’s
noise resilience, we conduct experiments on the Noisy-
MNIST and Noisy-CIFAR datasets [10, 26] which intro-
duces the informative segments in the first few timesteps
and embeds every other segment with noise. These datasets
requires both lossless gradient propagation along with the
ability to suppress noisy segments and only focus on infor-
mative segments. Intuitively we expect to perform better
on this task since TARNN selectively ponders on informa-
tive segments to strengthen their contribution and allows the
state transition to achieve near lossless gradient propagation.
Table 1 shows that TARNN achieves much better perfor-
mance than iRNNs/AntisymmetricRNNs which in turn beat
the remaining methods by significant margins.

(D) Adapts well on short-term dependency tasks. We
benchmark TARNN on PTB-300 dataset. We do not report
expRNN and nnRNN results as they perform poorly in com-
parison to LSTM [27]. Table 2 reports all the evaluation
metrics for the PTB Language modelling task with 1 layer
as setup by [31]. It can be clearly seen that TARNN out-
performs the baselines by roughly ~ 10 point difference

15155

Table 3: Results for Penn Tree Bank Character and Word level language modelling tasks. These use shorter sequence length (typically 50-150) and use more

than one RNN layer for modelling. For the PTB-w dataset, where ever applicable, all the baselines report the results with dynamiceval[

]. Our model uses 3

layer composition. It can be seen that we report reasonable performance with much smaller models than other methods. With comparable model sizes as the

baselines we report higher performance.

Dataset [PTB-c [PTB-w
F-Ildde'n BPC #Params 'Hldde'n Perplexity #Params
Dimension Dimension

(GAM) RHN[54, 38] 600 1.147 16M 830 66.0 24M
Trellis-Net [3] 1000 1.158 13.4M 1000 54.19 34M
AWD-LSTM [41, 30] 1000 1.175 13.8M 1150 51.1 24M
Neural Architectural Search [55] 800 1.21 16.3M 800 62.4 54M
IndRNN [36] 2000 1.21 22M 2000 60.21 28M
Residual IndRNN [35] 2000 1.19 50.7M 2000 58.99 57T
Dense IndRNN [35] 2000 1.18 45.7M 2000 50.97 52M
TARNN 500 1.29 ™ 500 60.90 11M
TARNN 1400 1.19 42M 1200 53.21 56M

in the test perplexity for similar model complexity while it
achieves ~ 20 points for a larger model. Likewise, TARNN
adapts well to other short-term dependency tasks as observed
by Table 3 and Table 4.

(E) Low model complexity. Table 1, 2 show TARNN
performance with two different hidden state dimensions,
namely one configuration with similar model size as iRNN
and other one with similar model size as larger RNNs. With
model complexity similar to iRNNs, which are much com-
pact than the other baselines, we achieve better performance
than iRNNs. With larger model complexity, we achieve
much better performance on Permute-MNIST, Noisy-CIFAR
and PTB datasets. The other tasks are relatively saturated
as almost all the methods are near optimal. We point out
that the number of parameters reported in the Table 2 only
count the RNN parameters and omit the embeddings. We
achieve 102 perplexity with lower hidden dimension, i.e.
128. This means we require less number of parameters for
the embedding representation. Similarly, Table 3, 4 compare
TARNN’s performance on larger multi-layered RNN tasks,
namely PTB-c, PTB-w, and Action recognition. It can be
seen that TARNN achieves similar performance as known
baselines with much smaller model.

Table 4: Results for NTU RGB-d dataset (Skeleton based action recogni-
tion). We do not use augmentation on top of the Skeleton data. We point
out that TARNN achieves competitive performance with much lower com-
plexity model. We also ran a dense variant of TARNN similar to IndRNN
that results in better performance.

Dataset NTU RGB-d
Accuracy Accuracy
CS (%) CV (%) #Params

2-Layer LSTM [47] 60.09 67.29 >1M
2-Layer PLSTM [47] 62.93 70.27 >1M

Enhanced Visualization+CNN [37] 80.03 87.21 -

Pose Conditioned STA-LSTM [5] 77.10 84.50 -

6-Layer IndRNN [36] 81.80 87.97 2M

Dense IndRNN [35] 84.88 90.43 2.3M
3-Layer TARNN 80.52 87.54 180K
Dense TARNN 82.31 90.86 5.6M

RNN Trainability. TARNN exhibits substantial improve-
ment with respect to (a) size of memory footprint, (b) com-

putational efficiency (faster convergence, training and infer-
ence times), and (c) generalization (test performance). As
evident from the Tables 1, 2, 3, and 4, TARNN is consistently
among the models with lowest number of model parameters.
It enjoys faster convergence rate as evident from the conver-
gence plots for addition and copying tasks (Figure 2) and toy
example (Appendix A.5). Thus improving the training time.
It should also be noted that TARNN has similar inference
time as vanilla RNNs. It also generalizes well as evident
from the test accuracy on multiple synthetic and real-world
tasks. This is attributed to the ability to achieve near identity
gradients and effectively skipping uninformative input seg-
ments. This leads to the conclusion that TARNN improves
vanilla RNN training. Due to the light footprint TARNN is
suitable for IoT tasks. We tabulate results for IoT datasets
where TARNN outperforms baselines (see Appendix 7).

5. Conclusion

We proposed a time adaptive RNN method for learning
complex patterns in sequential data. Our method, based
on modifying the time-constants of an ODE-RNN, the
continuous-counterpart of the vanilla RNN, learns to skip
uninformative inputs, while focusing on informative input
segments. Additionally, we develop parameter constraints,
which leads to lossless information propagation from infor-
mative inputs, by mitigating gradient explosion or decay.
A number of experiments on benchmark datasets validates
our approach against competitors with similar complexity.
Indeed, we realize competitive performance with a lighter
memory footprint, faster training time, without suffering
performance degradation or increased inference time.

Acknowledgement

This research was supported by National Science Foun-
dation grants CCF-2007350 (VS), CCF-2022446(VS), CCF-
1955981 (VS), the Data Science Faculty and Student Fellow-
ship from the Rafik B. Hariri Institute, the Office of Naval
Research Grant N0014-18-1-2257 and by a gift from the
ARM corporation.

15156

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(1]

(12]

[13]

(14]

Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier
Parra, and Jorge L. Reyes-Ortiz. Human activity recogni-
tion on smartphones using a multiclass hardware-friendly
support vector machine. In Proceedings of the 4th Inter-
national Conference on Ambient Assisted Living and Home
Care, IWAAL 12, pages 216223, Berlin, Heidelberg, 2012.
Springer-Verlag. 15

Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary
evolution recurrent neural networks. In International Con-
ference on Machine Learning, pages 1120-1128, 2016. 1, 2,
13

Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. Trellis
networks for sequence modeling. In International Conference
on Learning Representations, 2019. 8

David Balduzzi and Muhammad Ghifary. Strongly-typed
recurrent neural networks. In Proceedings of The 33rd Inter-
national Conference on Machine Learning, pages 1292-1300,
2016. 3

Fabien Baradel, Christian Wolf, and Julien Mille. Pose-
conditioned spatio-temporal attention for human action recog-
nition, 2017. 8

Yoshua Bengio, Nicolas Boulanger-Lewandowski, and Raz-
van Pascanu. Advances in optimizing recurrent networks.
2013 IEEE International Conference on Acoustics, Speech
and Signal Processing, pages 8624-8628, 2013. 2

James Bradbury, Stephen Merity, Caiming Xiong, and
Richard Socher. Quasi-recurrent neural networks. arXiv
preprint arXiv:1611.01576, 2016. 3, 6

C. G. Broyden. A class of methods for solving nonlinear
simultaneous equations. Journal of Mathematics and Compu-
tation, 1965. 3

Victor Campos, Brendan Jou, Xavier Gir6 i Nieto, Jordi Tor-
res, and Shih-Fu Chang. Skip RNN: Learning to skip state
updates in recurrent neural networks. In International Con-
ference on Learning Representations, 2018. 2,5, 6

Bo Chang, Minmin Chen, Eldad Haber, and Ed H. Chi. An-
tisymmetricRNN: A dynamical system view on recurrent
neural networks. In International Conference on Learning
Representations, 2019. 1,2,5,6,7,12, 13

Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and
David K Duvenaud. Neural ordinary differential equations. In
Advances in Neural Information Processing Systems, pages
6571-6583, 2018. 2, 3

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. Learning phrase representations using rnn
encoder—decoder for statistical machine translation. In Pro-
ceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1724—-1734,
2014. 1,2

Junyoung Chung, Sungjin Ahn, and Yoshua Bengio. Hi-
erarchical multiscale recurrent neural networks. CoRR,
abs/1609.01704, 2016. 2

Tim Cooijmans, Nicolas Ballas, César Laurent, Caxglar
Giilgehre, and Aaron Courville. Recurrent batch normal-
ization. arXiv preprint arXiv:1603.09025, 2016. 7

[15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

(25]

(26]

(27]

(28]

(29]

15157

Don Dennis, Durmus Alp Emre Acar, Vikram Mandikal,
Vinu Sankar Sadasivan, Venkatesh Saligrama, Harsha Vard-
han Simhadri, and Prateek Jain. Shallow rnn: Accurate time-
series classification on resource constrained devices. In Ad-
vances in Neural Information Processing Systems 32, pages
12916-12926. Curran Associates, Inc., 2019. 1, 2

N. Benjamin Erichson, Omri Azencot, Alejandro Queiruga,
Liam Hodgkinson, and Michael W. Mahoney. Lipschitz re-
current neural networks. In International Conference on
Learning Representations, 2021. 2

Daniel Fojo, Victor Campos, and Xavier Gir6 i Nieto. Com-
paring fixed and adaptive computation time for recurrent neu-
ral networks, 2018. 6

Kenichi Funahashi and Yuichi Nakamura. Approximation
of dynamical systems by continuous time recurrent neural
networks. Neural Networks, 6(6):801 — 806, 1993. 1

Alex Graves. Adaptive computation time for recurrent neural
networks. CoRR, abs/1603.08983, 2016. 2, 6

Christian Hansen, Casper Hansen, Stephen Alstrup,
Jakob Grue Simonsen, and Christina Lioma. Neural speed
reading with structural-jump-LSTM. In International Confer-
ence on Learning Representations, 2019. 2

Josef Hochreiter. Untersuchungen zu dynamischen neu-
ronalen netzen. 1991. 1,2

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735-1780, 1997. 5, 6
Herbert Jaeger, Mantas Lukosevicius, Dan Popovici, and Udo
Siewert. Optimization and applications of echo state networks
with leaky-integrator neurons. Neural networks : the official
Jjournal of the International Neural Network Society, 20:335—
52,05 2007. 2

Yacine Jernite, Edouard Grave, Armand Joulin, and Tomas
Mikolov. Variable computation in recurrent neural networks.
In International Conference on Learning Representations,
2017. 2

Li Jing, Yichen Shen, Tena Dubcek, John Peurifoy, Scott
Skirlo, Yann LeCun, Max Tegmark, and Marin Soljacié. Tun-
able efficient unitary neural networks (eunn) and their ap-
plication to rnns. In International Conference on Machine
Learning, pages 1733-1741, 2017. 2

Anil Kag, Ziming Zhang, and Venkatesh Saligrama. Incre-
mental {rnn}: A dynamical view. In International Conference
on Learning Representations, 2020. 2,5, 6,7, 12,13, 16
Giancarlo Kerg, Kyle Goyette, Maximilian Puelma Touzel,
Gauthier Gidel, Eugene Vorontsov, Yoshua Bengio, and Guil-
laume Lajoie. Non-normal recurrent neural network (nnrnn):
learning long time dependencies while improving expressiv-
ity with transient dynamics. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d’ Alché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems
32, pages 13613-13623. Curran Associates, Inc., 2019. 2, 6,
7,12,13

H.K. Khalil. Nonlinear Systems. Pearson Education. Prentice
Hall, 2002. 1

Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICML, 2015. 6

(30]

(31]

(32]

(33]

(34]

[35]

(36]

(37]

(38]

(39]

(40]

[41]

(42]

[43]

[44]

Ben Krause, Emmanuel Kahembwe, lain Murray, and Steve
Renals. Dynamic evaluation of neural sequence models. vol-
ume 80 of Proceedings of Machine Learning Research, pages
2766-2775, Stockholmsmissan, Stockholm Sweden, 10-15
Jul 2018. PMLR. 8

Aditya Kusupati, Manish Singh, Kush Bhatia, Ashish Kumar,
Prateek Jain, and Manik Varma. Fastgrnn: A fast, accurate,
stable and tiny kilobyte sized gated recurrent neural network.
In Advances in Neural Information Processing Systems, 2018.
1,2,5,6,7,12,13, 15

Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document recog-
nition. In Proceedings of the IEEE, pages 22782324, 1998.
5

Tao Lei, Yu Zhang, Sida I. Wang, Hui Dai, and Yoav
Artzi. Simple recurrent units for highly parallelizable recur-
rence. In Empirical Methods in Natural Language Processing
(EMNLP), 2018. 3,6

Mario Lezcano-Casado and David Martinez-Rubio. Cheap
orthogonal constraints in neural networks: A simple
parametrization of the orthogonal and unitary group. In In-
ternational Conference on Machine Learning (ICML), pages
3794-3803, 2019. 2,6, 12, 13

Shuai Li, Wanqing Li, Chris Cook, Yanbo Gao, and Ce Zhu.
Deep independently recurrent neural network (indrnn), 2019.
3,5,8

Shuai Li, Wangqing Li, Chris Cook, Ce Zhu, and Yanbo Gao.
Independently recurrent neural network (indrnn): Building a
longer and deeper rnn. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June
2018. 3,5,6,7,8

Mengyuan Liu, Hong Liu, and Chen Chen. Enhanced skeleton
visualization for view invariant human action recognition.
Pattern Recognition, 68:346 — 362, 2017. 8

W. Luo and F. Yu. Recurrent highway networks with grouped
auxiliary memory. IEEE Access, 7:182037-182049, 2019. 8
Julian McAuley and Jure Leskovec. Hidden factors and hid-
den topics: Understanding rating dimensions with review text.
In Proceedings of the 7th ACM Conference on Recommender
Systems, RecSys ’13, pages 165-172, New York, NY, USA,
2013. ACM. 5

Stephen Merity, Nitish Shirish Keskar, and Richard Socher.
Regularizing and Optimizing LSTM Language Models. arXiv
preprint arXiv:1708.02182, 2017. 5

Stephen Merity, Nitish Shirish Keskar, and Richard Socher.
Regularizing and optimizing LSTM language models. In
International Conference on Learning Representations, 2018.
8

Zakaria Mhammedi, Andrew D. Hellicar, Ashfaqur Rahman,
and James Bailey. Efficient orthogonal parametrisation of re-
current neural networks using householder reflections. CoRR,
abs/1612.00188, 2016. 2

Asier Mujika, Florian Meier, and Angelika Steger. Fast-slow
recurrent neural networks. In Advances in Neural Information
Processing Systems, pages 5915-5924, 2017. 2

Jeffrey Pennington, Samuel Schoenholz, and Surya Ganguli.
Resurrecting the sigmoid in deep learning through dynamical

[45]

[46]

(47]

(48]

[49]

(50]

(51]

(52]

(53]

[54]

[55]

15158

isometry: theory and practice. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R.
Garnett, editors, Advances in Neural Information Processing
Systems 30, pages 4785-4795. 2017. 13

F. Rosenblatt. Principles of neurodynamics. Spartan Books,
Washington, D.C., 1962. 1

Yulia Rubanova, Ricky T. Q. Chen, and David Duvenaud.
Latent odes for irregularly-sampled time series. CoRR,
abs/1907.03907, 2019. 2

Amir Shahroudy, Jun Liu, Tian-Tsong Ng, and Gang Wang.
Ntu rgb+d: A large scale dataset for 3d human activity anal-
ysis. In IEEE Conference on Computer Vision and Pattern
Recognition, June 2016. 5, 8

Sachin S Talathi and Aniket Vartak. Improving performance
of recurrent neural network with relu nonlinearity. arXiv
preprint arXiv:1511.03771, 2015. 2

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkor-
eit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NIPS, 2017. 2
Pete Warden. Speech Commands: A Dataset for Limited-
Vocabulary Speech Recognition. arXiv e-prints, page
arXiv:1804.03209, Apr. 2018. 15

Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and
William W. Cohen. Breaking the softmax bottleneck: A
high-rank rnn language model, 2018. 5

Adams Wei Yu, Hongrae Lee, and Quoc V. Le. Learning to
skim text. CoRR, abs/1704.06877, 2017. 2

Jiong Zhang, Qi Lei, and Inderjit S. Dhillon. Stabilizing
gradients for deep neural networks via efficient svd parame-
terization. In /ICML, 2018. 2, 5, 13

Julian Georg Zilly, Rupesh Kumar Srivastava, Jan Koutnik,
and Jirgen Schmidhuber. Recurrent highway networks. In
ICML, pages 4189-4198. JMLR. org, 2017. 2, 8

Barret Zoph and Quoc V. Le. Neural architecture search with
reinforcement learning, 2017. 8

