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Figure 1: Style transfer results: artists’ portraits rendered in their own painting style by our method.

Abstract

Style transfer aims to render the content of a given image

in the graphical/artistic style of another image. The funda-

mental concept underlying Neural Style Transfer (NST) is

to interpret style as a distribution in the feature space of a

Convolutional Neural Network, such that a desired style can

be achieved by matching its feature distribution. We show

that most current implementations of that concept have im-

portant theoretical and practical limitations, as they only

partially align the feature distributions. We propose a novel

approach that matches the distributions more precisely, thus

reproducing the desired style more faithfully, while still be-

ing computationally efficient. Specifically, we adapt the

dual form of Central Moment Discrepancy (CMD), as re-

cently proposed for domain adaptation, to minimize the dif-

ference between the target style and the feature distribution

of the output image. The dual interpretation of this met-

ric explicitly matches all higher-order centralized moments

and is therefore a natural extension of existing NST methods

that only take into account the first and second moments.

Our experiments confirm that the strong theoretical proper-

ties also translate to visually better style transfer, and better

disentangle style from semantic image content.

1. Introduction

In 2017 Loving Vincent was released, the first fully

painted feature film with >65,000 frames. Indeed, every

single frame is an oil painting drawn by one of over 100

artists. The creation of the movie was split into two steps.

First, the entire movie was produced with real actors in front

of a green screen, which was then replaced by Van Gogh

paintings. In a second step, each frame was painted over by

an artist with the techniques and style of Van Gogh, which

took over six years to complete.

Attempts to automate this form of texture synthesis,

termed style transfer, date back to at least the mid-90s [12].

More recently, Gatys et al. [9] pioneered the idea of Neu-

ral Style Transfer (NST). It is based on the idea that the

deep layers of a pre-trained Convolutional Neural Network

(CNN) encode high-level semantic information and are in-

sensitive to the actual appearance, whereas shallow layers

learn low-level features such as color, texture and brush pat-

terns. A fundamental question that arises in this context is

how to define style. Li et al. [25] proved that the loss intro-

duced in [9] can be rewritten as a Maximum Mean Discrep-

ancy (MMD), offering an interpretation of style transfer as

aligning feature distributions. In fact, most existing meth-

ods can be interpreted in this way. This has led to a series of

works all centered around aligning feature distributions of

CNNs, linking style transfer to Domain Adaptation (DA).

Here we look deeper into that interpretation. By translat-

ing NST to distribution matching, it becomes amenable to a

suite of tools developed to measure the divergence between

probability distributions, such as integral probability met-

rics, f -divergences and Optimal Transport (OT).
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Divergences d(P,Q) between two distributions, respec-

tively probability measures, are in general not metrics,

but they should fulfil the weaker conditions of (i) non-

negativity: d(P,Q)≥ 0; and (ii) identity of indiscernibles:

d(P,Q)=0 iff P =Q. However, in the light of feature dis-

tributions, existing style transfer methods suffer from rather

elementary theoretical limitations. Broadly, there are two

schools. Either the distributions are unrestricted, but the dis-

crepancy between them is measured without adhering to the

law of indiscernibles [9, 25, 15, 32]; or the distributions are

approximated roughly with simple functions, so that they

admit closed-form solutions [29, 19, 24, 27].

Here, we show how to overcome these limitations with

the help of the recently proposed framework of Central Mo-

ment Discrepancys (CMDs) [39]. That (pseudo-)metric is

based on the representation of distributions as moment se-

quences on compact intervals. In the limit, CMD is an in-

tegral probability metric on the set of compactly supported

distributions, so it complies with the law of indiscernibles

(as well as non-negativity) by definition. Importantly, in its

dual formulation the CMD is computationally efficient, and

approximations can be seamlessly justified with an upper

bound on the central moments [38]. In summary, we make

the following contributions: (i) We systematically catego-

rize existing NST methods according to their way of align-

ing distributions; (ii) we make explicit underlying approx-

imations and highlight the corresponding limitations; (iii)

We propose a novel NST algorithm based on the Central

Moment Discrepancy. To our knowledge, our method is the

first one that aligns style distributions in a rigorous and com-

putationally efficient manner, with theoretically grounded

approximation bounds. Empirically, the method achieves a

more perspicuous separation between artistic style and se-

mantic content, and enables visually more compelling style

transfer according to a user study with >50 participants.

2. Related work

Style Transfer has been an active research topic in com-

puter vision for at least two decades. Until recently it was

based on hand-crafted features and styles. This includes

stroke-based rendering [20] to repaint an image with a set

of brush strokes [13], image quilting [5] where texture is

synthesized in small patches according to a segmentation

map, or image analogies [14] that learn style filters in a su-

pervised fashion. The shift to CNNs has given rise to Neural

Style Transfer. Current NST techniques can be categorized

as being based on either image optimization or model opti-

mization [16]. Methods in the first group iteratively transfer

style to each new output image, following the seminal pa-

per of [9]. That work first introduced the idea to match fea-

ture statistics of intermediate layers in a CNN. Subsequent

works explored different directions to improve the quality

of stylization. Risser et al. [32] circumvent instabilities of

the optimization by incorporating additional histogram and

total variation losses. To further enhance the preservation of

low-level content such as edges, Li et al. [22] add a Lapla-

cian loss. In order to transfer style between semantically

matching patches (e.g., from eyes of a dog to eyes of a

cat), [28] defines a loss that compares regions with simi-

lar semantic meaning. Similarly, [21] use MRFs to find the

nearest-neighbor patch in the feature space of the style im-

age. Both require similar shapes and boundaries in the con-

tent and style images. Gatys et al. [10] also went on to add

user-control for perceptual factors such as color or scale,

e.g., by transferring style only in the luminance channel to

preserve color. Recently, Kolkin et al. [19] also incorporate

user-defined spatial constraints, via appropriate weights in

the cost function.

Iterative optimization per image is comparatively slow.

Model optimization methods instead employ feed-forward

networks [17, 36] trained offline on large datasets, to

achieve real-time style transfer. Initially they were re-

stricted to a fixed set of styles [35, 36, 4, 23]. Later they

were extended to handle unseen styles. Huang and Belongie

[15] propose an adaptive instance normalization layer that

normalizes the content image with affine parameters from

the style image, Chen and Schmidt [2] define a swap layer

that replaces content feature patches with matching style

feature patches. However, there is a price to pay for fast

feed-forward inference, as it does not reach the quality of

iterative methods. Recently it has been shown that adaptive

instance normalization, as well as the whitening color trans-

form [24] are special cases of an OT map between Gaus-

sian distributions, thus providing some theoretical founda-

tion for feed-forward models [27, 29].

Domain Adaptation is a particular instance of transfer

learning, i.e., distilling and transferring knowledge across

different domains. Domain Adaptation (DA) utilizes super-

vision in a source domain to guide the learning for a target

domain where no labeled data is available [3]. The principle

is that the shift between the source and target domains can

be measured, and therefore also minimized. Several authors

have noted the close relation to NST [25, 1]. A common

approach is to learn a joint feature space by aligning the

distributions in the latent feature space with measures such

as Kullback-Leibler divergence [40], Maximum Mean Dis-

crepancy [26] or correlation alignment [34]. Also related to

style transfer, another approach to DA is to directly learn

the mapping between the source and target domains, e.g.,

using GANs [1]. For an overview of DA, see [3, 37]. Here

we make use of yet another idea originally aimed at DA,

emphasizing its close relation to style transfer.
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3. Method

We first briefly review the core ideas of Neural Style

Transfer. In that context, we revisit several existing meth-

ods and classify them into three categories. By taking the

view of distribution alignment to its logical end, we then

go on to provide an alternative loss function that has strong

theoretical guarantees, is efficient to compute, and delivers

visually appealing results (c.f . Fig. 1).

3.1. Neural style transfer

The fundamental idea of NST is to use a pretrained, deep

neural network to generate an image Io with the content-

specific features of a content image Ic and the style-specific

features from a style image Is. Typically, one minimizes a

convex combination of a content and a style loss:

L = αLcontent + (1− α)Lstyle. (1)

We further specify those losses following the notation of

[29]. Let g be a deep encoder, say VGG-19 [33]. For

a specific layer l with corresponding output feature map

of spatial dimension Hl ·Wl = nl and channel depth Cl,

we denote the jth component of the feature map as a

(reshaped) function F l
j : Rd → R

Cl , j ∈ [nl]. We write

F
l = (F l

j)j∈[n] ∈ R
Cl×nl and call Fl(I) the lth (reshaped)

feature map of image I . I.e., the Lth feature map of image I

is the activation map after applying all layers l = 1, . . . , L
to I . Then, the content loss is proportional to

Lcontent(Io, Ic) ∝
∑

l

||Fl(Io)− F
l(Ic)||2, (2)

where l iterates over a set of layers of g. Commonly, only

a single, deep layer is used to compute the content loss;

whereas the style loss is an average over multiple layers,

shallow and deep, with hyper-parameters wl:

Lstyle(Io, Is) =
∑

l

wlLl
style(Io, Is). (3)

3.2. Style as feature distribution

Losses proposed for Ll
style can be categorized according

to how they align distributions. We first need some addi-

tional definitions, again following [29]. To obtain a distri-

bution, we view the feature map F
l(I) as a Cl-dimensional

empirical distribution measure over nl = Hl ·Wl samples.

Note, by regarding the nl samples as an unordered set we

explicitly discard the spatial layout. This corresponds to the

intuition that style attributes like color, strokes and texture

are independent of the location. More formally, we define

νl : Rd → P(RCl) , I 7→ 1

nl

nl
∑

i=1

δF l
j
(I), (4)

where P(RCl) is the space of empirical measures on R
Cl .

We abbreviate νlI = νl(I) and drop the layer index when

not needed. With these definitions we now review existing

style transfer methods in the light of distribution alignment.

MMD-based optimization. Already the first NST paper

[9] used statistics of feature maps to extract style-specific

attributes of Is, via the Gram matrix G. The Gram ma-

trix contains 2nd-order statistics, in our case correlations be-

tween corresponding channels in the feature map. The link

to aligning distributions may not be obvious, but Li et al.

[25] show that the style loss in [9] can be rewritten as an

unbiased empirical estimate of the MMD [11] with a poly-

nomial kernel k(x, y) = (xT y)2:

Ll
style(Io, Is) ∝ mmd

2[Fl(Io),F
l(Is)]. (5)

Under the assumption that the reproducing kernel Hilbert

space (RKHS) is characteristic [7], the MMD vanishes if

and only if the two distributions are the same. By treating

the feature maps of Io and Is as samples, minimizing the

objective (5) is the same as minimizing the discrepancy be-

tween νIo and νIs .

Moment-based optimization approaches explicitly mini-

mize the difference between style distributions. Theoretical

support for these methods comes from moment generating

functions (MGFs). It is known that a distribution is uniquely

characterized by its moments if the MGF is finite in an open

interval containing zero. Hence, if two distributions with fi-

nite MGF have equal moments, they are identical.

Besides relating style transfer to distribution alignment,

Li et al. [25] also introduced a style loss based on batch

normalization statistics. That loss is the first to explicitly

match moments in feature space, namely the means µFl(I)

and the standard deviations σFl(I):

Ll
style(Io, Is) ∝

Cl
∑

i=1

[(µi
Fl(Io)

−µi
Fl(Is)

)2+(σi
Fl(Io)

−σi
Fl(Is)

)2].

(6)

Interestingly, moment alignment can also produce reason-

able results when applied in feed-forward mode, without

iterative optimization. Based on ideas from [36, 4], Huang

and Belongie [15] align the mean and variance with a trans-

formation layer. In summary, matching the mean and vari-

ance of the content image’s feature space to that of the style

image reduces the divergence between νIo and νIs – but

discrepancies due to higher-order moments remain.

Optimal Transport-based optimization provides a prin-

cipled framework to minimize the discrepancy between dis-

tributions, notably taking into account the geometry of the

underlying spaces. When working in the space of probabil-

ity measures Pp(R
d) with bounded pth moment, the Wasser-
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Figure 2: Illustration of distribution matching in 1D. The source ∼Beta(2, 3) and target ∼Beta(0.5, 0.45) cannot be aligned

with MMD, MM or OT (which in 1D is the same as MM). On the contrary, CMD aligns them well already with five moments,

and the residual error decreases asymptotically as more moments are added. See text for details.

stein distance for P,Q ∈ Pp(R
d) is defined as

Wp(P,Q)p = inf
Γ(P,Q)

∫

||x− y||pdπ(x, y). (7)

We can use the Wasserstein distance for back-propagation

to minimize the discrepancy between νIo and νIs . In

general, computing the OT has complexity O(n3
l log nl)

and is not suitable for iterative optimization schemes.

However, restricting the distributions to Gaussians,

ν̃Io := N (µνIo
,ΣνIo

) and ν̃Is := N (µνIs
,ΣνIs

) admits a

closed form solution,

W2(ν̃Io ,ν̃Is)
2 = ‖µνIo

− µνIs
‖22

+Tr
(

ΣνIo
+ΣνIs

− 2(Σ
1
2
νIo

ΣνIs
Σ

1
2
νIo

)
1
2

)

.
(8)

This is similar to matching the first and second moments

as in moment-based optimization (higher-order moments of

Gaussians are constant w.r.t. mean and variance). Conve-

niently, the OT map can also be directly derived. If one is

willing to accept the Gaussian approximation, the style fea-

tures can be aligned by iteratively minimizing W2, or by

integrating the OT map into the encoder-decoder network

[29, 19, 27, 24]. It has been shown [29, 27] that adaptive

instance normalization can be seen as OT of Gaussians with

diagonal covariances.

3.3. Motivation

From a statistical perspective all three categories of

methods contradict, to some extent, the goal of optimally

aligning feature distributions.

Methods based on MMD rely on simplistic (typically,

linear or quadratic) kernels [9, 25]. Previously, [32] already

identified instabilities during training, as different distribu-

tions result in the same MMD. They point out that changes

in mean and variance can compensate each other, giving

rise to the same Gram matrix (and thus the same MMD

with quadratic kernel), since the Gram matrix is related to

non-central second moments. We offer an alternative expla-

nation why the Gram matrix violates the identity of indis-

cernibles: the quadratic kernel is non-characteristic, i.e., the

map p → Ex∼p[k(x, ·)] is not injective and the distribution

p has no unique embedding in the RKHS. Moreover, the

quadratic kernel (resp. Gram matrix) is obviously restricted

to 2nd moments. It is highly unlikely that those are sufficient

statistics for deep feature activations, so MMD(p, q)=0
almost certainly does not imply p=q.

A similar argument can be made about existing meth-

ods based directly on Moment Matching (MM), since they

match only the means and variances. It is trivial to define

two distinct distributions with the same variances – e.g., a

Gaussian N (0,
√
2) and a Laplace distribution L(0, 1).

While OT is a powerful framework at the conceptual

level, it is hobbled by high computation cost. The Gaus-

sian approximation makes OT tractable, but at the cost of

losing information. There is no evidence that the distribu-

tions νIo and νIs are (approximately) Gaussian – in fact it

is very unlikely, unless one artificially constrains them, thus

seriously restraining the deep network’s expressive power.

We claim that OT, at least in its prevalent, restricted form,

also mostly reduces to matching the first and second mo-

ments – the approximations in (8) are completely defined in

terms of means and covariances.

Finally, we point out the mean over-penalization effect:

[39] found instabilities of distribution alignment during DA

training under small perturbations, which arise from the

use of raw instead of centralized moments (as in MMD

with standard polynomial kernel and non-centralized inte-

gral probability metrics). For details, please refer to [39].

3.4. CMD for neural style transfer

Instead of only matching first- and second-order mo-

ments, we propose to make use of a suitable integral prob-

ability metric, the Central Moment Discrepancy [38]. At

its core, that metric utilizes the dual representation of com-

pactly supported distributions as moment sequences. The

translation to central moments leads to natural geometric

relations such as variance, skewness and kurtosis. Not that
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the idea of matching higher moments has been investigated

in early work on texture synthesis [31], but so far has been

disregarded in NST.

In Fig. 2, we illustrate the enhanced expressive power of

CMD. In our toy example, the source and target are univari-

ate Beta-distributions with different parameters, i.e., their

third and fourth moments are non-zero. We represent each

distribution with 10,000 samples and minimize the respec-

tive alignment loss with gradient descent. The example con-

firms that none of the three approaches based on first and

second moments can align the two distributions (note that

for the 1D case MM and OT are identical). On the contrary,

CMD aligns them nicely.

The CMD between two compactly supported distribu-

tions P and Q is defined as follows [39]:

cmdk(P,Q) :=

k
∑

i=1

ai‖ci(P )− ci(Q)‖2 , where

ci(X) =

{

EX [x] i = 1

EX [η(i)(x− EX [x])] i ≥ 2

(9)

with ai ≥ 0. The η(i)(x) are monomial vectors of order i

defined as

η(i) :Rm → R
(i+1)m−1

(m−1)!

x 7→
(

xr1
1 · · ·xrm

m

)

(r1,··· ,rm)∈N
m
0

r1+···+rm=k

.
(10)

By construction the CMD is non-negative, respects the tri-

angle inequality, and if P = Q then cmdk(P,Q) = 0. Fur-

thermore, [38, Theorem 1] states that cmdk(P,Q) = 0 im-

plies P = Q for k → ∞, so CMD is a metric on compactly

supported distributions.

For practical applications computing cmd∞ is obviously

not possible, and we have to bound k to K<∞ from above.

Compared to other approximations used for style transfer

[29, 19], the bounded cmdK has a natural theoretical jus-

tification. It can be shown [39, Proposition 1] that the ith

term in the summation of equation 9 is bounded by an upper

bound that strictly decreases with the order i. I.e., the con-

tribution of higher-order moment terms in equation (9) con-

verges monotonically to 0. To keep the implementation effi-

cient we only compute the marginal moments, by restricting

the monomial vectors to η(i)(x) = (xi
1, · · · , xi

m).

Adapting CMD to our style feature distributions is

straight-forward. To fulfill the requirements, we wrap a sig-

moid function σ(·) around each feature output so as to re-

strict the support of the empirical distribution to [0, 1]. With

a slight abuse of notation we write σ(νl) for the νl com-

puted from sigmoid-transformed features and define

Ll
style(Io, Is) := cmdk

(

σ(νlIo), σ(ν
l
Is
)
)

, (11)

for layer l. The moments are simply the moments of the

empirical measure, i.e. powers of E[Fl(I)− µFl(I)] ∈ R
Cl .

By adopting CMD we have an integral probability metric

for NST at our disposal that not only has favourable theo-

retical properties, but is also easy to implement, computa-

tionally efficient, and able to handle complex feature distri-

butions with significant higher-order moments.

4. Results

In this section, we compare our results with existing

methods from each of the categories. After summarizing

details of the implementation, we qualitatively evaluate the

effects of aligning the style features with CMD. Beyond

visual comparisons, we report quantitative results from an

user-study, which supports our hypothesis that higher-order

moments carry important style information and should not

be ignored. Lastly, we further investigate the impact of dif-

ferent moments in an ablation study.

4.1. Experimental setup

We employ VGG-19 [33] as feature encoder and read

out feature maps at layer levels l ∈ {1 1, 2 1, 3 1, 4 1, 5 1}.

Deviating slightly from the commonly used NST setting, we

work with the raw convolution outputs conv-l rather than

their rectified versions relu-l, since we clamp them to [0, 1]
with sigmoid activations for computing the CMD, see (11).

The content loss is computed on conv4 1, for the individual

layers in the style loss we use the same weighting scheme

as proposed in [9]. Optimization is performed with Adam

[18]. Instead of blindly stopping after a fixed number of

iterations, we implement a stopping criterion based on the

difference of the current style loss and a moving average

of the style loss. We compare our algorithm to five base-

lines: one from the MMD group [9], two based on direct

moment differences [25, 15] and two based on OT [24, 27].

We use the existing open-source implementations1 and keep

all hyper-parameters as proposed in the original papers, re-

spectively source codes. Our implementation is based on

PyTorch [30] and is also publicly available.2 For our ex-

periments we bound the order of the moments to K=5, as

higher orders have little influence.

4.2. Qualitative results

We have pinpointed theoretical limitations of previous

NST methods in Sec. 3.3. To see how these translate to

concrete visual differences, we analyze how well the styl-

ized images preserve three different style attributes, color,

texture and stroke, shape. See Fig. 3, and further results in

the supplementary material.

1For [9, 25, 27], original implementations by the authors; for [15, 24],

implementation provided by the authors of [27].
2Code: https://github.com/D1noFuzi/cmd styletransfer
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(a) Input (b) AdaIN [15] (c) Gatys [9] (d) MM [25] (e) OST [27] (f) WCT [24] (g) Ours

Figure 3: Style transfer results of our algorithm and of previous methods from all three categories. Best viewed on screen.

Please zoom in to appreciate style details.

Color and brightness. This paper is concerned with fully

automatic NST, without additional user control. Hence, the

output should have the color palette of the style image. I.e.,

only the semantic content of the content image should be re-

tained, but colors should be replaced by those representative

of the style, and in particular the two color spaces should

not be mixed. Looking at the 1st row of Fig. 3, the red

of the right parrot strongly leaks into the results of AdaIN,

Gatys and MM, and traces are also visible in WCT. Besides

our method, those based on OT fare best in terms of color

palette, but OT has a tendency towards exaggerated bright-

ness variations not warranted by the content, e.g., the girl’s

face in row 5 and the background in row 6. Indeed, it ap-

pears that local color and intensity information is to some

degree hidden in higher-order moments. That observation

is also supported by the ablation study in Sec. 4.4.
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Texture and stroke. Maintaining strokes and textures is

especially important when it comes to artistic style transfer,

to preserve the concomitant individual painting techniques.

We find that the proposed CMD method is particularly good

at replicating granular canvas, oriented brush strokes, etc.

Clear cases in point are rows 1 and 5 of Fig. 3, as well as

the reflections on the lake in row 2. We also point out the

particularly challenging example in the 4th row. Zooming

in on the style image, we can see the rough texture of the

paper, as well as a preference for oriented shading strokes.

While none of the methods is perfect on this difficult in-

stance, the only ones to even partially pick up those pat-

terns are our method and to some degree Gatys (but with

strong color artifacts). In general, we observe that oriented

high-frequency patterns appear to benefit from higher (par-

ticularly, odd) moments, but further research is needed to

explore the relation in depth.

Shape. Lastly, we turn our attention to shape. That at-

tribute is somewhat more complex, as ornamental and dec-

orative shape elements such as the square pattern in row 3

of Fig. 3 are part of the style, whereas semantically mean-

ingful elements of similar size are part of the content, like

the eyes in row 4 or the make-up in row 5. CMD man-

ages to disentangle these two aspects and preserve impor-

tant boundaries and details of the content rather well, while

still imposing the characteristic shape features of the style.

Perhaps the most convincing example is row 3. But also in

other cases the delicate balance between imposing the style

and preserving salient content features appears to benefit

from higher-order moments, e.g., rows 4, 5, 6.

4.3. Quantitative results

User study. There is no clear consensus how to quantita-

tively evaluate NST. The question what constitutes a “cor-

rect” output is clearly ill-posed, and even the judgment how

“good” a given stylization is depends on aesthetic prefer-

ences and must remain subjective. In fact one can, with the

same method, generate very different results only by chang-

ing the relative weights of the style and content losses, and

it depends on the application and on personal taste which

one is preferred.

The current consensus is to perform user studies where

participants are shown results without revealing how they

were generated, and to collect statistics of user preferences.

We note that, while we agree that aesthetic quality is hard

to measure, people can usually pick their favorite among a

handful of alternative stylizations without much hesitation,

which lends some support to these studies: at the very least,

they are a guideline which one among the available meth-

ods will deliver the result that the relatively largest share

of the user group likes best. We conduct a user study with

the same methods as above: AdaIN [15], Gatys [9], Mo-

ment Matching [25], OST [27], WCT [24] and the pro-

posed CMD method. The study uses parts of the Kodak im-

age dataset [6] and additional content images widely used

in NST, showing a variety of scenes, objects and humans.

The style dataset is made up by paintings and drawings

commonly used for NST, from a range of artists includ-

ing Picasso, Kandinsky, Van Gogh and others. In total we

exhaustively combine 31 content images and 20 style im-

ages, resulting in 620 stylized images per algorithm. For

the study, the six stylization results were displayed side-by-

side in random order, along with the underlying content and

style images. Users were asked to pick a single image that

would best transfer style aspects such as shape, textures and

colors using their own judgement.

Overall, we have collected >2700 votes from 56 differ-

ent participants. The scores are reported in Tab. 1. The

study reveals some interesting insights. Indeed, our pro-

posed CMD method performs favorably, with ≈10% more

votes than the closest competitor. The classical NST of [9]

attains the second-highest number of votes. This supports

our claim that iterative methods still have an edge in terms

of quality, as one-shot approaches trade quality for speed.

AdaIN* Gatys MM OST* WCT* Ours

155 533 443 523 463 587

5.7% 19.7% 16.3% 19.3% 17.1% 21.7%

Table 1: Number of votes each method received in our user

study. * denotes one-shot feed-forward methods.

4.4. Ablation studies

In our method it is possible to individually reweight or

turn off moments. We have conducted an ablation study

to better understand the effects of different moments, see

Fig. 4. Note that this tuning knob is orthogonal to user con-

trol in the spirit of [10], where one isolates a specific at-

tribute like color in preprocessing and applies the stylization

selectively. Figure 4 shows style transfer results with differ-

ent combinations of moments. Only a single moment corre-

sponding to the row/column index is used on the diagonal.

Then higher-order moments are progressively added along

the rows, so for instance position (2, 2) corresponds to only

the second moment (weight vector a = [0, 1, 0, 0, 0]) and

element (2, 4) corresponds to the the 2nd, 3rd and 4th mo-

ments (weight vector a = [0, 1, 1, 1, 0]). As was to be ex-

pected there is no obvious, “pure” correspondence between

moments and visual attributes. Still, the study illustrates

some interesting relations. First, one can immediately see

that even the 5th order still contributes significant style ele-

ments, for instance on the chin and the cap in the first row.

Odd moments appear to primarily modulate overall bright-

ness and contrast, whereas even ones tend to change colors

and high-frequency texture.
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1st moment 2nd moment 3rd moment 4th moment 5th moment

Content

Style

Figure 4: Ablation study using only selected moments. See

text for details.

Our CMD method changes only the loss function for dis-

tribution alignment and can be seamlessly combined with

other extensions of NST. For instance, the user can still

control how strongly the style is imprinted on the image

content, by adjusting the relative weight of the style and

content losses. To illustrate this, we stylize with our CMD

method and linearly interpolate the weight α in eq. (1). Fig-

ure 5 shows an example how putting more weight on the

content loss produces increasingly weaker ”partial styliza-

tions” that stay closer to the content image.

5. Limitations and future work

There are currently two conceptual directions in NST:

iterative optimization techniques and one-shot feed-forward

approaches. Our algorithm belongs to the former. While

iterative methods arguably still produce better results, they

are too slow for real-time applications. Our method inherits

that shortcoming, e.g., it could not be used for (near) real-

time video synthesis.

At the conceptual level, we had to make two simplify-

ing approximations to take the step from the mathematical

formalism of CMD to a practical implementation. On the

one hand, we limit the order of the central moments to a fi-

nite, in practice small K. At least in principle the impact of

(a) Content (b) Style (c) α = 0.6

(d) α = 0.2 (e) α = 0.01 (f) α = 0

Figure 5: Varying the strength of style transfer by varying

the relative influence α of the content loss (c.f . eq. (1)).

that restriction can be kept as small as desired by increas-

ing K, because the influence of additional central moments

provably converges →0 with increasing order.

On the other hand, and perhaps more importantly, we

only utilize the marginal central moments in our loss. We

take this shortcut for computational reasons, but it effec-

tively means that we only achieve exact distribution match-

ing when the marginal distributions are independent. There

is currently no evidence that this is the case, and we do not

see a simple way to gauge how much information might be

lost due to the approximation.

6. Conclusion

We have revisited the interpretation of Neural Style

Transfer as aligning feature distributions. After categoriz-

ing existing methods into three groups based on MMD, mo-

ment matching and OT, we show that all of them, in prac-

tice, only match first and second moments. We then went

on to propose a novel approach based on Central Moment

Discrepancys. Our method can be interpreted alternatively

as minimizing an integral probability metric, or as matching

all central moments up to a desired order. Our method has

both theoretical and practical benefits. In terms of theory it

comes with strong approximation guarantees. On the prac-

tical side it offers a computationally efficient way to account

for higher-order moments of complex feature distributions,

and achieves visually better transfer of many artistic styles.

On a broader scale, even though Portilla and Simoncelli pro-

posed higher order matching to texture synthesis [31], Gatys

et al. [8, 9] disregarded all but second-order moments when

pioneering Neural Style Transfer. In this regard, our method

reintroduces higher order matching to NST.

9389



References

[1] Konstantinos Bousmalis, Nathan Silberman, David Dohan,

Dumitru Erhan, and Dilip Krishnan. Unsupervised pixel-

level domain adaptation with generative adversarial net-

works. In CVPR, 2017.

[2] Tian Qi Chen and Mark Schmidt. Fast patch-based style

transfer of arbitrary style. arXiv preprint arXiv:1612.04337,

2016.

[3] Gabriela Csurka. Domain adaptation for visual applications:

A comprehensive survey. arXiv preprint arXiv:1702.05374,

2017.

[4] Vincent Dumoulin, Jonathon Shlens, and Manjunath Kud-

lur. A learned representation for artistic style. arXiv preprint

arXiv:1610.07629, 2016.

[5] Alexei A Efros and William T Freeman. Image quilting for

texture synthesis and transfer. In ACM SIGGRAPH, 2001.

[6] Rich Franzen. Kodak lossless true color image suite. http:

//r0k.us/graphics/kodak/.

[7] Kenji Fukumizu, Arthur Gretton, Xiaohai Sun, and Bernhard

Schölkopf. Kernel measures of conditional dependence. In

NeurIPS, 2008.

[8] Leon A Gatys, Alexander S Ecker, and Matthias Bethge.

Texture synthesis using convolutional neural networks. arXiv

preprint arXiv:1505.07376, 2015.

[9] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Im-

age style transfer using convolutional neural networks. In

CVPR, 2016.

[10] Leon A Gatys, Alexander S Ecker, Matthias Bethge, Aaron

Hertzmann, and Eli Shechtman. Controlling perceptual fac-

tors in neural style transfer. In CVPR, 2017.

[11] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bern-

hard Schölkopf, and Alexander Smola. A kernel two-sample

test. Journal of Machine Learning Research, 13(1):723–773,

2012.

[12] David J Heeger and James R Bergen. Pyramid-based texture

analysis/synthesis. In Proceedings of the 22nd annual con-

ference on Computer graphics and interactive techniques,

pages 229–238, 1995.

[13] Aaron Hertzmann. Painterly rendering with curved brush

strokes of multiple sizes. In ACM SIGGRAPH, 1998.

[14] Aaron Hertzmann, Charles E Jacobs, Nuria Oliver, Brian

Curless, and David H Salesin. Image analogies. In ACM

SIGGRAPH, 2001.

[15] Xun Huang and Serge Belongie. Arbitrary style transfer in

real-time with adaptive instance normalization. In ICCV,

2017.

[16] Yongcheng Jing, Yezhou Yang, Zunlei Feng, Jingwen Ye,

Yizhou Yu, and Mingli Song. Neural style transfer: A review.

IEEE Transactions on Visualization and Computer Graphics,

2019.

[17] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual

losses for real-time style transfer and super-resolution. In

ECCV, 2016.

[18] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014.

[19] Nicholas Kolkin, Jason Salavon, and Gregory

Shakhnarovich. Style transfer by relaxed optimal transport

and self-similarity. In CVPR, 2019.

[20] Jan Eric Kyprianidis, John Collomosse, Tinghuai Wang, and

Tobias Isenberg. State of the ”art”: A taxonomy of artistic

stylization techniques for images and video. IEEE Transac-

tions on Visualization and Computer Graphics, 19(5):866–

885, 2012.

[21] Chuan Li and Michael Wand. Combining Markov random

fields and convolutional neural networks for image synthesis.

In CVPR, 2016.

[22] Shaohua Li, Xinxing Xu, Liqiang Nie, and Tat-Seng Chua.

Laplacian-steered neural style transfer. In ACM Multimedia,

2017.

[23] Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu,

and Ming-Hsuan Yang. Diversified texture synthesis with

feed-forward networks. In CVPR, 2017.

[24] Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu,

and Ming-Hsuan Yang. Universal style transfer via feature

transforms. In NeurIPS, 2017.

[25] Yanghao Li, Naiyan Wang, Jiaying Liu, and Xiaodi

Hou. Demystifying neural style transfer. arXiv preprint

arXiv:1701.01036, 2017.

[26] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I

Jordan. Deep transfer learning with joint adaptation net-

works. In ICML, 2017.

[27] Ming Lu, Hao Zhao, Anbang Yao, Yurong Chen, Feng Xu,

and Li Zhang. A closed-form solution to universal style

transfer. In ICCV, 2019.

[28] Roey Mechrez, Itamar Talmi, and Lihi Zelnik-Manor. The

contextual loss for image transformation with non-aligned

data. In ECCV, 2018.

[29] Youssef Mroueh. Wasserstein style transfer. In AISTATS,

2020.

[30] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An

imperative style, high-performance deep learning library. In

Advances in neural information processing systems, pages

8026–8037, 2019.

[31] Javier Portilla and Eero P Simoncelli. A parametric texture

model based on joint statistics of complex wavelet coeffi-

cients. International journal of computer vision, 40(1):49–

70, 2000.

[32] Eric Risser, Pierre Wilmot, and Connelly Barnes. Stable and

controllable neural texture synthesis and style transfer using

histogram losses. arXiv preprint arXiv:1701.08893, 2017.

[33] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014.

[34] Baochen Sun and Kate Saenko. Deep coral: Correlation

alignment for deep domain adaptation. In ECCV, 2016.

[35] Dmitry Ulyanov, Vadim Lebedev, Andrea Vedaldi, and Vic-

tor S Lempitsky. Texture networks: Feed-forward synthesis

of textures and stylized images. In ICML, 2016.

[36] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. In-

stance normalization: The missing ingredient for fast styliza-

tion. arXiv preprint arXiv:1607.08022, 2016.

9390



[37] Mei Wang and Weihong Deng. Deep visual domain adapta-

tion: A survey. Neurocomputing, 312:135–153, 2018.

[38] Werner Zellinger, Thomas Grubinger, Edwin Lughofer,
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