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Figure 1. Unsupervised learning of depth and depth-of-field (DoF) effect from unlabeled natural images. (a) In training, we adopt

only a collection of single-DoF images without any additional supervision (e.g., ground-truth depth, pairs of deep and shallow DoF images,

and pretrained model). (b) Once trained, our model can synthesize tuples of deep and shallow DoF images and depths from random noise.

The generated data are beneficial in learning a shallow DoF renderer, which also requires no external supervision. The project page is

available at http://www.kecl.ntt.co.jp/people/kaneko.takuhiro/projects/ar-gan/.

Abstract

Understanding the 3D world from 2D projected natural

images is a fundamental challenge in computer vision and

graphics. Recently, an unsupervised learning approach has

garnered considerable attention owing to its advantages in

data collection. However, to mitigate training limitations,

typical methods need to impose assumptions for viewpoint

distribution (e.g., a dataset containing various viewpoint

images) or object shape (e.g., symmetric objects). These as-

sumptions often restrict applications; for instance, the ap-

plication to non-rigid objects or images captured from sim-

ilar viewpoints (e.g., flower or bird images) remains a chal-

lenge. To complement these approaches, we propose aper-

ture rendering generative adversarial networks (AR-GANs),

which equip aperture rendering on top of GANs, and adopt

focus cues to learn the depth and depth-of-field (DoF) ef-

fect of unlabeled natural images. To address the ambigui-

ties triggered by unsupervised setting (i.e., ambiguities be-

tween smooth texture and out-of-focus blurs, and between

foreground and background blurs), we develop DoF mixture

learning, which enables the generator to learn real image

distribution while generating diverse DoF images. In addi-

tion, we devise a center focus prior to guiding the learning

direction. In the experiments, we demonstrate the effective-

ness of AR-GANs in various datasets, such as flower, bird,

and face images, demonstrate their portability by incorpo-

rating them into other 3D representation learning GANs,

and validate their applicability in shallow DoF rendering.

1. Introduction

Natural images are 2D projections of a 3D world. Ad-
dressing the inverse problem, i.e., understanding the 3D
world from natural images, is a fundamental challenge in
computer vision and graphics. Owing to its diverse applica-
tions in various fields, such as in robotics, content creation,
and photo editing, this challenge has been actively studied.

A direct solution to challenge is learning a 3D predic-
tor in a supervised manner using 2D and 3D data pairs
or multiview image sets. However, obtaining such data
is often impractical or time-consuming. To eliminate this
process, several studies have attempted to learn 3D rep-
resentations from single-view images (i.e., with only a
single view per training instance). However, owing to
the ill-posed nature, several studies required auxiliary in-
formation, such as 2D keypoints [49, 23] or 2D silhou-
ettes [17, 6, 32, 13], to align object positions or extract a
target object from the background. Other studies required
predefined category-specific shape models (e.g., 3DMM [3]
and SMPL [36]) [22, 56, 11, 43, 44] to obtain clues for re-
construction. Although they have exhibited promising re-
sults, collecting auxiliary information still requires a labo-
rious annotation process, and a shape model requires addi-
tional preparation costs and restricts applicable objects.

To eliminate these disadvantages, fully unsupervised
learning methods that enable 3D representation learning
from single-view images without additional supervision and
shape models have been devised. Although this is a se-
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vere setting, previous studies have addressed this challenge
by imposing assumptions for viewpoint distribution (e.g., a
dataset including various viewpoint images) [38, 47, 40] or
object shape (e.g., symmetric objects) [59]. The first as-
sumption is required to learn 3D representations by sam-
pling diverse viewpoint images. The second assumption
is required to perform stereo reconstruction using a pair of
mirrored images. Although these assumptions are practical
for objects of a specific class (e.g., human faces), several ob-
jects do not satisfy these assumptions. For example, these
methods are difficult to apply to non-rigid objects or im-
ages captured from similar viewpoints (e.g., flower or bird
images).

To broaden the application without contradicting previ-
ous achievements, in this study, we consider complemen-
tary cues inherent in photos that have not been actively used
in previous deep generative models (including those above).
In particular, we focus on focus cues, in other words, we
consider the learning depth1 and the depth-of-field (DoF)
effect in the defocus process. Specifically, instead of im-
posing an assumption on the viewpoint distribution, we do
so on the DoF distribution (i.e., a dataset including various
DoF images), and as shown in Figure 1, we attempt to learn
3D representations (particularly depth and DoF effect) from
a collection of single-DoF images (i.e., images with solely
a single DoF setting per training instance).

To achieve this, we propose a novel family of generative
adversarial networks (GANs) [14], referred to as aperture

rendering GAN (AR-GAN), which equips aperture rendering
(e.g., light field aperture rendering [46]) on top of GANs.
Specifically, AR-GAN initially generates a pair of a deep
DoF image and depth from a random noise, and then renders
a shallow DoF image from the generated deep DoF image
and depth via aperture rendering. With this mechanism, we
can synthesize various DoF images using a virtual camera
with an optical constraint on the light field.

When AR-GAN is learned in an unsupervised manner
using single-DoF images, two non-trivial challenges are
ambiguity between the smooth texture and out-of-focus
blurs and ambiguity between the foreground and back-
ground blurs, as we cannot obtain explicit supervision of
these relationships. For the first problem, we introduce DoF

mixture learning, which enables the generator to learn the
real image distribution while generating various DoF im-
ages. This learning ensures that the generated images (deep
and shallow DoF images) are in a real distribution, and fa-
cilitates the learning of the depth, which is a source of con-
necting deep and shallow DoF images. For the second prob-
lem, based on the observed tendency to focus on the center
object when a focused image is considered, we impose a
center focus prior, which facilitates the focusing of the cen-
ter while guiding the surroundings to be behind the focal
plane. In practice, we adopt prior solely at the beginning of
training to guide the learning direction.

1In this study, we use depth and disparity interchangeably to indicate
disparity across a camera aperture.

To evaluate the effectiveness of AR-GAN, we first con-
ducted experiments with comparative and ablation stud-
ies on diverse datasets, including flower (Oxford Flowers
102 [39]), bird (CUB-200-2011 [53]), and face (FFHQ [26])
datasets. A significant property of AR-GAN is its porta-
bility, which we validated by incorporating AR-GAN
into other 3D representation learning GANs (i.e., Holo-
GAN [38] and RGBD-GAN [40]). Another significant
property of AR-GAN is its ability to synthesize a tuple of
deep and shallow DoF images and depth from a random
noise, after training. We utilize this property to train a shal-
low DoF renderer and empirically demonstrate its utility.

Overall, our contributions are summarized as follows:

• We provide unsupervised learning of depth and DoF

effect from unlabeled natural images. This is note-
worthy because it does not impose assumptions on the
viewpoint distribution or object shape, which are re-
quired in conventional unsupervised 3D representation
learning.

• To achieve this, we propose a novel GAN family (AR-

GAN), which generates a deep DoF image and depth
from a random noise and renders a shallow DoF image
from them via aperture rendering.

• To address ambiguities caused by a fully unsupervised
setting, we devise DoF mixture learning to enable the
generator to learn real image distribution using gener-
ated diverse DoF images, and develop a center focus

prior to determine the learning direction.

• We validate the effectiveness, portability, and applica-
bility of AR-GANs via extensive experiments. The
project page is available at http://www.kecl.
ntt.co.jp/people/kaneko.takuhiro/

projects/ar-gan/.

2. Related work

Generative adversarial networks. GANs [14] have
achieved remarkable success in 2D image modeling via
a series of advancements (e.g., [5, 26, 27]). A substan-
tial property of GANs is their ability to mimic data dis-
tribution in a random sampling process without explic-
itly defining the data distribution. This allows GANs to
learn various distribution types. For example, recent stud-
ies [57, 58, 38, 17, 47, 40, 33] have made it possible to
learn a 3D-aware image distribution via 3D GAN architec-
tures or 3D representations. Among them, HoloGAN [38]
and RGBD-GAN [40] share a similar motivation with us in
terms of learning 3D representations from natural images in
a fully unsupervised manner; however, the major difference
is that they adopt viewpoint cues, whereas we employ focus

cues. We empirically demonstrate this difference in Sec-
tion 5.2. Owing to this difference, the previous and present
models are not exchangeable but complementary. We verify
their compatibility in Section 5.4 by combining AR-GAN
with HoloGAN and RGBD-GAN.

Another related topic is the application of GANs for un-
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supervised learning of the foreground and background [51,
62]. Although previous and present studies are relevant in
terms of learning image compositions, they decompose the
image discretely, whereas we learn the continuous depth.
Furthermore, we can learn the DoF effect, which has not
been achieved in previous studies.

Other relevant GANs are GANs with measurements [4,
41, 31, 24, 25], which apply measurements (e.g., mask and
noise) before matching a generated image with a real im-
age. Our aperture rendering functions similarly to those
measurements. However, in the previous work, applicable
measurements were limited to those in a 2D image plane,
and effectiveness was solely demonstrated on synthetically

corrupted images. In contrast, AR-GAN can learn a DoF
effect, which yields a 3D space. In the experiments, we
verify that this effect can be learned from images taken in
real scenarios (Section 5).

Unsupervised 3D representation learning. As mentioned
in Section 1, the learning of 3D representations from single-
view images has garnered attention owing to its data col-
lection advantage. To address this challenge, several stud-
ies have employed auxiliary information as clues for re-
construction, such as 2D keypoints [49, 23], 2D silhou-
ettes [17, 6, 32, 13], or shape models [22, 56, 11, 43, 44]. In
contrast, we attempt to address this challenge with no addi-
tional supervision and no predefined model to reduce costs
from laborious annotation and model preparation.

Recently, some studies [38, 47, 40, 59] have addressed
this; however, their assumptions and objectives differ from
ours. They impose assumptions for the viewpoint distribu-

tion or object shape, whereas we impose an assumption for
the DoF distribution. Owing to this assumption difference,
they can learn 3D meshes [47], depth [40, 59], albedo [59],
texture [47], light [59], and viewpoints [38, 47, 40, 59],
whereas AR-GAN can learn the depth and DoF effect.
Therefore, AR-GAN can be considered a model that can
complement (not replace) previous models, and we vali-
date this statement by incorporating AR-GAN into Holo-
GAN [38] and RGBD-GAN [40] (Section 5.4).

Monocular depth estimation. Monocular depth estimation
involves predicting the depth when a single image is given.
A successful approach involves learning a depth predictor
using paired or consecutive data, such as image and depth
pairs [8, 34, 30, 29, 61, 9], stereo pairs [10, 12, 60], and
videos [65, 63, 54]. Although this approach is a promising
solution, collecting such data is often impractical or time-
consuming.

In another direction, some studies [46, 15] have proposed
the adoption of focused and all-in-focus image pairs, in-
cluding learning the depth in the process of reconstructing
the focused image from an all-in-focus image. Although
this study is inspired by their success, the main difference
is that they require paired supervision between focused and
all-in-focus images, whereas ours does not need it. How-
ever, owing to this difference, our task is very challenging;
therefore, in this study, we did not attempt to achieve high-

quality depth estimation comparable to supervised meth-
ods. Instead, in the experiments, we compared AR-GAN
with a previous fully unsupervised depth estimation model
(i.e., RGBD-GAN [40]) and demonstrated the utility of AR-
GAN in this challenging setting (Section 5.2).

DoF rendering. The DoF or Bokeh effect is a popular pho-
tography technique, and its synthesis has garnered consid-
erable interest in computer vision and graphics. To achieve
this without prior knowledge of geometry and lightning,
previous studies adopted stereo pairs [1], a stack of images
taken in different camera settings [20, 16], and a segmenta-
tion mask [45, 52] to determine the degree of blur. Although
they have exhibited remarkable results, they are limited ow-
ing to their general dependence on a manually defined DoF
renderer. To address this limitation, end-to-end supervised
learning methods [46, 55, 19, 42], which learn a DoF ren-
derer using pairs of shallow and deep DoF images, were
devised. Recently, an unpaired learning method [66] was
also proposed. This method eliminates the requirement for
paired supervision; however, set-level supervision (i.e., su-
pervision of whether each image is a deep or shallow DoF
image) remains necessary. In contrast, we focus on learning
a DoF renderer in a fully unsupervised manner. We demon-
strate the effectiveness of our approach in Section 5.5.

3. Preliminaries

3.1. GANs

We briefly introduce two previous works on which our
model is based. The first is GAN [14], which learns data
distribution using the following objective:

LGAN = EIr∼pr(I)[logC(Ir)]

+ Ez∼p(z)[log(1− C(G(z))], (1)

where, given a random noise z, a generator G generates an
image Ig = G(z) that can deceive a discriminator C by
minimizing this objective, whereas C distinguishes Ig from
a real image Ir by maximizing this objective. Here, super-
scripts r and g denote the real and generated data, respec-
tively. Using this min-max game, the generative distribution
pg(I) approaches the real distribution pr(I).

3.2. Light field aperture rendering

Light field aperture rendering [46] is a type of differ-
entiable aperture rendering.2 Its objective is to learn an
aperture renderer R that synthesizes a shallow DoF image
Is(x) = R(Id(x), D(x)), given a deep DoF image Id(x)
and depth D(x).3 Here, x represents the spatial coordinates

2Another representative aperture rendering is compositional aperture
rendering [46], which discretely models disparities using a stack of blur
kernels. In the initial experiments, we determined that light field aperture
rendering, which models the light field within a camera, is more compati-
ble with our unsupervised learning. This is possibly because the learning
clues are few in our unsupervised learning; therefore, a camera constraint
via light field aperture rendering works sufficiently.

3In the original study [46], D(x) is estimated from I(x). However,
this estimation is not adopted in AR-GAN; hence, we omitted it here.
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of the light field on the image plane. When Id(x) is directly
warped into the viewpoint in the light field based on D(x),
holes can appear in the resulting light field. Instead, a train-
able neural network T is adopted to expand D(x) into a
depth map M(x,u) for each view in the light field:

M(x,u) = T (D(x)), (2)

where u denotes the angular coordinates of the light field
on the aperture plane. Subsequently, Id(x) is warped into
each view in the light field using the depth map M(x,u):4

L(x,u) = Id(x+ uM(x,u)), (3)

where L(x,u) is the simulated camera light field. Finally,
it is integrated to render a shallow DoF image Is(x):

Is(x) =
∑

u

A(u)L(x+ u,u), (4)

where A(u) is an indicator that represents the disk-shaped
camera aperture. Hereafter, for simplicity, we omit x and u

when they are not required.

4. Aperture rendering GANs: AR-GANs

4.1. Problem statement

We begin by defining the problem statement. We con-
sider a fully unsupervised setting in which we cannot ob-
tain any supervision or pretrained model except for an im-
age collection. As discussed in Section 2, typical end-to-
end focus-based monocular depth estimation methods (e.g.,
[46, 15]), and DoF rendering methods (e.g., [46, 19, 42, 66])
achieve their objectives using a conditional model (i.e., a
deep DoF image is used as the input, and a depth or shallow
DoF image is estimated based on it). However, in our fully
unsupervised setting, we cannot employ this formulation as
we cannot determine whether each image is either a deep or
shallow DoF image.

Alternatively, we aim to learn an unconditional generator
G(z) that can generate a tuple of a deep DoF image, depth,
and shallow DoF image, i.e., (Igd , D

g, Igs ), from a random
noise. When the training images are extremely biased in
terms of the DoF (e.g., all images are all-in-focus), it is dif-
ficult to determine focus cues from the images; hence, we
impose the following assumption on an image distribution:

Assumption 1 The DoF setting is different for each image,

and the dataset includes various DoF images.

Note that we do not have to collect a set of various DoF
images for each training instance. We observed that this as-
sumption is satisfied by typical natural image datasets (e.g.,
flower [39], bird [53], and face [26] datasets shown in Fig-
ure 1). Under this assumption, we aim to learn the above-
mentioned generator in a wisdom of crowds approach.

4The depth of the focal plane can be learned explicitly by adding the
parameterized offset m̂ to M in Equation 3. However, we do not do so
under the assumption that it is determined per image Id and internally
represented and optimized in D, which is used in Equation 2. In this case,
the focal plane exists at D = 0, while out-of-focus occurs in |D| > 0.

z

GD

GI

Dg(x)

I
g
d (x) Igs (x)

T A(u)

Warp
&

Deep DoF

Depth

Shallow DoFApertureLight field
∑

u
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Aperture renderer
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Figure 2. Overall pipeline of AR-GAN generator. The AR-GAN

generator first generates a deep DoF image I
g

d and depth D
g from

a random noise z, and then renders a shallow DoF image I
g
s from

I
g

d and D
g using the aperture renderer R.

4.2. Overall pipeline

The overall pipeline of the AR-GAN generator is illus-
trated in Figure 2. When given a random noise z, we first
generate the deep DoF image I

g
d and depth Dg as follows:

I
g
d = GI(z), D

g = GD(z). (5)

In practice, we share the weights between GI and GD ex-
cept for the last layer because the image and depth exhibit
high correlation. A previous study [35] demonstrated that
this kind of weight sharing is beneficial in learning a joint
distribution between relevant domains. Subsequently, we
render a shallow DoF image Igs from the generated I

g
d and

Dg using the aperture renderer R described in Section 3.2.
Typical GANs apply a discriminator C to the final out-

put of the generator (i.e., Igs in our case). However, in
AR-GAN, both generators (i.e., GI and GD) and R are
trainable. Hence, without constraints, they could compete
roles. Consequently, they can drift into an extreme solution
(e.g., R learns strong out-of-focus, and GI learns an over-
deblurred image). To address this, we develop DoF mixture

learning, which is detailed in the next section.

4.3. DoF mixture learning

A possible solution to this problem is regularizing GI

using an explicit distance metric (e.g., L1, L2, or perceptual
loss [21, 7]) such that I

g
d is approximate to Igs . However,

this solution disrupts the depth learning (Section 5.3.1).
Alternatively, we introduce DoF mixture learning. Fig-

ure 3 illustrates the comparison between standard and DoF
mixture learning. In standard GAN training, the generator
attempts to cover the real image distribution using images
without constraints. In contrast, in the DoF mixture learn-
ing, the generator attempts to represent the real image distri-
bution using diverse DoF images whose extent is adjusted
by a scale factor s. More precisely, in our AR-GAN, the
GAN objective (Equation 1) is rewritten as follows:

LAR-GAN = EIr∼pr(I)[logC(Ir)]

+ Ez∼p(z),s∼p(s)[log(1− C(R(GI(z), sGD(z)))], (6)

where s ∈ [0, 1]; when s = 0, a deep DoF image (almost
equal to I

g
d ) is rendered, whereas when s = 1, a shallow
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Figure 3. Comparison of standard and DoF mixture learning.

DoF image (i.e., Igs ) is rendered. Intuitively, the aperture
renderer R, which has an optical constraint on the light
field, functions as a shallow DoF image prior. Under As-
sumption 1 (a real image distribution pr(I) includes both
deep Ird and shallow Irs DoF images), this prior encourages
the generated deep I

g
d and shallow Igs DoF images to be ap-

proximate to Ird and Irs , respectively. This also facilitates
the learning of Dg , which is a source of the I

g
d and Igs con-

nection.
In practice, we determined that sampling s from a bi-

nomial distribution, i.e., p(s) = B(1, ps), works optimally,
where ps indicates a probability of s = 1. In Section 5.3, we
examine the effect of the ps value. It was manually deter-
mined for simplicity; however, optimizing it in a data-driven
approach is a potential direction for future work.

4.4. Center focus prior

Another challenge unique to unsupervised depth and
DoF effect learning is to the difficulty in distinguishing
foreground and background blurs without any constraint or
prior knowledge. Although not all images satisfy this, fo-
cused images tend to be captured when the main targets are
positioned at the center, as shown in Figure 4(a). Based on
this observation, we impose a center focus prior defined by

Dp =

{

0 (r <= rth)

−g · (r − rth) (r > rth),
(7)

where r indicates the distance from the center of the image,
and rth and g denote the hyper-parameters that define the
focused area and depth gain, respectively. We visualize this
prior in Figure 4(b). As shown in this figure, the prior facili-
tates the center area focus while promoting the surrounding
area to be behind the focal plane. We apply this prior to the
generated depth Dg as follows:

Lp = λp‖D
g −Dp‖

2
2, (8)

where λp represents a weighting parameter. In practice, we
apply this only at the beginning of training to mitigate the
negative effect triggered by the gap between Dr and Dp.

(a) Examples of focused images (b) Center focus prior

Figure 4. Examples of focused images and center focus prior.

In (b), light color indicates the foreground.

5. Experiments

5.1. Experimental settings

We conducted four experiments to verify the effective-
ness of AR-GANs from multiple perspectives: a compara-
tive study on unsupervised 3D representation learning (Sec-
tion 5.2), ablation studies on DoF mixture learning and
center focus prior (Section 5.3), portability analysis (Sec-
tion 5.4), and application to shallow DoF rendering (Sec-
tion 5.5). Here, we explain the common settings and present
the details of each in the following sections.

Datasets. We evaluated AR-GANs on three natural im-
age datasets that cover various objects: Oxford Flowers
102 [39] (8189 flower images with 102 categories), CUB-
200-2011 [53] (11788 bird images with 200 categories), and
FFHQ [26] (70000 face images). To efficiently examine
various cases, we resized the images to 64 × 64. We also
experimented on 128×128 images in some cases to confirm
the dependency on image resolution (e.g., Figure 1).

Metrics. To evaluate the visual fidelity of the generated im-
ages, we adopted the kernel inception distance (KID) [2],5

which computes the maximum mean discrepancy between
real and generated images within the Inception model [48].
When calculating scores, we generated 20000 images from
each model. Measuring depth and DoF accuracy directly is
non-trivial because we aim to learn an unconditional model
from unpaired and unlabeled natural images, and cannot ob-
tain the ground truth. Alternatively, we evaluated the depth
accuracy by (1) learning the depth estimator using pairs of
images and depths generated by GANs, (2) predicting the
depths of real images using the learned depth estimator, and
(3) comparing the obtained results with the depths predicted
by a state-of-the-art monocular depth estimator [60], which
is trained using stereo pairs in an external dataset.6 We used
scale-invariant depth error (SIDE) [8] to measure the dif-
ference. In both metrics, the performance increased as the
score decreased. In all the experiments, we report the mean
score with the standard deviation over three training runs.

Implementation. We implemented the model based on
HoloGAN [38]. The generator has a StyleGAN-like archi-
tecture [26]. In AR-GANs, 3D convolution used in Holo-
GAN is not required; hence, we replaced it with 2D con-
volution. The discriminator has instance [50] and spectral
normalizations [37]. The networks were trained using the
Adam optimizer [28] with a non-saturating GAN loss [14].

5.2. Comparative study

First, we conducted a comparative study to clarify the
difference between AR-GAN and previous fully unsuper-
vised 3D representation learning. For comparison, we used

5We used the KID because it has an unbiased estimator and comple-
ments the flaws of other representative metrics (i.e., Fréchet inception dis-
tance (FID) [18] and inception score (IS) [18]).

6We used the pretrained model provided by the authors: https:

//github.com/KexianHust/Structure-Guided-Ranking-

Loss.
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Figure 5. Qualitative comparison of HoloGAN, RGBD-GAN,

and AR-GAN. HoloGAN, RGBD-GAN, and AR-GAN generate

images, image and depth pairs, and tuples of deep and shallow

DoF images and depths, respectively.

HoloGAN [38] and RGBD-GAN [40], which are repre-
sentative models in this category, as well as the standard
GAN [14]. As discussed in Section 2, HoloGAN/RGBD-
GAN learns 3D representations using viewpoint cues,
whereas AR-GAN achieves this with focus cues. Hence,
the applicable datasets are different, which we verified by
applying the models to the three datasets.

Results. Examples of the generated images are presented in
Figure 5. Here, the obtainable 3D representations and appli-
cable datasets differ among the GANs. Although HoloGAN
and RGBD-GAN succeed in learning viewpoint-aware rep-
resentations in FFHQ, they fail to do so in Oxford Flowers
and CUB-200-2011, where viewpoint distributions are bi-
ased and viewpoint cues do not exist sufficiently. In con-
trast, AR-GAN succeeds in learning the depth and DoF ef-
fect in all datasets because it can employ focus cues, which
are present across all datasets.

The KID comparison is summarized in Table 1. We
found that AR-GAN achieved comparable performance and
did not incur a negative effect across all datasets.

KID×103↓ Oxford Flowers CUB-200-2011 FFHQ

GAN 11.71 ±0.68 15.04 ±0.14 6.97 ±0.30

HoloGAN 11.30 ±0.37 14.68 ±0.51 6.89 ±0.38

RGBD-GAN 12.04 ±0.35 14.92 ±0.49 6.73 ±0.26

AR-GAN 11.23 ±0.36 14.30 ±0.56 5.75 ±0.19

Table 1. Comparison of KID×10
3↓ among different GANs.

SIDE×102↓ Oxford Flowers CUB-200-2011 FFHQ

RGBD-GAN 7.01 ±0.81 7.06 ±0.02 5.81 ±0.40

AR-GAN 4.46 ±0.03 3.58 ±0.04 4.21 ±0.15

Table 2. Comparison of SIDE×10
2↓ between RGBD-GAN and

AR-GAN. GAN and HoloGAN are not listed here because they

cannot generate depth along with an image.

(     only)

Oxford
Flowers

FFHQ

CUB-
200-2011

[60]
AR-GAN AR-GAN† AR-GAN† AR-GAN† RGBD-GAN

(Full) (     only) (w/o      )DpI
g
dI

g
s

(c) (d) (e) (f) (g)(b)(a)

Input
(Real)

SOTA
(Baseline)

Figure 6. Examples of predicted depths. † indicate the ablated

models. (c–g) Results obtained in a fully unsupervised setting.

The SIDE comparison is presented in Table 2. We found
that AR-GAN outperforms RGBD-GAN in all datasets. Ex-
amples of the predicted depths are presented in Figure 6.
Although the predicted depths exhibit a lower resolution
that those predicted by the supervised methods (e.g, [60]),7

we found that AR-GAN (c) improves the details (e.g.,
flower details and tree branches) that disappear in [60] (b)
and RGBD-GAN (g), thus benefiting from focus cues.

5.3. Ablation study

5.3.1 Ablation study on DoF mixture learning

Metrics. We first evaluated the importance of the DoF
mixture learning. As mentioned in Section 5.1, measuring
depth and DoF accuracy directly is non-trivial; therefore,
we further adopted two metrics alongside KID and SIDE:
(1) Learned perceptual image patch similarity (LPIPS) [64]
computes the distance between two images in the CNN fea-
ture space and is demonstrated to exhibit a high correlation
with human perceptual similarity [64]. We adopted LPIPS
to measure the perceptual similarity between pairs of I

g
d and

Igs . LPIPS is expected to be moderately small because the
content is preserved before and after the application of aper-
ture rendering. (2) Depth standard deviation (DSD) is the
standard deviation of the generated depths. Our objective is
to learn a meaningful depth that can yield a plausible DoF
effect. When depth learning is successful, DSD is expected
to be sufficiently large.

7Note that 64 × 64 is the standard resolution for fully unsupervised
learning methods (e.g., HoloGAN and RGBD-GAN), and applications to
images with complex objects/backgrounds are challenging for them.
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Oxford Flowers KID×103↓ SIDE×102↓ LPIPS↓ DSD↑

Ig
s only ps = 1 12.36 ±0.59 5.48 ±0.20 0.229 ±0.027 0.157 ±0.063

Mixture ps = 0.75 10.97 ±0.26 4.81 ±0.06 0.023 ±0.001 0.657 ±0.006

Mixture ps = 0.5 10.69 ±0.48 4.65 ±0.05 0.022 ±0.000 0.771 ±0.022

Mixture ps = 0.25 11.23 ±0.36 4.46 ±0.03 0.028 ±0.001 1.007 ±0.025

I
g

d
only ps = 0 11.58 ±0.37 4.56 ±0.20 0.113 ±0.013 0.446 ±0.065

L1 11.66 ±0.72 5.26 ±0.65 0.033 ±0.001 0.387 ±0.116

Double discriminators 9.74 ±0.31 6.79 ±2.21 0.000 ±0.001 0.032 ±0.046

CUB-200-2011 KID×103↓ SIDE×102↓ LPIPS↓ DSD↑

Ig
s only ps = 1 13.62 ±0.53 4.63 ±0.50 0.125 ±0.037 0.354 ±0.021

Mixture ps = 0.75 12.68 ±0.61 3.75 ±0.08 0.037 ±0.003 0.748 ±0.072

Mixture ps = 0.5 13.14 ±0.03 3.55 ±0.02 0.043 ±0.003 0.959 ±0.075

Mixture ps = 0.25 14.30 ±0.56 3.58 ±0.04 0.059 ±0.002 1.175 ±0.017

I
g

d
only ps = 0 14.58 ±0.56 5.94 ±0.70 0.115 ±0.019 0.193 ±0.012

L1 12.54 ±0.32 5.75 ±1.26 0.042 ±0.001 0.725 ±0.195

Double discriminators 12.50 ±0.12 4.33 ±0.34 0.000 ±0.000 0.001 ±0.000

FFHQ KID×103↓ SIDE×102↓ LPIPS↓ DSD↑

Ig
s only ps = 1 5.75 ±0.44 6.00 ±0.35 0.097 ±0.011 0.296 ±0.018

Mixture ps = 0.75 5.67 ±0.23 4.38 ±0.10 0.009 ±0.001 0.757 ±0.177

Mixture ps = 0.5 5.75 ±0.19 4.21 ±0.15 0.009 ±0.001 0.769 ±0.119

Mixture ps = 0.25 6.17 ±0.08 4.68 ±0.33 0.010 ±0.001 0.583 ±0.071

I
g

d
only ps = 0 6.85 ±0.13 4.77 ±0.13 0.028 ±0.006 0.202 ±0.003

L1 5.82 ±0.21 4.82 ±0.09 0.015 ±0.004 0.466 ±0.045

Double discriminators 6.20 ±0.08 5.20 ±0.47 0.000 ±0.000 0.000 ±0.000

Table 3. Comparison of KID×10
3↓, SIDE×10

2↓, LPIPS↓, and

DSD↑ among AR-GANs with different learning methods.

Comparison models. We conducted the analysis from two
perspectives. (1) We evaluated the effect of the ps value,
which indicates the rate of using shallow DoF images in
the DoF mixture learning (Equation 6). (2) We tested two
possible alternatives: L1, which uses L1 loss to guide I

g
d

closer to Igs , and double discriminators, which adopts two
discriminators, for I

g
d and Igs , respectively. This facilitates

both pg(Id) and pg(Is) to coincide with the overall real dis-
tribution pr(I).

Results. A comparison of the scores is summarized in Ta-
ble 3. Our main findings are two-folds:

(1) Effect of value of ps. We found that some fluctu-
ations exist in the KID; however, in all cases, the scores
are comparable to those of the other GANs presented in
Table 1. This indicates that AR-GANs can generate plau-
sible images regardless of ps. In contrast, SIDE, LPIPS,
and DSD are affected by ps. SIDE tends to improve when
the DoF mixture learning is adopted.8 This is because in
the DoF mixture learning, we can encourage I

g
d and Igs to

be approximate to Ird and Irs , respectively, as well as facil-
itate Dg learning, which is the source that connects them.
Examples of predicted depths (Figure 6 (c–e)) also vali-
date the effectiveness of DoF mixture learning. Regarding
LPIPS and DSD, as LPIPS increases, and DSD successively
decreases when ps = 1 or ps = 0. This indicates that
the DoF mixture learning is required to manage LPIPS and
DSD. Among AR-GANs with DoF mixture learning (i.e.,
ps ∈ {0.25, 0.5, 0.75}), there is a trade-off and dataset de-
pendency relative to LPIPS and DSD. Consider the score

8The sole “I
g

d
only” case in Oxford Flowers is an exception. In this

case, Dg is not regularized by aperture rendering; however, weight sharing
between GI and GD (Section 4.2) aids the depth learning. This strategy
exhibits dataset dependency and fails in the other datasets.

Oxford
Flowers

FFHQ

CUB-
200-2011

Seed 0 Seed 1 Seed 2 Seed 0 Seed 1 Seed 2

(a) With Dp (b) Without Dp

Figure 7. Comparison of AD with and without Dp.

Oxford Flowers KID×103↓ SIDE×102↓ LPIPS↓ DSD↑

W/ Dp 11.23 ±0.36 4.46 ±0.03 0.028 ±0.001 1.007 ±0.025

W/o Dp 10.69 ±0.24 6.78 ±1.58 0.026 ±0.002 0.915 ±0.137

CUB-200-2011 KID×103↓ SIDE×102↓ LPIPS↓ DSD↑

W/ Dp 14.30 ±0.56 3.58 ±0.04 0.059 ±0.002 1.175 ±0.017

W/o Dp 13.96 ±0.63 4.86 ±1.84 0.062 ±0.004 1.183 ±0.059

FFHQ KID×103↓ SIDE×102↓ LPIPS↓ DSD↑

W/ Dp 5.75 ±0.19 4.21 ±0.15 0.009 ±0.001 0.769 ±0.119

W/o Dp 5.72 ±0.10 6.70 ±1.88 0.009 ±0.001 0.851 ±0.057

Table 4. Comparison of KID×10
3↓, SIDE×10

2↓, LPIPS↓, and

DSD↑ among AR-GANs with and without Dp.

balance, we set ps = 0.25 for Oxford Flowers and CUB-
200-2011 and ps = 0.5 for FFHQ in other experiments.

(2) Comparison with alternatives. Although L1 achieves
reasonable LPIPS, it deteriorates SIDE and DSD more than
those in the DoF mixture learning. This result indicates that
this method disrupts depth learning. Double discriminators
facilitate both pg(Is) and pg(Id) to coincide with pr(I).
Consequently, LPIPS and DSD approach zero, and SIDE
depreciates. This result verifies the importance of mixing
I
g
d and Igs when learning pr(I).

5.3.2 Ablation study on center focus prior

Metrics. We evaluated the necessity of the center focus
prior Dp. To assess the overall tendency of each pixel to
represent the foreground or background blur, we calculated
the average depth (AD), i.e., the pixel-wise average of the
generated depths. To validate the learning consistency, we
compared the results over three training runs.

Results. The results are presented in Figure 7. We found
that we can obtain constant results across training runs when
Dp is adopted. In all results, the center is focused, while the
surroundings are behind the focal plane. In contrast, when
we eliminate Dp, the foreground and background are turned
over, depending on the initialization. These results indicate
that Dp is beneficial in determining the learning direction.

The comparison of the scores is summarized in Table 4.
We found that KID, LPIPS, and DSD are comparable across
all datasets. We deduce that Dp is solely adopted at the be-
ginning of training; therefore, it does not disrupt the entire
training. In contrast, SIDE depreciates when Dp is not im-
plemented. This occurs because the foreground and back-
ground are reversed, as shown in Figure 6(f).
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Deep
DoF

Shallow
DoF

Depth

(a) AR-HoloGAN (AR-GAN + HoloGAN)

Deep
DoF

Shallow
DoF

Depth

(b) AR-RGBD-GAN (AR-GAN + RGBD-GAN)

Azimuth

Figure 8. Examples of images generated using AR-HoloGAN

and AR-RGBD-GAN. The viewpoint change in the horizontal di-

rection is obtained by the HoloGAN/RGBD-GAN function, while

the DoF change and depth in the vertical direction are obtained by

the AR-GAN function.

5.4. Portability analysis

As presented in Section 5.2, the obtainable represen-
tations differ between HoloGAN/RGBD-GAN and AR-
GAN. An interesting approach would be learning these rep-
resentations jointly by combining them. A significant prop-
erty of AR-GAN is portability, i.e., it is easy to incorporate
into other GANs. Specifically, we can achieve this simply
by adding aperture rendering on top of HoloGAN/RGBD-
GAN and training it with the DoF mixture training and a
center focus prior. One requirement is that a dataset should
satisfy the assumptions of both models; i.e., a dataset should
include diverse viewpoint images along with various DoF
images. Among the datasets described above, only FFHQ
satisfies this requirement. Hence, we solely evaluated AR-

HoloGAN (AR-GAN + HoloGAN) and AR-RGBD-GAN

(AR-GAN + RGBD-GAN) on this dataset.

Results. Examples of generated images are shown in Fig-
ure 8. As shown, we can jointly control both viewpoints and
the DoF effect with the HoloGAN/RGBD-GAN and AR-
GAN functions. As a reference, we also calculated the KID
scores. The scores for AR-HoloGAN and AR-RGBD-GAN
were 5.70 ± 0.32 and 5.43 ± 0.22, respectively. These are
better than the scores of the original AR-GAN, HoloGAN,
and RGBD-GAN (Table 1).

5.5. Application in shallow DoF rendering

Finally, we demonstrate the applicability of AR-GAN in
shallow DoF rendering. After training, AR-GAN can syn-
thesize tuples of (Igd , D

g, Igs ) from random noise. By uti-
lizing this, we learn a shallow DoF renderer Id → Is using
pairs of (Igd , I

g
s ). We call this approach AR-GAN-R. As an-

other approach, we learn a depth estimator Id → D using
pairs of (Igd , Dg). By employing the learned depth estima-

Deep DoF

(d) CycleGAN(a) Input
 (baseline)

(c) AR-GAN-DR
 (proposed)

(b) AR-GAN-R
 (proposed)

Shallow DoF Shallow DoF Shallow DoFDepth

Figure 9. Examples of shallow DoF rendering.

tor, we estimate D from Id and then render Is from (Id, D)
using R in AR-GAN. We call this approach AR-GAN-DR.

Comparison model. To the best of our knowledge, no pre-
vious method can learn the DoF effect from natural images
in the same setting as ours (i.e., without additional supervi-
sion and a predefined model). Therefore, as a baseline, we
used CycleGAN [66], which can learn a shallow DoF ren-
derer Id → Is using set-level supervision (i.e., supervision
of whether each image is a deep or shallow DoF image).9

Dataset. We used Oxford Flowers and AR-GAN-generated
images to train AR-GAN and AR-GAN-R/DR, respectively.
To confirm generality, we conducted a test on a differ-
ent dataset, including flower photos taken by smartphones,
which were used in the CycleGAN study [66].

Results. Examples of the rendered images are presented in
Figure 9. We found that CycleGAN often yields unneces-
sary changes (e.g., color change), whereas AR-GAN-R/DR
does not. We infer that the aperture rendering mechanism
in AR-GAN contributes to this phenomenon. In addition,
AR-GAN-DR can estimate the depth simultaneously.

6. Conclusion

We proposed a novel family of GANs, AR-GANs, which
can learn depth and DoF effect from unconstrained natural
images. To achieve this, we incorporated aperture render-
ing into GANs and developed DoF mixture learning and
a center focus prior to address the ambiguities triggered
by the unsupervised setting. Via comparative and abla-
tion studies, we elucidated the differences from previous
GANs and the significance of the proposed techniques. We
demonstrated that AR-GANs are compatible and comple-
mentary to previous GANs by combining AR-GANs with
HoloGAN/RGBD-GAN. Finally, we demonstrated the ap-
plicability of AR-GANs in shallow DoF rendering. Despite
their applications in photos, several deep generative models
do not utilize focus cues. In the future, we expect that our
findings will facilitate further studies on such models.

9We used the pretrained model provided by the authors: https://
github.com/junyanz/pytorch-CycleGAN-and-pix2pix.
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