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Abstract

Integrated Gradients (IG) [29] is a commonly used fea-

ture attribution method for deep neural networks. While IG

has many desirable properties, the method often produces

spurious/noisy pixel attributions in regions that are not re-

lated to the predicted class when applied to visual models.

While this has been previously noted [27], most existing so-

lutions [25, 17] are aimed at addressing the symptoms by

explicitly reducing the noise in the resulting attributions. In

this work, we show that one of the causes of the problem

is the accumulation of noise along the IG path. To mini-

mize the effect of this source of noise, we propose adapting

the attribution path itself - conditioning the path not just on

the image but also on the model being explained. We intro-

duce Adaptive Path Methods (APMs) as a generalization of

path methods, and Guided IG as a specific instance of an

APM. Empirically, Guided IG creates saliency maps bet-

ter aligned with the model’s prediction and the input image

that is being explained. We show through qualitative and

quantitative experiments that Guided IG outperforms other,

related methods in nearly every experiment.

1. Introduction

As deep neural network computer vision models are in-

tegrated into critical applications such as healthcare and

security, research on explaining these models has intensi-

fied. Feature attribution techniques strive to explain which

inputs the model considers to be most important for a

given prediction, making them useful tools in debugging

models or understanding what they have likely learned.

However, while a plethora of techniques have been devel-

oped [24, 29, 13, 9, 20], there are still behaviors of these

attribution techniques that remain to be understood. In

this context, our work is focused on studying the source of

noise in attributions produced by path-integral-based meth-

ods [27].

Gradient-based feature attribution techniques [24, 22]

are of particular interest in our work. The main idea behind

these techniques is that the partial derivative of the output

(a) Input image (b) IG attributions (c) Guided IG

Figure 1: Comparing feature attribution for Integrated Gradients

and Guided Integrated Gradients. Both (b) and (c) use a black

baseline to explain the “house finch” prediction. While (b) has

attributions on the bird, there is substantial noise in the attribu-

tions compared to (c). This work studies the source of noise, and

presents Guided IG as a solution.

with respect to the input is considered as a measure of the

sensitivity of the network for each input dimension. While

early methods [24] use the gradients multiplied by the input

as a feature attribution technique, more recent methods ex-

ploit gradients of the activation maps [22], or integrate gra-

dients over a path [29]. This work studies Integrated Gra-

dients (IG) [29], a commonly used method that is based on

game-theoretic ideas in [1]. IG avoids the problem of di-

minishing influences of features due to gradient saturation,

and has desirable theoretical properties.

One commonly observed problem while calculating In-

tegrated Gradients for vision models is the noise in pixel

attribution (Figure 1) originating from gradient accumula-

tion [11, 25, 27, 30] along the integration path. A few pos-

sible explanations for this noise have been put forth: (a)

high curvature of the output manifold [7]; (b) approxima-

tion of the integration with Riemann sum; and (c) choice

of baselines [30, 27]. Our experiments indicate that one

source of attribution noise comes from regions of corre-

lated, high-magnitude gradients on irrelevant pixels found

along the straight line integration path. Our findings cor-

relate with observations in [7], which state that the model

surface plays a large role in determining the magnitude of

attribution values.

Methods have been proposed to explicitly reduce the

noise in attributions. SmoothGrad [25] averages attribu-

tions over multiple samples of the input, created by adding

Gaussian noise to the original input. The aggregation im-
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(a) Schematic
(b) IG attributions (c) Guided IG attributions

Figure 2: Comparing IG and Guided IG’s paths and results. (a): For IG, a straight line path from baseline to input is followed (red dotted

line), regardless of changes in gradients. For Guided IG, the path is chosen by selecting features that have the smallest absolute value of

corresponding partial derivatives (cyan dotted line). Guided IG’s goal is to reduce the accumulation of gradients caused by nearby very

high/very low prediction examples. (b) and (c): Snapshots of attributions for the flower pot class for Integrated Gradients (center) and

Guided IG (right) at alpha values of 0.1, 0.5, and 1.0. The top rows show graphs of the softmax prediction for flower pot as a function of

alpha. The second row shows the input image produced by each technique at the three different alpha values. Note that IG’s straight line

path affects all pixels equally (e.g., see α = 0.5), while Guided IG reveals the least important features, first. The third row shows each

technique’s attributions for each of the three alpha values, with Guided IG showing less noise outside the area of the image occupied by

the flower pot.

proves the overall true signal in the attribution. XRAI [12]

aggregates attributions within segments to reduce the out-

lier effect. Sturmfels et al. suggest the choice in baseline

is a contributing factor, and propose different baselines as a

potential solution [27]. [30] integrate over the frequency di-

mension by blurring the input image, thereby reducing per-

turbation artifacts along the attribution path. Dombrowski

et al. smooth the network output by converting ReLUs to

softplus [7].

While the above methods address noise in the attri-

butions by manipulating the input (or the baseline), ours

examines the entire path of integration. As mentioned

in [29], each path from the baseline to the input consti-

tutes a different attribution method; the methods discussed

above [29, 25, 12, 27] choose the straight line path, while

[30] choose the ‘’blur” path when integrating gradients. In

this work, instead of determining the path based on the in-

put and baseline alone, we propose adaptive path methods

(APMs) that adapt the path based on the input, baseline,

and the model being explained. Our intuition is that model-

agnostic paths, such as the straight line, are susceptible to

travel through regions that have irregular gradients, result-

ing in noisy attributions. We posit that adapting the integra-

tion path based on the model can avoid selecting samples

from anomalous regions when determining attributions.

We propose Guided Integrated Gradients (Guided IG),

an attribution method that integrates gradients along an

adaptive path determined by the input, baseline, and the

model. Guided IG defines a path from the baseline towards

the input, moving in the direction of features that have the

lowest absolute value of partial derivatives. At each step,

Guided IG selects the features (pixel intensities) with the

lowest absolute value of partial derivatives (e.g., bottom

10%), and moves only that subset closer to the intensity in

the input image, leaving all others unchanged. As the in-

tensity of specific pixels (features) becomes equal to that in

the input image being explained, they are no longer candi-

dates for selection. The attributions resulting from this ap-

proach are considerably less noisy. Experiments highlight

that Guided IG outperforms other, related methods in nearly

every experiment. Our main contributions are as follows:

• We propose Adaptive Path Methods (APMs) a gener-

alization of path methods [29] that consider the model

and input when determining the attribution path.

• We introduce Guided IG, an attribution technique that

is an instance of an adaptive path method, and describe

its theoretical properties.

• We present experimental results that show Guided IG

outperforms other attribution methods quantitatively

and reduces noise in the final explanations.

2. Related Work

Literature on explanation and attribution methods has

grown in the last few years, with a few broad categories

of approaches: Black-box methods and methods that per-

5051



turb the input [20, 9, 8, 19]; methods utilizing back-

propagation [29, 22, 4, 2]; methods that visualize intermedi-

ate layers [26, 31, 24, 16, 18]; and techniques that combine

these different approaches [12, 25, 3]. Our work extends

and improves upon Integrated Gradients [29], a popular

technique applicable to many different types of models. Ac-

cordingly, we focus on perturbation and back-propagation-

based methods.

Black-box methods such as [20, 9, 8, 19] are model ag-

nostic, and rely on perturbing or modifying the input in-

stance and observing the resulting changes on the model’s

output. While [20] uses segmentation-based masking of

input, [19] generates random smooth masks to determine

salient input segments or regions. [9, 8] apply multiple

perturbations such as adding noise, or blurring, and opti-

mize over the model output to learn the mask. All of these

methods typically require several iterations/evaluations of

the model to identify salient regions (or pixels) for a sin-

gle input. As BlurIG shows [30], perturbations can intro-

duce artifacts (i.e., information not in the original image),

adversely affecting the validity of the output.

Back-propagation methods [29, 22, 4, 2] examine the

gradients of the model with respect to an input instance to

determine pixel-level attribution. These methods produce a

saliency map by weighing the gradient contributions from

layers in the network to individual pixels, or entire regions.

Our work specifically builds on the path-based Integrated

Gradients in [29]. Specifically, our work addresses the is-

sue of noise in pixel attribution in IG, which is highlighted

by [25, 12, 27]. While [25] addresses this issue by adding

noise-based perturbations to the input, and averaging attri-

butions over the perturbed input samples, [12] aggregates

attributions of regions by considering a segmentation of the

input. In contrast to these previous methods, our paper

addresses this issue of noise by optimizing the path along

which the gradients are aggregated.

3. High Gradient Impact on IG Attribution

In this section, we provide a summary of the Integrated

Gradients method, then describe how highly-correlated gra-

dients can introduce noise to IG’s attributions. We also

show how model-agnostic paths (e.g., a straight line path)

can contribute to this problem.

3.1. Integrated Gradients

For visual models, given an image x, IG calculates attri-

butions per pixel (feature) i by integrating the gradients of

the function/model (F ) output w.r.t. pixel i as in Eqn. 1.

IGi(x) =

∫ 1

α=0

∂F (γ(α))

∂γi(α)

∂γi(α)

∂α
dα (1)

(a) Input image (b) Directional ∆ (c) Gradient

Figure 3: Differences in magnitude of directional derivative and

total gradients. (a): The input image. (b): Signed directional

derivative (∆) magnitude on the straight-line path from the black

baseline to the input image, using the input image from (a). The

area under the curve is equal to the total attribution. (c): Magni-

tude of gradients along the straight-line path, using the input image

from (a). Even as the magnitude of directional derivatives is close

to 0 from 0.3 < α < 1.0, the magnitude of gradients is high,

leading to possible gradient accumulation.

where
∂F (x)
∂xi

is the gradient of F along the ith feature and

γ(α) represent images along some integral path (α ∈ [0, 1]).
In [29, 25, 12, 17], γ(α) is a function that modifies the in-

tensity of pixels from a baseline image γ(α = 0) (e.g., a

black, white, or random noise image), to that of the input

being explained γ(α = 1) = x.

3.2. Noise Originating from Model­Agnostic Paths

In assessing IG’s outputs, one can observe noise in the

attributions (e.g., Figure 1). Recent work has investigated

this noise and accredited it to the selection of baseline [27]

or gradient accumulation in saturated regions [17]. Concur-

ring with [7], we observe that the model’s surface is also an

important factor.

Looking at the matrix of partial derivatives of the output

w.r.t. the input image, we observe that the partial derivatives

have a higher by-order-of-magnitude L2 norm in compari-

son to the norm of the directional derivative (in the direction

of the integration path) matrix (see Figure 3). This implies

that the influence of the inputs not contributing to the out-

put may dominate the gradient map at any integral point.

One would hope that gradient vectors pointing to different

(incorrect) directions will cancel each other out when the

whole path is integrated, but that is not always the case as

gradient vectors tend to correlate (e.g., see Figure 5). To put

it plainly, spurious pixels that don’t contribute to the model

output end up having non-zero attributions depending on

the model geometry (Figure 4).

A straight path, where pixel intensities are uniformly in-

terpolated between a baseline and the input, is susceptible

to travel through areas where the gradient norm is high and

not pointing towards the integration path (indicated by a

low cosine similarity between ~
▽F (x) and ~dx). This is-

sue can be minimized by averaging over multiple straight

paths [25, 12] or limiting the impact of noise by splitting

the path into multiple segments [17]. However, these ap-
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proaches sidestep an important issue: attribution methods

based on model-agnostic paths will highly depend on sur-

face geometry.

Figure 4: High gradients along the straight-line path from base-

line (A) to input (E). At any point (B) of the path, it is possible

to find points (C) and (D) that are in very close proximity to (B)

and have very low (C) and very high prediction scores (D) respec-

tively. Even though these points arent part of the path, their close

proximity to (B) implies the presence of high gradients along the

straight line path.

Figure 5: Correlation of gradients along the attribution path. Gra-

dients for the Integrated Gradients (blue) and Guided IG (orange)

path were calculated for the image from Figure 1. Each subplot

shows cosine similarity between gradients at alpha=[0.1, 0.5, 0.9]

to the gradients at all other steps of the integration path for IG and

GIG. For each graph, the point chosen is indicated with a dashed

vertical line.

4. Adaptive Paths and Guided IG

We introduce adaptive path methods (APMs), a general-

ization of path methods (PMs), to address the limitations of

model-agnostic paths. An APM is similar to the definition

of path methods (as in [29]), with the additional property

that the path can depend on the model function. Adaptive

path methods are a superset of path methods, and are de-

fined as follows.

Definition: Let F : R
N → R be a function of X =

{x1, ..., xN}. Let XB = {xB
1 , ..., x

B
N} be the baseline in-

put. Let XI = {xI
1, ..., x

I
N} be the input that requires ex-

planation. Let path c be parameterized by a path function

γF = (γF
1 , ..., γF

N ) such that xi = γF
i (α), where α ∈ [0, 1]

and γi(0) = xB
i and γi(1) = xI

i . The adaptive path method

attribution of feature xi over curve c for any input xI , is

defined as

aγ
F

i (XI) =

∫ 1

α=0

∂F (γF (α))

∂γF
i (α)

∂γF
i (α)

∂α
dα. (2)

As with any path method, an APM also satisfies Im-

plementation Invariance, Sensitivity, and Completeness ax-

ioms defined in Sundararajan et al. [29]. Below, we expand

on these properties for a specific instance of an adaptive

path method, Guided IG.

4.1. Desired Characteristics

To alleviate the effect of accumulation of attribution in

directions of high gradients unrelated to the input (sec. 3.2),

we wish to define a path that avoids those (input) regions

causing anomalies in the model behavior. We can call this

(ℓnoise), and one way to minimize over this is as follows

γF∗ = arg min
γF∈Γ

ℓnoise (3)

ℓnoise =

N
∑

i=1

∫ 1

α=0

∣

∣

∣

∣

∂F (γF (α))

∂γF
i (α)

∂γF
i (α)

∂α

∣

∣

∣

∣

dα

By minimizing ℓnoise at every feature (pixels i · · ·N ) we

can hopefully avoid high gradient directions. However, be-

fore we can define γF (α) precisely, optimizing the above

objective requires knowing the prediction surface of the

neural network F at every point in the input space, which is

infeasible. So, we propose a greedy approximation method

called Guided Integrated Gradients.

4.2. Guided IG

Guided IG is an instance of an adaptive path method. As

with IG, the path (c) starts at the baseline (XB) and ends at

the input being explained (XI ). However, instead of mov-

ing features (pixel intensities) in a fixed direction (all pix-

els incremented identically) towards the input, we make a

choice at every step. At each step, we find a subset S of

features (pixels) that have the lowest absolute value of the

partial derivatives (e.g., the smallest 10%) among those fea-

tures (pixels) that are not yet equal to the input (image pixel

intensity). The next step in the path is determined by mov-

ing only those pixels in S closer to their corresponding in-

tensities in the input image. The path ends when all feature

values (intensities of all pixels) match the input. Formally,

• Let F : RN → R be a function of X = {x1, ..., xN}.

The Guided IG integration path, GIG(XS ,XE ,F ), is defined

based on the starting point (XS), the ending point (XE),
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and the direction vector at every point of the curve:













XS = XB

XE = XI

∂γF
i (α)

∂α
=

{

xI
i − xB

i , if i ∈ S,

0 , otherwise.

(4)

S is calculated for every point of curve c, and contains fea-

tures that have the lowest absolute value of the correspond-

ing partial derivative among the features that have not yet

reached the input values. More formally,

S = {i|∀j : yi ≤ yj} ≡ argmin
i
(Y ) (5)

yi =











∣

∣

∣

∣

∂F (X)

∂xi

∣

∣

∣

∣

, if i ∈ {j|xj 6= xI
j}

∞ , otherwise.

(6)

Guided IG path length. Only features in subset S are

changed at every point of the Guided IG path. Hence in

the general case, the L2 norm of the Guided IG path is

greater than the norm of the straight-line path. The Cauchy–

Schwarz inequality provides the upper boundary of the path

length: ||GIG||2 ≤
√
N ·||IG||2, where GIG is the Guided

IG path and IG is the straight line path. In terms of the

L1 norm, the lengths of the paths are always equal, i.e.

||GIG||1 = ||IG||1. The equality is true because at ev-

ery point of the Guided IG path individual features of the

input are either not changed or changed in the direction of

the input.

Efficient approximation. Guided IG can be efficiently

approximated using a Riemann sum with the same asymp-

totic time complexity as the computation of Integrated Gra-

dients. In domains like images, the number of features is

high; therefore, it is not practical to select only one feature

at every step. Hence, at every step, the approximation algo-

rithm selects a fraction of features (we use 10%) with the

lowest absolute gradient values and moves the selected fea-

tures toward the input. At every step, the algorithm reduces

the L1 distance to the input by the value that is inversely

proportional to the number of steps. The higher the number

of the steps is, and the lower the fraction is, the closer the

approximation is to the true value of Guided IG attribution.

We provide our implementation in the Supplement.

Since Guided IG path is computed dynamically, it is not

possible to parallelize the computation for a single input.

Parallelization is still possible when calculating attribution

for multiple independent inputs (batches).

4.3. Bounded Guided IG

The optimal solution path to Equation (3) is unbounded

and can deviate infinitely off the baseline-input region.

However, it can be advantageous to stay close to the short-

est path. First, staying close to the baseline-input region

decreases the likelihood of crossing areas that are too out-

of-distribution. Second, it can be computationally cheaper

to numerically approximate the integral of a shorter path.

To this end, we modify the objective in Eqn. 3 to addi-

tionally minimize the accumulated distance to the straight-

line path (ℓdistance). The new objective can then be defined

as:

γF∗ = arg min
γF∈Γ

ℓnoise + λℓdistance (7)

ℓdistance =

∫ 1

α=0

∣

∣

∣

∣γF (α)− γIG(α)
∣

∣

∣

∣ dα,

where γIG(α) is the parameterized straight-line path and

λ is the coefficient that balances the two components. For

very large values of λ (e.g. λ = ∞), the solution of this

objective reduces to the shortest path (same as the IG path).

Setting λ = 0, would give us Eqn. 3, which can be thought

of as an unbounded version.

One approximation of this objective is limiting the max-

imum distance that the Guided IG path can deviate from the

straight line path at any point1. We introduce the concept

of anchors as a simple way of achieving this. We divide

the straight-line path between the baseline XB and the in-

put XI into K + 1 segments and compute Guided IG for

each segment separately, effectively forcing the Guided IG

path to intersect with the shortest path at K anchor loca-

tions. We call this the anchored Guided IG. Accordingly,

selecting a higher number of anchors corresponds to opti-

mizing for a higher value of λ in Equation 7, making the

results of Guided IG closer to IG. On the other hand, when

the number of anchors is zero we have the unbounded algo-

rithm described previously. To put it concretely, for the kth

segment, its starting (XS
k ) and ending (XE

k ) point can be set

as

• XS
k = (XI −XB)(k − 1)/(K + 1) +XB , and

• XE
k = (XI −XB)(k)/(K + 1) +XB

We then define Guided IG with K anchors as:

GIG(XS ,XE ,F )(K) =

K+1
∑

k=1

GIG(XS

k
,XE

k
,F ).

Since the integral is a linear operator, summing the in-

tegrals of each individual segment is the same as taking the

integral of the whole path. For simplicity, we will ignore the

other terms and refer to Guided IG with K anchor points as

GIG(K) in the rest of the paper.

1There are multiple ways of limiting the distance. See https://

github.com/pair-code/saliency for the latest implementation.
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Sometimes, having zero anchors is more favorable as

there can be cases where anchors overlap with the high gra-

dient regions on the shortest path. The more anchors there

are, the more likely it is to hit a high gradient region and

accumulate noise, while staying closer to the shortest path.

We will show the effect of anchors in the Results section in

more detail.

4.4. Axiomatic Properties of Guided IG

Guided IG satisfies a subset of desired axioms as IG[29].

We note the ones we satisfy below. As with any path inte-

gral in a conservative vector field, Guided IG satisfies the

completeness axiom that can be summarized by Eq. (8)

(where ai denotes the attribution per pixel/feature)

N
∑

i=1

ai = F (XI)− F (XB) (8)

Since Guided IG satisfies completeness, it also satisfies

Sensitivity(a) (see [29] for the proof). Sensitivity(b)[10]

is also satisfied because the partial derivative of a function

with respect to a dummy variable is always zero at any point

of the path. As a result, the value of the integral in Eq. (2)

is always zero for any such variable.

In the appendix, we provide a proof that Guided IG

is Symmetry-Preserving. Symmetry guarantees that if

F (x, y) = F (y, x) for all x and y then both x and y should

always be assigned equal attribution. The important remark

here is that this does not contradict the uniqueness of the IG

method. IG satisfies Symmetry for any function; however,

given a function, it may be possible to find other paths that

satisfy Symmetry. In practice, we always calculate attribu-

tions for a given function, e.g., a neural network model.

Guided IG satisfies the Implementation Invariance ax-

iom; thus, it always produces identical attributions for two

functionally equivalent networks. Guided IG preserves the

invariance since it only relies on the function gradients and

does not depend on the internal structure of the network.

There may be other properties that are worth further study

such as additivity and uniqueness, please refer to [28].

5. Experiments and Results

We evaluate Guided IG by first observing its behavior

in attributing a closed path, then examine its performance

using common benchmarks, datasets, and models.

5.1. Attribution of a Closed Path

One challenge in evaluating attribution methods is the

lack of ground truth for the attributions themselves [17].

The Completeness axiom guarantees that the sum of all fea-

ture attributions for any path is equal to the difference be-

tween the function value at the input and the function value

at the baseline. Therefore, the sum of all attributions for a

Figure 6: Attribution of closed paths. By calculating the attri-

bution path of the input image with itself via random points, we

create an attribution path that in theory should be zero.

closed path is equal to zero. However, Completeness does

not define the values of individual feature attributions, only

the sum. We can, however, axiomatically define the ground

truth attribution for all features as the average attribution

values of all possible paths from the baseline to the input.

This definition is similar to Shapley values [23] that are also

defined in terms of a sum of all possible paths. Using the

axiomatic definition of the ground truth attribution, we can

now prove that the ground truth attribution for a closed path

A → A is zero for all features.

Proof. Let P be a set of all possible paths from point

A to point A. Let a denote attribution. For any path

p ∈ P , there exists a counterpart reverse path p′ such that

ai(p) + ai(p
′) = 0 for all features i. Since every path has

a counterpart reverse path cancelling its attributions, the av-

erage attribution values of individual features are 0. Q.E.D.

We can build a random path A → B → C → A and

consider it as an estimator of ground truth attribution of path

A → A. Using the path integral additive property, we can

break the path into sub-segments, i.e., a(A → B → C →
A) = a(A → B) + a(B → C) + a(C → A). Now,

we can apply a path method on every segment and treat the

sum as an estimation of the ground truth. Figure 6 gives an

illustration of the idea.

We apply this technique to calculate the attribution of

each segment using both IG and Guided IG. We sample 50

random paths on 200 random images from the ImageNet

validation dataset, for the total of 10,000 path samples. We

calculate the mean of the squared error for individual fea-

tures and average the error across all images, pixels, and

channels. The results in Table 1 show that applying Guided

IG results in lower error compared to IG.

MobileNet Inception ResNet

IG 3.817e-07 5.938e-07 6.707e-07

Guided IG 7.320e-08 1.442e-07 1.857e-07

Table 1: Closed path mean squared error for IG and Guided IG.
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(AUC) ImageNet Open Images DR

Method MobileNet Inception ResNet ResNet [14]

Edge 0.611 0.610 0.611 0.606 0.643

Gradients 0.614 0.634 0.650 0.505 0.801

IG 0.629 0.655 0.669 0.557 0.833

Blur IG 0.652 0.662 0.663 0.619 0.830

GIG (0) 0.705 0.712 0.711 0.630 0.619

GIG (20) 0.691 0.696 0.706 0.624 0.863∗

GradCAM 0.776 0.761 0.755 0.474 0.837

Smoothgrad

+IG 0.742 0.773 0.781 0.662 0.637

+GIG(0) 0.745 0.776 0.776 0.649 0.632

+GIG(20) 0.767 0.795 0.799 0.685 0.645

XRAI

+IG 0.731 0.765 0.762 0.631 0.793

+GIG(0) 0.838∗ 0.829∗ 0.821∗ 0.718 0.630

+GIG(20) 0.808 0.819 0.809 0.719∗ 0.831

Table 2: We report the mean AUC values for different methods us-

ing the black baseline for the methods compared. Higher is better.

bold indicates highest in each group, * indicates highest overall.

5.2. Quantitative evaluation

Metrics We compare Guided IG attributions with other

attribution methods by employing the AUC-ROC metric as

described in [5]. The metric treats the attributions as clas-

sifier prediction scores. Ground truth is provided by human

annotators. The sliding threshold determines the proportion

of features that are assigned to the “true” class. By chang-

ing the threshold, the ROC curve is drawn and the AUC of

that curve is calculated.

Additionally, we also use the Softmax Information

Curve (SIC AUC) metric from [12]. This method directly

measures how well the model performs without using hu-

man evaluation. It does so by revealing only the regions

that are highlighted by the attribution method and measur-

ing the model’s softmax score. The key idea is that the attri-

bution method that has better focus on where the model is

truly looking should reach the softmax value faster than an-

other one that is less focused on the correct region. There-

fore, this metric evaluates the attribution method from the

model’s perspective without any human involvement.

Methods We compare our method against four base-

lines: edge detector, vanilla Gradients [24], IG, and Blur

IG [30] (with max σ = 35). We compare both the un-

bounded version of Guided IG (listed as GIG(0), where the

number of anchors is in parentheses), and variants with an-

chors (e.g., GIG(20)). The edge detector saliency for an

individual pixel is calculated as the average absolute differ-

ence between the intensity of the pixel and the intensity of

its nearest eight adjacent neighbours. We used 200 steps

and the black baseline for all methods that required these

parameters.

5.2.1 Datasets

We evaluated our approach on two datasets of natural im-

ages, and one dataset of medical images (described below),

and report results in Table 2.

ImageNet [21] We used images from the standard vali-

dation set. We only included images that had ground truth

(AUC) ImageNet-Inception OpenImages DR

Method black b+w 2-rnd black b+w 2-rnd black b+w 2-rnd

IG 0.655 0.667 0.689 0.557 0.572 0.600 0.833 0.824 0.791

Blur IG 0.662 0.662 0.662 0.619 0.619 0.619 0.830 0.830 0.830

GIG(0) 0.712 0.738 0.722 0.630 0.625 0.607 0.619 0.544 0.510

GIG(10) 0.702 0.722 0.709 0.626 0.636 0.617 0.850 0.837 0.751

GIG(20) 0.696 0.714 0.704 0.624 0.639 0.617 0.863 0.850 0.792

GIG(40) 0.690 0.706 0.698 0.615 0.634 0.613 0.865∗ 0.851 0.794

XRAI

+IG 0.765 0.820 0.843 0.631 0.697 0.747 0.793 0.810 0.793

+GIG(0) 0.829 0.854∗ 0.843 0.718 0.714 0.674 0.630 0.629 0.573

+GIG(20) 0.819 0.852 0.851 0.719 0.764 0.744 0.831 0.831 0.788

+GIG(40) 0.815 0.852 0.849 0.709 0.768∗ 0.749 0.829 0.831 0.795

Table 3: AUC-ROC values for ImageNet Inception model, the

Open Images ResNet model, and the DR model, using 3 different

choices of baseline - black, black and white, and 2 random (note

that BlurIG does not need a baseline); and 4 different anchored

versions of GIG (K={0, 10, 20, 40}). Higher is better, values in

bold are highest in each column, ∗ is highest on dataset.

(SIC AUC) ImageNet Open Images

Method MobileNet Inception ResNet ResNet

Edge 0.300 0.371 0.405 0.537

Gradients 0.368 0.431 0.510 0.595

IG 0.402 0.499 0.544 0.694

Blur IG 0.411 0.501 .560 0.659

GIG(0) 0.423 0.516 0.550 0.634

GIG(20) 0.453 0.546 0.584 0.701

GIG(40) 0.453 0.551 0.592 0.734

GradCAM 0.691 0.739 0.763 0.662

XRAI

+IG 0.671 0.736 0.755 0.843

+GIG(40) 0.692 0.752 0.771 0.866

Table 4: SIC AUC results [12] for Guided IG and other methods.

All methods use black and white baseline if they require it. Values

in bold are the highest.

annotation and were predicted as one of the top 5 classes

by the corresponding model. We calculated the AUC-ROC

metric for the ImageNet dataset using three pre-trained

models: Mobilenet v2 (n=4016), Inception v2 (n=3965)

and Resnet v2 (n=3838).2

Open Images [15] We evaluated on 5000 random im-

ages from the validation set of the Open Images dataset. As

with ImageNet, we only included images that had ground

truth annotation and were predicted as one of the top 5

classes by the corresponding model.

Medical Images [6] We also compare our method on a

model trained to predict Diabetic Retinopathy (DR). Specif-

ically, we use the Inception-v4 DR classification model

from [14]. We examine the results on a sample of 165 im-

ages from the validation set [6].

From Tables 2 and 4, we can see Guided IG outper-

forms other methods. Also, Smoothgrad [25] and Guided

IG are likely reducing the same sources of noise, so we

only see a marginal improvement when combining the two

methods. However, adding anchors (e.g., GIG(20)), shows

a substantial improvement in performance. We also note

2All models were downloaded from TensorFlow Hub.
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(a) IG attribution (b) Guided IG attribution

Figure 7: Comparison of IG and Guided IG on a retina image [6]

used in diagnosing diabetic retinopathy.

that smoothing does not seem to be a good strategy on the

DR dataset where sparser attributions may be preferred; this

can also be observed with XRAI, but to a lesser extent. The

XRAI method aggregates attributions to image segments,

and hence when combined with Guided IG, it shows the

best performance on most models.

5.2.2 Effect of baseline choice

For path methods, there are different options one can choose

for the baseline. Table 3 examines the effect of choosing

a black baseline, (average over a) black and a white base-

line, and (the average over) 2 random baselines. While

a black+white baseline is generally a better choice, with

GIG(0), we can see that much of the improvement (over

IG) is observed on a single black baseline itself.

5.2.3 Effect of number of anchors

We also report the performance of anchored versions of

Guided IG. Table 3 examines all the models on 4 different

choice of anchors K = {0, 10, 20, 40} (where 0 is simply

the unbounded version of Guided IG.) For natural images,

it appears that Guided IG without any anchors is a better

choice. On the DR dataset, Guided IG seems reliant on an-

chor points along the straight line path. Overall, Guided IG

with a black or black+white baseline and 20 anchor points

leads to consistently good performance on the evaluated

metrics across all models and datasets.

5.3. Qualitative Results

Figure 8 shows a sampling of results for IG and Guided

IG (more in Appendix) with Inception v2 as the model. As

can be seen in these figures, Guided IG generally clusters its

attributions around the predicted class object with compara-

tively less noise in other areas of the image. We provide ad-

ditional qualitative results including failure examples, proof

of symmetry, and pseudocode in the Supplement.

6. Discussion

Experimental results from Tables 2 and 3 show that

adapting the path to avoid high gradient information al-

lows Guided IG to perform better than other tested methods.

From Table 3, we can also observe that Guided IG performs

well irrespective of the choice of baseline.

Figure 8: Visual comparison of GIG and IG. See how GIG is more

focused around the basketball compared to IG.

In the experimental results, we observe some variation in

Guided IG’s performance as a function of the number of an-

chor points. In many cases, these differences are relatively

minor; from our experimental results, 20 anchor points may

be a reasonable default value to use for this technique. Ad-

ditionally, while our implementation employs anchor points

to prevent paths from becoming too long, there are other

ways one could achieve this goal. For example, one could

“bound” the path to prevent it from straying too far from

the straight line path of IG. Future work could explore al-

ternative methods like this to ensure adaptive paths reduce

accumulation of noise, without sacrificing either attribution

quality or performance.

Guided IG demonstrates only one instance of an APM;

there may exist other APM instances that are better suited

for particular tasks, domains, models. Moreover, while we

evaluated Guided IG on visual models and datasets, the

same or different variants may be better suited for other

modalities such as text or graph models.

7. Conclusion

This paper introduces the concept of Adaptive Path

Methods (APMs) as an alternative to straight line paths

in Integrated Gradients. We motivate APMs by observing

how attribution noise can accumulate along a straight line

path. APMs form the basis for Guided IG, a technique

that builds on IG and adapts the path of integration to

avoid introduction of attribution noise along the path, while

still optionally minimizing the path length to back-off to

a straight path. We demonstrate that Guided IG achieves

improved results on common attribution metrics for image

models. Opportunities for future work include understand-

ing and investigating Guided IG on other modalities, such

as text or graph models.
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