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Figure 1. Our human motion transfer framework translates 2D pose skeletons (A) to photorealistic images (D) by explicitly estimating

the actor’s 2D shape (B) and internal structure of clothing (C), enabling direct deformation handling and support of high-frequency details

such as wrinkles and shadows.

Abstract

Video-based human motion transfer creates video ani-

mations of humans following a source motion. Current

methods show remarkable results for tightly-clad subjects.

However, the lack of temporally consistent handling of plau-

sible clothing dynamics, including fine and high-frequency

details, significantly limits the attainable visual quality. We

address these limitations for the first time in the literature

and present a new framework which performs high-fidelity

and temporally-consistent human motion transfer with nat-

ural pose-dependent non-rigid deformations, for several

types of loose garments. In contrast to the previous tech-

niques, we perform image generation in three subsequent

stages: synthesizing human shape, structure, and appear-

ance. Given a monocular RGB video of an actor, we train

a stack of recurrent deep neural networks that generate

these intermediate representations from 2D poses and their

temporal derivatives. Splitting the difficult motion trans-

fer problem into subtasks that are aware of the temporal

motion context helps us to synthesize results with plausible

dynamics and pose-dependent detail. It also allows artistic

control of results by manipulation of individual framework

stages. In the experimental results, we significantly out-

perform the state-of-the-art in terms of video realism. The

source code is available at https://graphics.tu-bs.

de/publications/kappel2020high-fidelity .

1. Introduction

Human motion transfer methods, also known as perfor-

mance cloning or reenactment methods, can generate real-

istic video animations of an actor following a target mo-

tion specified by a user. This has several applications in

AR/VR and video editing. Building upon new advances in

machine learning, current motion transfer methods tackle

this challenging problem by learning a direct mapping be-

tween an actor-independent motion space and the resulting

target actor’s appearance space. These methods often re-

quire a training video of an actor performing a rich set of

motions [2, 5, 17, 19, 27, 33].

Some recent motion transfer approaches parameterize

motion as skeletal pose sequences that can be computed

from videos with off-the-shelf pose detectors [5, 27]. Others

use pre-captured template meshes or parameterized body

models to provide additional guidance to the synthesis

step [17, 19]. Acquisition of such templates [17], however,

requires an extensive structure-from-motion reconstruction

of the static target actor under constant lighting. Further-

more, existing human motion transfer approaches are likely

to produce notable temporal and spatial artifacts when ac-

tors wear loose clothing, such as dresses, skirts and hood-

ies [2, 5, 19, 33]. On such garments, they struggle to real-

istically reproduce the appearance of fine-scale details like

folds and wrinkles, as well as plausible dynamics.

In this paper, we present a new human motion transfer

framework that generates visually plausible video anima-

tions of humans that are spatially and temporally coherent,

and show natural dynamics, even for actors wearing loose

garments (see Fig. 1). Given a single monocular video of

an actor performing a rich set of motions, we train a stack

of deep generative networks to learn a mapping from 2D

pose to a silhouette with semantic part labels, and per-pixel
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appearance of the actor. We model the person’s shape as a

dense foreground silhouette mask with per-pixel labels en-

coding assignment to limbs and garments. We further en-

code the structure of wrinkles and texture patterns of gar-

ments as the orientation and strength of local image gradi-

ents. We extract this structure from images using a bank

of oriented filter kernels [23, 31]. Encoding the actor’s ap-

pearance with these explicitly decoupled intermediate rep-

resentations of silhouette and structure is key to enhance the

temporal and spatial quality of synthesized videos compris-

ing human actors in loose clothing.

Our method improves over current motion transfer ap-

proaches in terms of visual fidelity using a single RGB cam-

era. Furthermore, our representation provides an additional

level of control over the final image generation. For exam-

ple, for the same overall dynamic geometric outline (i.e.,

the same garment geometry), color and appearance, includ-

ing fold and wrinkle style, can be manipulated in a purely

image-based way. Overall, our contributions can be sum-

marized as follows: (1) A new motion transfer framework

with an emphasis on visually-plausible fine-scale deforma-

tions and dynamics in the actor’s clothing. (2) For this, we

propose to decompose the pose-to-image translation task

into better conditioned cascaded processes, where the fi-

nal appearance is conditioned on the predicted shape out-

line and internal structure of the clothing. (3) We show that

our intermediate representations do not only help to provide

more temporally coherent conditioning resulting in more

appealing image synthesis, but also allow controlling indi-

vidual aspects of the final rendering (e.g., enhance wrinkles

and transfer the clothing style).

2. Related Work

Apart from general-purpose image-translation tech-

niques which can be used for novel human view synthe-

sis [2, 12, 32, 33, 37], most specialized techniques can

be classified into still image-based [8, 21, 22, 25, 28] or

video-based [1, 5, 7, 9, 17, 18, 19]. Pix2pix [12] is one

of the most recognized general-purpose image translation

techniques in the literature. Other image-to-image transla-

tion variants include pix2pixHD [33] for processing high-

resolution images, Zhu et al. [37] for learning from un-

paired data, and Wang et al. [32] for video processing.

The work of Bansal et al. [2] learns a mapping from un-

paired video data with a focus on processing temporal infor-

mation. While general-purpose image-to-image translation

techniques [2, 12, 32, 33, 37] can in principle be applied in

our scenario, their visual accuracy usually suffers from mul-

tiple types of artifacts such as spurious details (e.g., jitter-

ing texture details), unnatural deformations, and temporal

inconsistency, among others.

Neural human motion transfer methods are specifically

designed to generate novel views of a person observed in a

single RGB image. Still-image-based approaches [7, 8, 21,

22, 25, 28] focus is different from the problem we solve.

Their focus is on re-targeting a person in just a still im-

age and do not produce temporally consistent and visually

pleasing video results. Video-based human motion transfer

techniques [1, 5, 9, 17, 18, 19], however, focus on produc-

ing video results by handling temporal information. Aber-

man et al. [1] combine a skeleton representation with an

image-translation network for human performance cloning.

Additionally, they introduce an actor-independent training

branch for unpaired data to enlarge the set of representable

poses. Recently, Chan et al. [5] introduced a translation

method for human bodies using an intermediate, subject in-

dependent pose representation. Inspired by pix2pix [12],

they learn a pose-to-appearance mapping from video clips

of target identities for human performance transfer. To im-

prove temporal consistency and overall image quality, they

include a temporal discriminator and dedicated face predic-

tion network. While their method produces visually appeal-

ing results, it frequently generates unnatural and inconsis-

tent deformations and texture details for loose clothing, as

it is underconstrained from 2D pose keypoints.

Some video-based techniques aim to improve tempo-

ral and spatial fidelity by incorporating 3D information

through human body meshes [9, 17, 18, 19]. L. Liu et

al. [17, 18] presented high-quality human reenactments. As

a proxy, they use an explicitly rigged, textured and skinned

3D model of the target actor. The underlying deformation

model, however, does not allow to capture small wrinkles

and local deformations. W. Liu et al. [19] use a human

mesh recovery technique to disentangle poses from shapes

as well as a correspondence map for human appearance

transfer and novel view synthesis. They propagate input in-

formation both in the image and feature space and advocate

a warping-based module for the enhanced preservation of

the source information. Along the same lines is the work of

Guan et al. [9] for human action transfer. It shows general-

ization to different target persons without retraining, thanks

to a texture extraction method and a parametric human body

model. However, the resolution of the supported renderings

does not capture fine details and wrinkles. Textured Neu-

ral Avatars [27] can be trained for rendering a target actor

in tight clothes in arbitrary body and camera poses. Pro-

ceeding from monocular videos with extracted 3D poses

and regions of interest (human bodies), they train a convo-

lutional neural network to predict a dense UV-map under a

given target pose. Explicit decoupling of the geometry and

texture results in higher visual quality and temporal con-

sistency; yet, the overall representation is still comparably

coarse and lacks fine details as well as local pose-dependent

deformations and shading. Thus, no body renderings with

loose clothes are demonstrated. While mesh-based tech-

niques impose stronger human shape priors for higher qual-
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Figure 2. Framework Overview: Our framework synthesizes new output views of humans from a static background image and a pose

input sequence extracted from the target (training) or source (testing) image sequence. Therefore, we apply two consecutive networks to

explicitly pre-estimate human body parsing (yellow) and the internal gradient structure of clothing (green). The resulting outputs are used

to condition final image generation, which is separated into the foreground (blue) and global (red) components to handle loose clothing in

a temporally coherent way. Dashed lines indicate recurrent networks that feedback the last output to generate the next prediction.

ity results, they often assume water-tight clothing and a pre-

captured template of the examined subject [9, 17, 18, 27].

This can lead to difficulties in capturing loosely-swinging

garments or fine pose-dependent deformations. Further-

more, getting access to pre-captured templates can lead to

additional assumptions about the scene (e.g., that the target

actor has to stay still for rigid structure-from-motion and

brightness consistency for feature point matching) [17, 18].

3. Method

Our framework Gθ generates photorealistic videos of a

target actor mimicking the motion of another source iden-

tity. Given only a single monocular RGB image sequence

I = (in)
N
n=1

∈ R
N×3×h×w containing N frames of width

w and height h showing a target actor performing a rich set

of motions, we extract an identity-independent 2D skele-

tal pose P (in) for each frame and fit the network parame-

ters θ to approximate the inverse mapping P
−1 back to the

original frames. Instead of performing the translation task

within a single network, our framework can be thought of as

a function composition of four generative neural networks

(Gref , Gapp, Gstr , Gshp) executed in a cascade fashion

to progressively generate higher-level representations, as il-

lustrated in Fig. 2. Next, we describe all individual frame-

work components (Secs. 3.1-3.3), before providing details

on the network architectures and implementation (Sec. 3.4).

3.1. Inputs

As inputs, our method takes the target image sequence I

and a static image of the scene background b ∈ R
3×h×w

that is fused with the synthesized actor later on. From

the given image sequence, we extract actor-independent

pose representations P : R
3×h×w → H × D, where

H = {0, 1}C1×h×w symbolizes the set of rasterized binary

pose skeletons with C1 input channels, and D = R
C2×h×w

is the set of temporal derivatives for a single pose consist-

ing of C2 channels. Similar to recent performance cloning

methods [5, 27], we apply an off-the-shelf pose estimator

[3, 29, 35] that predicts 2D keypoints kn ∈ R
127×2 for the

body (including hands and face), to generate the skeleton

hn ∈ H by connecting adjacent keypoints via binary lines.

We further distribute C1 = 9 limbs (face, head, torso, arms,

legs, hands) over multiple channels, which helps the net-

works to distinguish between overlapping or symmetrical

body parts.

However, estimating soft body deformations from a sin-

gle pose remains highly ambiguous as the states depend on

the temporal order of poses. Thus, we calculate a tempo-

ral pose context dn ∈ D as the first and second temporal

derivatives of kn with respect to the image index n in x and

y direction, respectively (C2 = 2 ·2 ·9), similar to velocities

and accelerations in classical dynamics simulation:

k′n =

(

∂kn

∂n
,
∂2kn

∂n2

)

. (1)

We create rasterizations dn from k′n in the same way as

for the pose skeletons, and linearly interpolate their val-

ues along the bones, similar to the depth representation of

Shysheya et al. [27]. During the reenactment, we apply the

same procedure to the source image sequence, but addition-

ally perform pose normalization as described by Chan et
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al. [5] for inter-target appearance transfer before drawing

the skeletons. Finally, our pose conditioning P (in) =
(hn, dn) is provided to our framework as the concatenation

of the frame-wise pose skeleton and temporal context. We

find that the described procedure results in a compact, yet

expressive pose representation, while slightly outperform-

ing a simple sliding window approach in our experiments.

3.2. Garment Conditioning

In our framework, we use two dedicated networks that

pre-estimate the actor’s shape and the internal gradient

structure of clothing in 2D space to improve the consistent

modeling of deforming garments and the fall of the folds.

3.2.1 Shape Estimator

As a first step, our shape estimator Gshp transforms the

provided pose representations P into the actor’s current sil-

houette

s̃∗n = Gshp(P (in), s̃
∗

n−1
), (2)

where s̃∗i ∈ R
j×h×w is represented as semantic body-part

segmentation with j labels. We extract a final segmentation

mask s̃n ∈ ([N]j
1
)h×w from our network by extracting the

indices of maximum elements per pixel over the channel

dimension.

As knowledge about the preceding shape is necessary to

achieve temporal coherence of deforming garments, we de-

sign our networks in a recurrent fashion where each exe-

cution is conditioned on the previous output. Thus, Gshp

is tasked to estimate a delta in the observed shape based

on the current pose and the contextual temporal derivatives.

The resulting segmentation mask is a significant prior for

the final appearance network to produce visually-plausible

renderings, and it is further used to segment the actor and

parts of their clothing in later stages. For training, we use

the human parsing method of Li et al. [15] trained on the

ATR dataset [16] to extract pseudo-ground-truth segmen-

tation maps S = (sn)
n
n=1

from I . This dataset provides

j = 18 labels for all body limbs and common clothing, en-

abling our method to handle various clothing styles includ-

ing shirts, pants, skirts, dresses and scarfs. We formulate

our shape training loss Lshp as the cross-entropy between

the network prediction and the training label:

Lshp = En∼N log





∑

j

exp(s̃∗n(j))



− s̃∗n(s), (3)

where s̃∗n(j) is the output channel for a given label j.

3.2.2 Structure Estimator

While our shape representation is sufficient prior to infer the

appearance of solid body parts like arms and faces, it does

not provide information about wrinkles and folds within the

clothing, that are needed to generate temporally consistent

shading and texture patterns. Thus, we apply a second re-

current network Gstr that estimates the internal gradient

structure w̃n ∈ R
2×h×w for clothing regions as indicated

by the segmentation map s̃n:

w̃n = Gstr(P (in), s̃n, w̃n−1). (4)

We model the clothing structure as the pixelwise gradient

direction and strength extracted from the responses of 32
oriented Gabor filters, similar to recent work on neural hair

synthesis [31]. However, as a floating garment comprises

sparser gradients than human hair, we do not only use the

maximum filter responses to smooth the angle field, but ap-

pend a normalized version to the smoothed gradient direc-

tions to model the probability of a wrinkle or texture change

at a specific location, as visualized in Fig. 1 (color and sat-

uration encode the gradient direction and the strength, re-

spectively). We train the structure estimator using the L1

distance between estimated w̃n and ground-truth wn struc-

ture using a mask for garment labels extracted from s̃n:

Lstr = En∼N χC(s̃n) |w̃n − wn|, (5)

where C denotes the set of segmentation labels correspond-

ing to the actor’s clothing, and χC is the indicator function:

χC(x) =

{

1, ifx ∈ C,

0, else.
(6)

3.3. Image Synthesis

The second stage of our framework synthesizes the fi-

nal output image based on the provided pose and garment

conditionings. Again, we use two dedicated networks to in-

dependently generate the actor in the foreground and fuse it

with the provided background image.

3.3.1 Appearance Network

Our first rendering network Gapp takes provided pose as

well as the pre-estimated shape s̃ and internal clothing

structure W̃ to synthesize the actor’s appearance f̃n ∈
R

3×h×w:

f̃n = Gapp(P (in), s̃n, w̃n). (7)

We train the appearance module using a combination of L1

distance and perceptual reconstruction loss [13]. Again, an

indicator function χB is used to mask the foreground pixels

that are not assigned to the background label β:

χB(x) =

{

0, ifx = β,

1, else.
(8)
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Thus, our appearance loss Lapp reads

Lapp = En∼NχB(s̃n)
(

λr|f̃n − in|+ λp|φ(f̃n)− φ(in)|
)

(9)

where φ(·) denotes feature maps extracted from different

layers of a pre-trained VGG19 network [30], and λr, λp are

free hyperparameters for weighting.

3.3.2 Refinement Network

Finally, we apply a shallow refinement network to fuse the

foreground prediction with the provided scene background.

For this, we first paste the generated foreground f̃n onto the

static background image b using the masking function (8):

ĩ∗n = (χB(s̃n) · f̃n) + ((1− χB(s̃n)) · b). (10)

Then, given foreground-background composition ĩ∗n and ac-

tor segmentation s̃n, our refinement network Gref per-

forms simple transition smoothing and shadow generation

to produce the final output image ĩn:

ĩn = Gref (̃i
∗

n, s̃n). (11)

We use a combination of structural and perceptual losses

similar to our Lapp (9), but over the entire image plane:

Lref = En∼N λr |̃in − in|+ λp|φ(̃in)− φ(in)|. (12)

In contrast to recent pose-to-video translation methods

[1, 5], we do not apply an adversarial loss for our genera-

tor network as we do not want to hallucinate high frequency

details in the clothing based on statistics from the data se-

quence I , but rather encourage the network to stick to the

predicted structure layout.

3.4. Implementation Details

We implement our framework in Python using PyTorch

1.5 [24]. Our four translation networks employ the local

Pix2PixHD [33] generator architecture; we halve the num-

ber of residual blocks in our refinement network Gref due

to the similarity of the domains. We optimize our final loss

Ltotal = λ1Lseg + λ2Lstr + λ3Lapp + λ4Lref (13)

with hyperparameters (λ1 = 0.5, λ2,3,4 = 1.0, λr =
0.1, λp = 0.9) in a sequential way for 30 epochs us-

ing Adam optimization [14] (momentum β1 = 0.999 and

β2 = 0.5). On a single Quadro RTX 8000 GPU, train-

ing converges after approximately four days for N ≈ 23K
frames, while processing a single testing-frame takes ∼280
milliseconds at a resolution of 512 × 512 pixels. For more

details, please refer to our official implementation and sup-

plementary material.

4. Experiments

We compare our framework to several state-of-the-art

approaches with subjects wearing different types of loose

clothing with rich wrinkling and textures (Sec. 4.2), con-

duct a user study (Sec. 4.3) and perform an ablation study

for individual framework stages (Sec. 4.4). Since our results

improve upon the temporal consistency and fine texture de-

tails, they are best viewed in our supplementary video.

4.1. Datasets, Methods and Metrics

Existing datasets for the evaluation of recent appearance

transfer methods usually comprise actors in monochromatic

body-tight clothing, as loose garments are a frequent cause

of visual artifacts and temporal irregularities. For our exper-

iments, we capture new sequences of three subjects, each in

up to three clothing styles with a length of seven to ten min-

utes at a resolution of 512 × 512 pixels, and select the last

5% of the frames for testing. Our dataset features various

clothing styles including jeans, loose t-shirts, hoodies, and

two dresses with rich wrinkle and texture patterns.

We compare our framework to current video-based

appearance transfer approaches, i.e., a general-purpose

pix2pixHD network [33] that synthesizes an image from a

rendering of the extracted pose, the Everybody-Dance-Now

(EDN) method by Chan et al. [5], which adds a tempo-

ral discriminator and specialized face GAN, and Recycle-

GAN [2] that performs direct unsupervised retargeting be-

tween two videos. Additionally, we test our approach on

the dataset of Liu et al. [17] comprising various actors in

tight clothes. All results were generated using either the

official implementations or data directly provided by the

authors. Moreover, we have explored pose editing using

NHRR [25] and Liquid Warping GAN [19] but the results

showed poor visual quality on our sequences. Kindly note

that these methods predict pixel correspondences to the

SMPL mesh [20] using DensePose [10], and hence strug-

gle with handling loose clothes. We provide exemplary re-

sults showing limitations of mesh-based approaches in our

supplementary material. Furthermore, the code of Textured

Neural Avatars [27] is, unfortunately, not publicly available,

and we were not able to obtain results on our sequences di-

rectly from the authors. For quantitative analysis, we uti-

lize the widely-used SSIM [34], LPIPS [36] and FID [11]

metrics that assess the pixel-space structural similarity, per-

ceptual distance based on neural network features, and the

Fréchet distance between two data collections, respectively.

4.2. Results and Comparisons

We show exemplary results of every network component

in Fig. 3. As can be seen, our framework is capable of

estimating pronounced body part segmentations, the corre-

sponding wrinkle patterns and resulting target actor appear-
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Figure 3. Exemplary results of our motion transfer framework. The first column of each block illustrates the driving sequence, while

the last one shows the final result. They anchor the outputs for the different intermediate networks (shape, structure, and appearance). For

clothing gradient structure, we encode the direction and confidence as color and saturation, respectively, similar to optical flow visualization.

ance for all types of complex clothing in our dataset, in-

dependent of the source actor’s posture or appearance. We

further compare our method to recent state-of-the-art ap-

proaches in Fig. 4. Therefore, we use a bidirectional reen-

actment scenario with two different types of clothing, i.e., a

loose monochromatic t-shirt with jeans, and a dress featur-

ing a delicate arrangement of folds. While all of the tested

methods are able to produce strong wrinkle patterns, our

framework manages to achieve the most plausible temporal

and spatial results due to the explicit handling of deform-

ing garments. Please note that the temporal consistency

can only be evaluated by watching our supplemental video.

Also, we provide results and comparisons on the video se-

quences of Liu et al. [17] in our supplemental material.

We further assess the visual quality by numerically com-

paring our method to related pose-to-video translation ap-

proaches in Table 1. To calculate the metrics, we employ

the target actor sequences shown in the first column of

Fig. 4 using the corresponding self-reenactment scenarios,

where ground-truth images are available from the testing

sets. Recycle-GAN [2] focuses on learning from unpaired

data and is upper-bounded by paired translation techniques

Metric pix2pixHD [33] EdN [5] ours

SSIM [34] ↑ 0.9288 0.9043 0.9358

LPIPS [36] ↓ 0.0401 0.0303 0.0289

FID [11] ↓ 21.7724 13.5421 17.9573

Table 1. Quantitative comparison to related methods. We assess

the quantitative quality according to SSIM, LPIPS and FID metrics

in a self-reenactment scenario.

when trained on paired data. Hence, we exclude it from

our quantitative analysis. Our method outperforms the cur-

rent state of the art according to the SSIM and LPIPS met-

rics, which perform a direct structural and perceptual com-

parison on a per-frame basis, indicating that the physical

behaviour of clothing synthesized by our method better re-

flects ground truth. On the other hand, FID states that the

pixel distribution generated by EDN is closer to the training

set, presumably due to strong adversarial losses.

4.3. Perceptual Experiment

We find that quantitative metrics do not reveal all aspects

of the visual video quality, and complement our evaluation

by two user studies in which videos are graded according to

human perception. We compare our method against recent

image-based techniques using the video sequences shown

in Fig. 4, including wide clothes with significant deforma-

tions. We also conduct an additional experiment on the

dataset of Liu et al. [17] to evaluate on videos of actors

in tight clothes. In both studies, we show the participants

video reenactments of ∼20 seconds in length with results of

two methods at a time and ask them which video looks the

most realistic. To measure both the performance of each

method and the agreement between participants, we fol-

low the linked-paired comparison design [6]. We rank each

method according to the number of times they are preferred

over the rest and perform a significance test of the votes

differences [4, 26]. The total number of votes a method re-

ceived in each experiment is displayed in Table 2. As can

be seen, our method significantly outperforms recent image-

based pose-to-video-translation methods in terms of video
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Figure 4. Comparison to state-of-the-art motion transfer meth-

ods. We compare our method against pix2pixHD [33], EDN [5]

and Recycle-GAN [2] on two sequences of an actress in a loose

t-shirt and a dress. Please note that results of Recycle-GAN are

only available at half of the original resolution, as training on full

resolution produced highly implausible results.

realism for the clothing and is even preferred over Recycle-

GAN, which uses a richer input domain for motion transfer.

Our second experiment on the dataset of Liu et al. [17] fur-

ther confirms that our monocular video-based approach also

achieves considerably more realistic results than the related

EDN method when exchanging motion between actors in

tight clothing. However, in that scenario, image-based ap-

proaches cannot quite reach the quality of priors provided

by expensively recorded template meshes, which excel for

tight and static shapes (Liu et al. [17]). We provide more

details on the experimental setup and evaluation in our sup-

plementary material.

4.4. Ablation Study

We next conduct an ablation study to assess the influence

of different framework components. Therefore, we retrain

our method on one of our most challenging sequences fea-

turing a swinging dress with complicated texture patterns,

while incrementally dropping the garment conditioning net-

Exp. Method Input #Votes Ranking

1

Ours Video (Pose) 257 1

Recycle-GAN [2] Video (RGB) 194 2

EDN [5] Video (Pose) 143 3

pix2pixHD [33] Video (Pose) 54 4

2

Liu [17] Textured mesh + Video (Pose) 103 1

Ours Video (Pose) 76 2

EDN [5] Video (Pose) 13 3

Table 2. Perceptual ranking of the compared methods for our

user studies. Experiment 1 was conducted online with 54 partic-

ipants with various backgrounds, while experiment 2 was in-situ

with 16 CG/CV experts. The rankings are statistically significant.

Figure 5. Ablation study evaluating the influence of our frame-

work stages in a self-reenactment scenario. For an exemplary

ground-truth frame, we show a plain appearance network condi-

tioned on pose only (P), pose and shape (PS), and our full frame-

work without (PSS-R) and with (PSS/ours) temporal recurrence.

works. In our study, we consider four framework variations,

i.e., the plain appearance network without additional in-

puts (P), the appearance conditioned on our shape estimates

(PS) and our full framework including the internal structure

(PSS/ours); additionally, we examine the effect of remov-

ing the recurrent back-feeding from all network modules

(PSS-R). As shown in Fig. 5, we find that every component

contributes to improving the final image quality.

While our plain pix2pix generator fails to produce sharp

outlines of body parts and garments (P), providing a pre-

estimated shape mask results in distinct transitions and

more realistically-floating garments (PS). Adding informa-

tion about the internal structure of the clothing further en-

hances the generation of high-frequency details within the

given shape (PSS). This effect is also observable in quan-

titative evaluation using structural and perceptive metrics,

as shown in Table 3. Furthermore, we observe that drop-

ping the temporal back-feeding of previous network outputs

(PSS-R)—while achieving similar quality on a per-frame

basis— significantly decreases temporal consistency, as can

be seen in our supplemental video.

Metric P PS PSS-R PSS (ours)

SSIM [34] ↑ 0.8959 0.9045 0.9045 0.9046

LPIPS [36] ↓ 0.044 0.036 0.036 0.035

FID [11] ↓ 15.046 12.282 12.925 12.176

Table 3. Quantitative ablation analysis according to SSIM,

LPIPS and FID metrics. We compare different versions of our

framework in a self-reenactment scenario. The numbers indicate

that every component contributes a structural and perceptual im-

provement to the synthesized output.
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Figure 6. Applications: Our approach allows novel video editing through style transfer and wrinkle intensity manipulation. For style

transfer, we use the source shape and/or structure while keeping the target appearance.

5. Application: Material Editing

On top of high-fidelity motion transfer, our framework

offers an additional level of control over the image genera-

tion, as it incorporates explicit specifications of the actor’s

shape and garment structure. This enables editing and ma-

nipulating the generated videos. For actors wearing simi-

lar clothing, pseudo-ground-truth segmentation or structure

maps extracted from the source sequence can significantly

improve the final image quality and temporal consistency.

Alternatively, after training multiple subjects wearing cloth-

ing of the similar type, garment conditioning networks can

be interchanged to generate clothing with new combinations

of shape, structure and appearance. Furthermore, manually-

edited or completely handcrafted shape and structure pat-

terns can be used to influence the physical behavior of cloth-

ing. Fig. 6 shows two examples of automatic and manual

material and appearance editing. We change the style of the

actress’s dress and the actor’s top while keeping the origi-

nal appearance by applying the shape (left), or both shape

and structure, from the source sequence and feed it to the

appearance network (middle). Also, magnifying the second

channel of structure estimate (gradient confidence map) can

be used to magnify or minify the fall of the folds during

reenactment (right). While material property exchange is

still currently limited to garments of comparable type or tex-

ture, the proposed approach is the first neural motion trans-

fer method enabling controllable clothing composition for

videos, which can pave the way for many applications in

future (such as virtual try-on).

6. Discussion and Limitations

We have demonstrated high-fidelity results for multiple

challenging human appearances with various deformation

patterns of garments, and were able to manipulate several

properties of the clothing during the reenactment. The abla-

tive study has shown that all stages of our framework are

justified and contribute to the final result. Although our

method is a step forward in the neural rendering of humans,

it has limitations and can provoke further research. First,

the space of depictable poses is currently determined by the

composition and length of the training sequences. Next, in-

accuracies and missing 3D information from the pose key-

point estimator can result in incorrect occlusion maps and

temporal behavior of garments. At the same time, the prop-

agation of errors in the estimated human body parsing can

lead to missing or disconnected body parts and unnatural

transitions between the frames. These aspects can be im-

proved in future by incorporating stronger constraints on

the shape and body structure and enlarging the pose space

by training on unpaired data.

7. Conclusion

We introduce a novel multi-stage framework for high-

fidelity human motion transfer from monocular video. The

tests show that our method performs qualitatively appeal-

ing motion transfer for different clothes, visually improving

over previous image-based techniques. The performance

is also confirmed by a comprehensive perceptual study,

indicating superior temporal and visual quality compared

to current image-based state-of-the-art motion transfer ap-

proaches. All in all, we conclude that explicitly handling

deformations of clothing in a temporally-coherent way is

crucial for high-fidelity neural human motion transfer.

Our supplementary material contains additional de-

tails on training, our garment conditioning representa-

tion/visualization, and experiments, as well as further com-

parison with other techniques. The full implementation

is available at our project page https://graphics.tu-

bs.de/publications/kappel2020high-fidelity.
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