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Abstract

This paper presents an uncalibrated deep neural network

framework for the photometric stereo problem. For training

models to solve the problem, existing neural network-based

methods either require exact light directions or ground-

truth surface normals of the object or both. However, in

practice, it is challenging to procure both of this informa-

tion precisely, which restricts the broader adoption of pho-

tometric stereo algorithms for vision application. To bypass

this difficulty, we propose an uncalibrated neural inverse

rendering approach to this problem. Our method first es-

timates the light directions from the input images and then

optimizes an image reconstruction loss to calculate the sur-

face normals, bidirectional reflectance distribution function

value, and depth. Additionally, our formulation explicitly

models the concave and convex parts of a complex surface

to consider the effects of interreflections in the image forma-

tion process. Extensive evaluation of the proposed method

on the challenging subjects generally shows comparable or

better results than the supervised and classical approaches.

1. Introduction

Since Woodham’s seminal work [69], the photometric

stereo problem has become a popular choice to estimate an

object’s surface normals from its light varying images. The

formulation proposed in that paper assumes the Lambertian

reflectance model of the object, and therefore, it does not

apply to general objects with unknown reflectance property.

While multiple-view geometry methods exist to achieve a

similar goal [57, 20, 70, 76, 35, 24, 36, 37], photometric

stereo is excellent at recovering fine details on the surface,

like indentations, imprints, and even scratches. Of course,

the solution proposed in Woodham’s paper has some unre-

alistic assumptions. Still, it is central to the development of

several robust algorithms [71, 30, 55, 1, 22, 26] and also lies

at the core of the current state-of-the-art deep photometric

stereo methods [28, 65, 12, 10, 11, 42, 41, 27].

Generally, deep learning-based photometric stereo meth-

ods assume a calibrated setting, where all the light source

information is given both at the train and test time [28, 56,

12, 65]. Such methods attempt to learn an explicit relation

between the reflectance map and the ground-truth surface

normals. But, the exact estimation of light directions is a te-

dious process and requires expert skill for calibration. Mo-

tivated by that, Chen et al. [10, 11] recently proposed an un-

calibrated photometric stereo method. Though it estimates

light directions using image data, the proposed method re-

quires ground-truth surface normals for training the neural

network. Certainly, procuring ground-truth 3D surface ge-

ometry is difficult, if not impossible, which makes the ac-

quisition task of correct surface normals strenuous. For 3D

data acquisition, active sensors are mostly used, which is

expensive and often needs post-processing of the data to re-

move noise and outliers. Hence, the necessity of ground-

truth surface normals limits the usage of such an approach.

Further, most photometric stereo methods, including cur-

rent deep-learning methods, assume that each surface point

is illuminated only by the light source, which generally

holds for a convex surface [49]. However, objects, mainly

from ancient architectures, have complex geometric struc-

tures, where the shape may compose of convex, concave,

and other fine geometric primitives (see Fig.1(a)). When

illuminated under a varying light source, certain concave

parts of the surface might reflect light onto other parts of

the object, depending on its position. Surprisingly, this phe-

nomenon of interreflections is often ignored in the modeling

and formulation of a photometric stereo problem, despite its

vital role in the object’s imaging [28, 65, 12, 10, 11].

In this work, we overcome the above shortcomings by

proposing an uncalibrated neural inverse rendering network.

We first estimate all the light source directions and intensi-

ties using image data. Computed light source information

is then fed into the proposed neural inverse rendering net-

work to estimate the surface normals. The idea is, those cor-

rect surface normals, when provided to the rendering equa-

tion, should reconstruct the input image as close as possi-

ble. Consequently, we can bypass the requirement of the

ground-truth surface normals at train time. Unlike recent

methods, we model the effects of both the light source and

the interreflections for rendering the image. Although one
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(a) Photometric Stereo Setup

Woodham (1980)
MAE = 30.66°

Nayar et al. (1991)
MAE = 28.82°

Taniai et al. (2018)
MAE = 23.97°

Ours
MAE = 19.91°

Chen et al. (2020)
MAE = 49.36°

Ikehata (2018)
MAE = 34.00°

(b) Qualitative and Quantitative Comparison

Figure 1: (a) Example showing the interreflection effect due to concave geometric structure. The light from the primary source hits the concave region

of the surface that illuminates the other surface points which then act as a secondary light source. (b) Comparison of our approach against the classical and

deep-learning methods on the Vase dataset which shows that it performs better than others. We used Mean Angular Error (MAE) metric to report the results.

can handle interreflection using classical methods [49, 9],

the reflectance characteristics of different types of material

are quite diverse. Hence, we want to leverage neural net-

work’s powerful capability to learn complex reflectance be-

havior from the input image data.

For evaluation, we performed experiments on DiLiGenT

dataset [62]. We noticed that the objects present with this

dataset are not apt for studying interreflections. To that end,

we proposed a novel dataset to study the behavior and effect

of interreflections on the object’s imaging §5. We observed

that ignoring interreflections can dramatically affect the ac-

curacy of the surface normals estimate (see Fig 1(b)). To

sum up, our paper makes the following contributions:

• This paper presents an uncalibrated deep photometric

stereo method that does not require ground-truth surface

normals at train time to solve photometric stereo.

• Our work considers the contribution of both the source

light and interreflections in the image formation process.

Consequently, our approach is more general and applica-

ble to a wide range of objects.

• The proposed method leverages neural inverse rendering

principles to infer the surface normals, depth, and spa-

tially varying bidirectional reflectance distribution func-

tion (BRDF) values from input images. Our method gen-

erally provides comparable or better results than the clas-

sical [49, 2, 60, 73, 45, 52, 44] and the recent supervised

uncalibrated deep learning methods [12, 15, 11].

2. Related Work

For comprehensive review on photometric stereo readers

may refer to Herbort et al. [25], and Chen et al. [11] work.

1. Calibrated Photometric Stereo. The methods pro-

posed under this setting assume that all the light source in-

formation is known for computing surface normals. Sev-

eral calibrated methods have been proposed to handle non-

Lambertian surfaces [48, 72, 71, 47, 50, 31]. These methods

assume non-Lambertian effects, such as specularities, are

sparse and confined to a local region of the surface. So, they

filter them before computing surface normals. For exam-

ple, Wu et al. [71] proposed a rank minimization approach

to robustify photometric stereo. Oh et al. [50] introduced

a partial sum of singular values optimization algorithm for

the low-rank normal matrix recovery. Other popular outlier

rejection methods were based on RANSAC [48], Bayesian

regression [30, 31], and expectation-maximization [72].

With the recent success of deep learning in many com-

puter vision areas, several learning-based approaches have

also emerged for the photometric stereo problem. Santo

et al. [56] introduced a deep photometric stereo network

(DPSN) that learns the mapping between the surface nor-

mals and the reflectance map. Ikehata [28] merged all pixel-

wise information to an observation map and trained a net-

work to perform per-pixel estimation of normals. In con-

trast, Taniai et al. [65] used a self-supervised framework

to recover surface normals from input images. Yet, it uses

the classical photometric equation that fails to model inter-

reflections. Moreover, it uses Woodham’s method [69] to

initialize the surface normals in their loss function which

is not robust, and therefore, their trained network model is

susceptible to noise and outliers.

2. Uncalibrated Photometric Stereo. These methods as-

sume unknown light source information for solving photo-

metric stereo. However, not knowing the light sources leads

to an ambiguity i.e., there exists a set of surfaces under un-

known distant light sources that can lead to identical im-

ages. Hence, the actual surface can be recovered up to a

three-parameter ambiguity popularly known as Generalized

Bas-Relief (GBR) ambiguity [5, 9]. Existing methods elim-
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inate this ambiguity by making some additional assump-

tions in their proposed solution. Alldrin et al. [2] assumes

bounded values on the GBR variables and resolves the am-

biguity by minimizing the entropy of albedo distribution.

Shi et al. [60] assumes at least four pixels with different nor-

mals but the same albedo. Papadhimitri et al. [52] presents

a closed-form solution by detecting local diffuse reflectance

maxima (LDR). Other methods assume perspective projec-

tion [51], specularities [21, 18], low-rank [59], interreflec-

tions [9] or symmetry properties of BRDFs [64, 73, 44].

Apart from the traditional methods, Chen et al. [12] pro-

posed a learning framework (UPS-FCN). This method by-

passes the light estimation process and learns a direct map-

ping between the image and the surface normal. But, the

knowledge of the light source would provide useful evi-

dence about the surface normals, and therefore completely

ignoring the light source data seems implausible. The self-

calibrating deep photometric stereo networks work [10] re-

cently introduced an initial lighting estimation stage (LC-

Net) from images to overcome the problem with UPS-FCN.

Recently, Chen et al. [13] also proposed a guided calibra-

tion network (GCNet) to overcome the limitations of LC-

Net. Unlike existing uncalibrated deep-learning methods

that rely heavily on ground-truth surface normals for train-

ing, our method can solve photometric stereo by using an

image reconstruction term as a function of estimated sur-

face normals. The goal is to let the network learn the image

formation process and the complex reflectance model of the

object via explicit interreflection modeling.

3. Photometric Stereo

Photometric stereo aims to recover the surface normals

of an object from its multiple images captured under vary-

ing light illuminations. It assumes a unique point light

source per image taken by a camera from a constant view

direction v which is commonly assumed to be at (0, 0, 1)T .

Under such configuration, when a surface point x is il-

luminated by a distant point light source from direction

‘ls ∈ R
3×1’, the image intensity Xs(x) measured by the

camera due to sth source in the view direction v is given by

Xs(x) = es · ρ
(
n(x), ls,v

)
· ζa

(
n(x), ls

)
· ζc(x) (1)

Here, the camera projection model is assumed to be or-

thographic. The function ρ(n(x), ls,v) gives the BRDF

value, ζa(n(x), ls) = max(n(x)T ls, 0) accounts for the

attached shadow, and ζc(x) ∈ {0, 1} assign 0 or 1 value

to x depending on whether it lies in the cast shadow region

or not. es ∈ R+ is a scalar for light intensity value, and

n(x) ∈ R
3×1 is the surface normal vector at point x. Eq:(1)

is most-widely used photometric stereo formulation which

generally works well in practise [9, 30, 28, 65, 13, 11].

1. Classical Photometric Stereo Model. It assumes a

convex Lambertian surface model resulting in a constant

BRDF value across the whole surface. Additionally, the

surface is considered to be illuminated only due to the light

source. Under such assumptions, Eq:(1) becomes a lin-

early tractable problem and it is possible to recover the sur-

face normals by solving a simple system of linear equa-

tions. Let all the n light source directions be denoted as

L = [l1, l2, .., ln] ∈ R
3×n and m unknown surface point

normal be N = [n(x1),n(x2), ..,n(xm)] ∈ R
3×m. Using

the notation, we can write Eq:(1) due to all the light sources

and surface points compactly as

Xs = ρNT
L (2)

where, Xs ∈ R
m×n is the matrix consisting of n images

with m object pixels stacked as column vectors, and ρ is the

constant albedo. The above system can be solved for the

surface normals using the matrix pseudo-inverse approach

under calibrated setting if n ≥ 3 (i.e., at least three light

sources are given in non-degenerate configuration).

2. Interreflection Model. In contrast to the classical pho-

tometric stereo, here, the total radiance at a point x on the

surface is the sum of radiance due to light source s and the

radiance due to interreflection from other surface points.

X(x) =

due to light source
︷ ︸︸ ︷

Xs(x) +

due to interreflections
︷ ︸︸ ︷

ρ(x)

π

∫

Ω

K(x,x′)X(x′)dx′ (3)

where, Ω represents the surface, x′ is another surface point,

and dx′ the differential surface element at x′. The value of

the interreflection kernel ‘K’ at x due to x
′ is defined as:

K(x,x′) =
( (n(x)T (−r)) · (n(x′)T r) · V (x,x′)

(rT r)2

)

(4)

The values of K, when measured for each surface el-

ement form a symmetric and positive semi-definite matrix.

In Eq:(4), V (x,x′) captures the visibility. When x occludes

x
′ or vice-versa then V is 0. Otherwise, V gives the orienta-

tion between the two points using the following expression:

V (x,x′) =
(
n(x)T (−r) + |n(x)T (−r)|

2|n(x)T (−r)|

)

·
(
n(x′)T r+ |n(x′)T r|

2|n(x′)T r|

)
(5)

where, n(x) and n(x′) are the surface normal at x and x
′,

and r = x−x
′ is the vector from x

′ to x. Substituting V and

K in Eq:(3) gives an infinite sum over every infinitesimally

small surface element (point) and therefore, it is not compu-

tationally easy to find a solution to X(x) in its continuous

form. Nevertheless, the solution to Eq:(3) is guaranteed to

converge as ρ(x) < 1 for a real surface. To practically

implement the interreflection model, the object surface is
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discretized into m facets [49]. Assuming the radiance and

albedo values to be constant within each facet, then Eq:(3)

for the ith facet becomes Xi = Xsi+
ρi

π

∑m
j=1, j 6=i XjKij ,

where Xi ∈ R
n×1 and ρi are the radiance and albedo of

facet i. Considering the contribution of all the light sources

for each facet, it can be compactly re-written as:

X = Xs +PKX, ⇒ X = (I−PK)−1
Xs (6)

where, X = [X1, X2, ., Xm]T is the total radiance for all

the facets, and Xs = [Xs1, Xs2, ., Xsm]T is the light source

contribution to the radiance of m facets. Furthermore, P is

a diagonal matrix composed of albedo values and K is a

m × m interreflection kernel matrix with diag(K) = 0.

Nayar et al. [49] proposed Eq:(6) to recover the surface

normals for concave objects. The algorithm proposed to

estimate surface normals using Eq:(6) first computes the

pseudo surface normals by treating the object as directly

illuminated by light sources. These pseudo surface normals

are then used to iteratively update for the interreflection ker-

nel and surface normals via depth map estimation step, until

convergence. In the later part of the paper, we denote the

normals estimated using Eq:(6) as Nny . The Nayar’s in-

terreflection model assumes Lambertian surfaces and over-

looks surfaces with unknown non-Lambertian properties.

4. Proposed Method

Given X = [X1, X2, ..., Xn] a set of n input images and

the object mask O, we propose an uncalibrated photomet-

ric stereo method to estimate surface normals. Here, each

image Xi is reshaped as a column vector and not a facet

symbol as used in interreflection modeling. Even though the

problem with unknown light directions gives rise to the bas-

relief ambiguity [5], we leverage the potential of the deep

neural networks to learn those source directions from the

input image data using a light estimation network §4.1. The

estimated light directions are used by the inverse rendering

network §4.2 to infer the unknown BRDFs and surface nor-

mals using our proposed rendering equation. Our rendering

approach explicitly utilizes the role of the light source and

interreflections in the image reconstruction process.

4.1. Light Estimation Network

Given X and O, the light estimation network predicts

the light source intensities (ei’s) and direction vectors (li’s).

We can train such a network either by regressing the inten-

sity values and the corresponding unit vector in the source’s

direction or classifying intensity values into pre-defined

angle-range bins. The latter choice seems reasonable as it is

easier than regressing the exact direction and intensity val-

ues. Further, quantizing the continuous space of directions

and intensities for classification makes the network robust to

𝜃

𝜙

li

(a) Source Discretization

li

no(x)

rxi

v

x

𝜃
𝜃

(b) Surface Reflectance

Figure 2: (a) The estimated source directions are given by two param-

eters: φ ∈ [0, π] and θ ∈ [−π/2, π/2]. (b) Illustration of surface re-

flectance. When light ray li hits a surface element, the specular component

along the view-direction of the point x due to ith source is given by rxi.

Figure 2(b) geometry presentation is inspired by Keenan work [17].

small changes due to outliers or noise. Following that, we

express the light source directions in the range φ ∈ [0, π]
for azimuth angles and θ ∈ [−π/2, π/2] for elevation an-

gles (Fig.2(a)). We divide the azimuth and elevation spaces

into Kd = 36 classes. We classify azimuth and elevation

separately, which reduces the problem’s dimensionality and

leads to efficient computation. Similarly, we divide the light

intensity range [0.2, 2.0] into Ke = 20 classes [10].

We used seven feature extraction layers to extract image

features for each input image separately, where each layer

applies 3 × 3 convolution and LReLU activation [74]. The

weights of the feature extraction layers are shared among

all the input images. However, single image features cannot

completely disambiguate the object geometry with the light

source information. Therefore, we utilize multiple images

to have a global implicit knowledge about the surface’s ge-

ometry and its reflectance property. We use image specific

local features and combine them using a fusion layer to get

a global representation of the image set via a max-pooling

operation (Fig.3). The global feature representation with the

image-specific features is then fed to a classifier. The classi-

fier applies four layers of 3×3 convolution and LReLU acti-

vation [74] as well as two fully-connected layers to provide

output softmax probability vectors for azimuth (Kd), ele-

vation (Kd), and intensity (Ke). Similar to the feature ex-

traction, the classifier weights are shared among each other.

The output value with maximum probability is converted

into a light direction vector li and scalar intensity ei.

Loss function for Light Estimation Network. The light

estimation network is trained using a multi-class cross-

entropy loss [10]. The total calibration loss Lcalib is:

Lcalib = Laz + Lel + Lin (7)

Here Laz , Lel, and Lin are the loss terms for azimuth,

elevation, and intensity respectively. We used synthetic

Blobby and Sculpture datasets [12] to train the network.

The light source labels from these datasets are used for su-

pervision at the train time. The network is trained using the

above loss for once and the same network is used at the test

time for all other datasets §5.
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4.2. Inverse Rendering Network

To estimate an object surface normals from X, we lever-

age neural networks’ powerful capability to learn from data.

The prime reason for that is, it is difficult to mathemati-

cally model the broad classes of BRDFs without any prior

assumptions about the reflectance model [21, 16, 22]. Al-

though there are methods to estimate BRDF values using its

isotropic and low-frequency property [29, 61], it prohibits

the modeling of unrestricted reflectance behavior of the ma-

terial. Instead of such explicit modeling, we build on the

idea of neural inverse rendering [65], where the BRDFs and

surface normals are predicted during the image reconstruc-

tion process by the neural network. We go beyond Taniai

et al. [65] work by proposing an inverse rendering network

that synthesizes the input images using a rendering equation

that explicitly uses interreflections to infer surface normals.

(a) Surface Normal Modeling. We first convert X into

a tensor X ∈ R
h×w×nc, where h × w denote the spatial

dimensions, n is the number of images, and c is the number

of color channels (c = 1 for grayscale and c = 3 for color

images). X is then mapped to a global feature map Φ as

follows:

Φ = ξf (X ,O,Θf ) (8)

O is used to separate the object information from the back-

ground. ξf is a three layer feed-forward convolutional net-

work with learnable parameter Θf . Each layer applies 3×3
convolution, batch-normalization [32] and ReLU activation

[74] to extract global feature map Φ. In the next step, we

use Φ to compute the surface normals. Let ξn1 be the func-

tion that converts Φ into output normal map No via 3 × 3
convolution and L2-normalization operation.

No = ξn1(Φ,Θn1) (9)

Here, Θn1 is the learnable parameter. We used the estimated

No to compute Nny using function ξn2.

Nny = ξn2(No,P,K) (10)

ξn2 requires the interreflection kernel K and albedo ma-

trix P as input. To calculate K, we integrate the No over

masked object pixel coordinates (x, y) to obtain the depth

map [3, 63]. Afterward, the depth map is used to infer the

kernel matrix K (see Eq:(4)). Once we have K, we employ

Eq:(6) to compute Nny . Later, Nny is used in the rendering

equation (Eq:(15)) for image reconstruction.

(b) Reflectance Modeling. For effective learning of

BRDFs, it is important to model the specular component.

To incorporate that, we feed a specularity map along with

the input image as a channel. Consider the specular-

reflection direction rxi at a surface element x with normal

no(x) due to the ith light source. We compute rxi along the

view-direction vector v using the following relation:

rxi = v
T
(

2
(
no(x)

T
li) · no(x

)
− li

)

(11)

Here, ‖li‖2, ‖no(x)‖2, ‖rxi‖2 are 1 (see Fig.2(b)). Com-

puting rxi for all surface points provides the specular-

reflection map Ri ∈ R
h×w×1. Concatenating Xi ∈

R
h×w×c with Ri across channel guides the network to learn

complex BRDFs. Thus, we compute feature map Si as:

Si = fsp(Xi ⊕Ri,Θsp) (12)

We used ⊕ to denote the concatenation operation. fsp is

a three-layer network where each layer applies 3×3 convo-

lution, batch-normalization [32] and ReLU operations [74].

Although the feature map Si models the actual specular

component of a BRDF, it is computed using a single im-

age observation Xi which has limited information. To en-

rich the feature, we concatenate it with the global features

Φ (see Eq:(8)) and compute enhanced feature block Zi.

Zi = flg(Si ⊕ Φ,Θlg) (13)

flg function applies 1× 1 convolution, batch normalization

[32] and ReLU operations [74] to estimate Zi . Finally,

we define the reflectance function fr that blends the image

specific features with Φ along with the specular component

of the image to compute the reflectance map Ψi.

Ψi = fr(Zi,Θri) (14)

The function fr applies 3 × 3 convolution, batch normal-

ization [32], ReLU operation [74] with an additional 3 × 3
convolution layer to compute Ψi. The predicted Ψi by the

network contains the BRDFs and cast shadow information.

The specular (Θsp), local-global (Θlg), and reflectance im-

age (Θri) parameters are learned over SGD iteration by the

network. Details about the implementation of above func-

tions, learning and testing strategy are described in §5.

(c) Rendering equation. Assuming photometric stereo

setup, once we have the surface normals, reflectance map,

and light source information, we render the input image us-

ing the following equation:

X̃i = Ψi ⊙
(
ei · ζa(Nny, li)

)
(15)

Here, we explicitly model the effects of interreflections in

the image formation. For a given source, Ψi encapsulates

the BRDF values with the cast shadow information. Further,

ζa is defined for the attached shadow. With a slight abuse of

notation used in Eq:(1), ζa computes the inner product be-

tween a light source and the surface normal matrix for each

pixel, and the maximum operation is done element-wise i.e.,

max(NT
nyli, 0). ei ∈ R+ is a scalar intensity value of the

light source, and ⊙ denotes the Hadamard product. Fig.3

shows the entire rendering network pipeline.
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Figure 3: The proposed method consists of two networks. Light estimation network initially predicts the light source directions and intensities from input

images. Then, neural inverse rendering network uses the images and the light source estimations to recover surface normals, depth and BRDF values.

Loss Function for Inverse Rendering Network. To train

the proposed inverse rendering network, we use l1 loss be-

tween the rendered images X̃ and input images X on the

masked pixels (O). The network parameters are learned by

minimizing the following loss using the SGD algorithm:

Lrec(X, X̃) =
1

mnc

∑

i,c,x

|Xi,c(x)− X̃i,c(x)| (16)

Here, m is the number of pixels within O and n, c are the

number of input images and color channels, respectively.

The optimization of the above image reconstruction loss

function seems reasonable; but, it may provide unstable

behavior leading to inferior results. Therefore, we apply

weak supervision to the network at the early stages of the

optimization by adding a surface normal regularizer in the

loss function using an initial normal estimate Ninit. Such a

strategy guides the network for stable convergence behavior

and a better solution to the surface normals. The total loss

function is defined as:

L = Lrec(X, X̃) + λwLweak(Nny,Ninit) (17)

where, function Lweak is defined as Lweak(Nny,Ninit) =
1

m

∑

x
‖nny(x)− ninit(x)‖

2

2
. Least-square solution of N

in Eq:(2) can provide weak supervision to the network in the

early stage of the optimization. However, such initialization

may provide undesirable behavior at times. Therefore, we

adhere to the robust optimization algorithm on photometric

stereo (§5) to initialize the surface normal in Eq:(17).

5. Dataset Acquisition and Experiments

We performed evaluations of our method on DiLiGenT

dataset [62]. DiLiGenT is a standard benchmark for photo-

metric stereo, consisting of ten different real-world objects.

Despite it provides surfaces of diverse reflectances, the sub-

jects are not elegant for studying interreflections. There-

fore, we propose a new dataset that is apt for analyzing such

complex imaging phenomena. The acquisition is performed

using two different setups. In the first setup, we designed a

physical dome system to capture the cultural artifacts. It is a

35cm hemispherical structure with 260 LEDs on the nodes

for directed light projection, and with a camera on top, look-

ing down vertically. The object under investigation lies at

the center. Using it, we collected images of three historical

artifacts (Tablet1, Tablet2, Broken Pot) with spatial resolu-

tion of 180 × 225. Ground-truth normals are acquired us-

ing active sensors with post-refinements. We noted that it is

onerous to capture 3D surfaces with high-precision. For this

reason, we simulated the dome environment using Cinema

4D software with 100 light sources. Using this synthetic

setup, we rendered images of three objects (Vase, Golf-ball,

Face) with spatial resolution of 256×256. Our dataset intro-

duces new subjects with general reflectance property to ini-

tiate a broader adaptation of photometric stereo algorithm

for extracting 3D surface information of real objects.

Implementation Details. Our method is implemented in

PyTorch [54]. The light estimation network is trained using

Blobby and Sculpture datasets [12] with Adam [34] opti-

mizer and initial learning rate of 5 × 10−4. We trained the

model for 20 epochs with a batch size of 32. The learning

rate is divided by two after every 5 epochs. Training of the

neural inverse rendering network is not required as it learns

the network parameters at the test time. However, the ini-

tialization of the network is crucial for stable learning.

• Initialization: Our method uses an initial surface normals

prior Ninit (Eq:(17)) to warm up the rendering network and

to initialize the interreflection kernel K values. Woodham’s

classical method [69] is a conventional way to do so under

given light sources. However, initialization using Wood-

ham’s method is observed to provide a unstable network

behavior leading to inferior results [65]. Therefore, for ini-

tialization, we propose to use partial sum of singular values

optimization [50]. Let X ∈ R
m×n, L ∈ R

3×n, N ∈ R
3×m,

then Eq:(2) under Lambertian assumption with ρ = 1 can
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Type G.T. Normal Methods↓ | Dataset → Ball Cat Pot1 Bear Pot2 Buddha Goblet Reading Cow Harvest Average

Classical ✗ Alldrin et al.(2007) [2] 7.27 31.45 18.37 16.81 49.16 32.81 46.54 53.65 54.72 61.70 37.25

Classical ✗ Shi et al.(2010) [60] 8.90 19.84 16.68 11.98 50.68 15.54 48.79 26.93 22.73 73.86 29.59

Classical ✗ Wu et al.(2013) [73] 4.39 36.55 9.39 6.42 14.52 13.19 20.57 58.96 19.75 55.51 23.93

Classical ✗ Lu et al.(2013) [45] 22.43 25.01 32.82 15.44 20.57 25.76 29.16 48.16 22.53 34.45 27.63

Classical ✗ Pap. et al.(2014) [52] 4.77 9.54 9.51 9.07 15.90 14.92 29.93 24.18 19.53 29.21 16.66

Classical ✗ Lu et al.(2017) [44] 9.30 12.60 12.40 10.90 15.70 19.00 18.30 22.30 15.00 28.00 16.30

NN-based ✓ Chen et al.(2018) [12] 6.62 14.68 13.98 11.23 14.19 15.87 20.72 23.26 11.91 27.79 16.02

NN-based ✓ Chen et al.(2018)† [12] 3.96 12.16 11.13 7.19 11.11 13.06 18.07 20.46 11.84 27.22 13.62

NN-based ✓ Chen et al.(2019) [10] 2.77 8.06 8.14 6.89 7.50 8.97 11.91 14.90 8.48 17.43 9.51

NN-based ✗ Ours 3.78 7.91 8.75 5.96 10.17 13.14 11.94 18.22 10.85 25.49 11.62

Table 1: Without using ground-truth light or surface normals of this dataset at train time, our method supplies results that is comparable to the recent

state-of-the-art [10]. The 1st and 2nd best performing methods are colored in light-red and dark-red respectively. G.T. Normal column indicates the use of

ground-truth normal at train time. Comparisons are done against well-known uncalibrated methods. † indicates the deeper version of the UPS-FCN model.

CAT POT2 GOBLET READING COW BUDDHA

 (a) DiLiGenT Dataset

 (b) Ground-Truth Normal

 (c) Our Estimated Normal

Figure 4: Qualitative results on DiLiGenT dataset using our method.

be written as X = N
T
L + E. Here, E ∈ R

m×n is a ma-

trix of outliers and assumed to be sparse [71]. Substituting

Z = N
T
L, the normal estimation under low rank assump-

tion can be formulated as a RPCA problem [71]. We know

that RPCA performs the nuclear norm minimization of Z

matrix which not only minimizes the rank but also the vari-

ance of Z within the target rank. Now, for the photometric

stereo model, it is easy to infer that N lies in a rank-3 space.

As the true rank for Z is known from its construction, we do

not minimize the subspace variance within the target rank

(K). We preserve the variance of information within the

target rank while minimizing other singular values outside

it via the following optimization:

min.
Z,E

‖Z‖r=K + λ‖E‖1, subject to: X = Z+E (18)

Eq:(18) is a well-studied problem and we solved it using

ADMM [8, 50, 40]. We use the Augmented Lagrangian

form of Eq:(18) to solve Z, E for K = 3. The recovered

solution is used to initialize the surface normal in Eq:(17).

For detailed derivations, refer to supplementary material.

• Testing: For testing, we first feed the test images to the

light estimation network to get source directions and in-

tensities. For objects like Vase, where the cast shadows

and interreflections play a vital role in the object’s imag-

ing, light estimation network can have questionable behav-

ior. So, we use the light source directions and intensities

estimated from a calibration sphere for testing our synthetic

objects. Once normal is initialized using our robust ap-

VASE GOLF-BALL FACE

 (a) Our Dataset

 (b) Ground-Truth Normal

 (c) Our Estimated Normal

TABLET 1 TABLET 2 BROKEN-POT 

Figure 5: Qualitative results of our method on proposed dataset.

proach, we learn inverse rendering network’s parameters by

minimizing L of Eq:(17). To compute Lrec, we randomly

sample 10% of the pixels in each iteration and compute it

over these pixels to avoid local minimum. To provide weak-

supervision, we set λw = Lrec(0,X) to balance the influ-

ence of Lrec and Lweak to network learning process. Note

that λw is set to zero after 50 iterations to drop early stage

weak-supervision. We perform 1000 iterations in total with

initial learning rate of 8×10−4. The learning rate is reduced

by factor of 10 after 900 iterations for fine-tuning. Before

feeding the images to the normal estimation network, we

normalize them using a global scaling constant σ, i.e. the

quadratic mean of pixel intensities X
′ = X/(2σ). During

the learning of inverse rendering network, we repeatedly up-

date the kernel K using No after every 100 iterations.

5.1. Evaluation, Ablation Study and Limitation

(a) DiLiGent Dataset. Table(1) provides statistical com-

parison of our method against other uncalibrated methods

on DiLiGenT benchmark. We used popular mean angular

error (MAE) metric to report the results. It can be inferred

that our method achieves competitive results on this bench-

mark with an average MAE of 11.62 degrees, achieving the

second best performance overall without ground-truth sur-

face normal supervision. On the contrary, the best perform-

ing method [10] uses ground-truth normals during training,

and therefore, it performs better for objects like Harvest,

where imaging is deeply affected by discontinuities.
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Type G.T. Normal Methods↓ | Dataset → Vase Golf-ball Face Tablet 1 Tablet 2 Broken Pot Average

Classical ✗ Nayar et al.(1991) [49] 28.82 11.30 13.97 19.14 16.34 19.43 18.17

NN-based ✓ Chen et al.(2018) [12] 35.79 36.14 48.47 19.16 10.69 24.45 29.12

NN-based ✓ Chen et al.(2019) [10] 49.36 31.61 13.81 16.00 15.11 18.34 24.04

NN-based ✗ Ours 19.91 11.04 13.43 12.37 13.12 18.55 14.74

Table 2: Comparison against recent uncalibrated deep photometric stereo methods and Nayar et al. [49] on our dataset. In contrast to our approach, Chen

et al. [12] and Chen et al. [10] require ground-truth normal for training the network. We can observe that our method shows consistent behavior over a

diverse dataset that is on average better than other methods. The two best-performing methods are shaded with light-red and dark-red color respectively.
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(b) Our Dataset. Table(2) compares our method with other

deep uncalibrated methods on the proposed dataset. For

completeness, we analyzed Nayar et al. [49] algorithm by

using light sources data obtained using our approach. The

results show that our method achieves the best performance

overall. We observed that other deep learning methods can-

not handle objects like Vase as they fail to model complex

reflectance behavior. Similarly, Nayar et al. [49] results in-

dicate that modeling interreflections alone is not sufficient.

Since we not only model the effects of interreflections, but

also the reflectance mapping associated with the geometry,

our method consistently performs well.

(c) Ablation Study. For this study, we validate the impor-

tance of robust initialization and interreflection modeling.

• Robust Initialization: To show the effect of initialization,

we consider three cases. First, we use classical approach

[69] to initialize inverse rendering network. Second, we

replace the classical method with our robust initialization

strategy. In the final case, we remove the weak-supervision

loss from our method. Fig.7 shows MAE and image recon-

struction loss curve per learning iteration obtained on Cow

dataset. The results indicate that robust initialization allows

the network to converge faster as outliers are separated from

the images at an initial stage. Fig.6 shows the MAE of sur-

face normals during initialization as compared to the results

obtained using our method.

• Interreflection Modeling: To demonstrate the effect of

interreflection modeling, we remove the function ξn2 in

Eq:(10) and use No in image reconstruction as in classical

rendering. Fig.7 provides learning curves with and with-

out interreflection modeling. As expected, excluding the

effect of interreflections inherently impacts the accuracy of

the surface normals estimates even if the image reconstruc-

tion quality remains consistent. Hence, it is important to

explicitly constrain the geometry information.

(d) Limitations. Discrete facets assumption of a continu-

ous surface for computing depth and interreflection kernel

Figure 7: Ablation Study: We demonstrate the effect of robust initial-

ization on Cow (top) and interreflection modeling on Vase (bottom).

may not be suitable where the surface is discontinuous in

orientation, e.g., surface with deep holes, concentric rings,

etc. As a result, our method may fail on surfaces with very

deep concavities and cases related to naturally occurring op-

tical caustics. As a second limitation, the light estimation

network may not resolve GBR ambiguity for all kinds of

shapes. Presently, we did not witness such ambiguity with

the light calibration network as it is trained to predict lights

under non-GBR transformed surface material distribution.

6. Conclusion

From this work, we conclude that uncalibrated neural in-

verse rendering approach with explicit interreflection mod-

eling enforces the network to model complex reflectance

characteristics of objects with different material and geom-

etry types. Without using ground-truth surface normals, we

observed that our method could provide comparable or bet-

ter results than the supervised approaches. And therefore,

our work can enable 3D vision practitioners to opt for pho-

tometric stereo methods to study a broader range of geo-

metric surfaces. That’s said, image formation is a complex

process, and additional explicit constraints based on the 3D

surface geometry types, material, and light interaction be-

havior could further advance our work.
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