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Abstract

Novel view synthesis is a challenging and ill-posed in-

verse rendering problem. Neural rendering techniques

have recently achieved photorealistic image quality for this

task. State-of-the-art (SOTA) neural volume rendering ap-

proaches, however, are slow to train and require minutes of

inference (i.e., rendering) time for high image resolutions.

We adopt high-capacity neural scene representations with

periodic activations for jointly optimizing an implicit sur-

face and a radiance field of a scene supervised exclusively

with posed 2D images. Our neural rendering pipeline ac-

celerates SOTA neural volume rendering by about two or-

ders of magnitude and our implicit surface representation is

unique in allowing us to export a mesh with view-dependent

texture information. Thus, like other implicit surface rep-

resentations, ours is compatible with traditional graphics

pipelines, enabling real-time rendering rates, while achiev-

ing unprecedented image quality compared to other surface

methods. We assess the quality of our approach using exist-

ing datasets as well as high-quality 3D face data captured

with a custom multi-camera rig.

1. Introduction

Novel view synthesis and 3D shape estimation from 2D

images are inverse problems of fundamental importance in

applications as diverse as photogrammetry, remote sensing,

visualization, AR/VR, teleconferencing, visual effects, and

games. While traditional 3D computer vision pipelines have

been studied for decades, only emerging neural rendering

techniques have been able to achieve photorealistic quality

for novel view synthesis (e.g., [38, 56]).

State-of-the-art neural rendering approaches, such as

neural radiance fields [38], however, do not offer real-time

framerates, which severely limits their applicability to the

aforementioned problems. This limitation is primarily im-

posed by the choice of implicit neural scene representation

and rendering algorithm, namely a volumetric representa-

tion that requires a custom neural volume renderer. Neural
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Figure 1. Overview of our framework. Given a set of multi-view

images, we optimize representation networks modeling shape and

appearance of a scene end to end using a differentiable sphere

tracer. The resulting models can be exported to enable view-

dependent real-time rendering using traditional graphics pipelines.

surface representations, for example using signed distance

functions (SDFs) [41, 18, 2, 60], occupancy fields [35], or

feature-based representations [54], on the other hand im-

plicitly model the surface of objects, which can be extracted

using the marching cubes algorithm [32] and exported into

traditional mesh-based representations for real-time render-

ing. Although implicit neural surface representations have

recently demonstrated impressive performance on shape re-

construction [60], their performance on view interpolation

and synthesis tasks is limited. Thus, SOTA neural render-

ing approaches either perform well for view synthesis [38]

or 3D shape estimation [60], but not both.

Here, we adopt an SDF-based sinusoidal representation
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network (SIREN) as the backbone of our neural rendering

system. While these representations have recently demon-

strated impressive performance on representing shapes via

direct 3D supervision with point clouds [52], we are the first

to demonstrate how to leverage SIREN’s extreme capacity in

the context of learning 3D shapes using 2D supervision with

images via neural rendering. For this purpose, we devise

a novel loss function that maintains SIREN’s high-capacity

encoding for the supervised images while constraining it in

the angular domain to prevent overfitting on these views.

This training procedure allows us to robustly fit a SIREN-

based SDF directly to a sparse set of multi-view images.

Our 2D-supervised implicit neural scene representation and

rendering approach performs on par with NeRF on view in-

terpolation tasks while providing a high-quality 3D surface

that can be directly exported for real-time rendering at test

time.

Specifically, we make the following contributions:

• We develop a neural rendering framework compris-

ing an implicit neural 3D scene representation, a neu-

ral renderer, and a custom loss function for training.

This approach achieves 10⇥ higher rendering rates

than NeRF while providing comparable, SOTA image

quality with the additional benefit of optimizing an im-

plicitly defined surface.

• We demonstrate how both shape and view-dependent

appearance of our neural scene representation can be

exported and rendered in real time using traditional

graphics pipelines.

• We also build a custom camera array and capture sev-

eral datasets of faces and heads for evaluating our ap-

proach and baselines. These data are available on the

project website.1

2. Related Work

Traditional 3D computer vision pipelines use structure-

from-motion and multi-view-stereo algorithms to estimate

sparse point clouds, camera poses, and textured meshes

from 2D input views (e.g., [55, 49, 7, 47, 48]). Re-rendering

these scene representations, however, does not achieve pho-

torealistic image quality. As an alternative, image-based

rendering techniques have been explored for decades [50].

Lumigraph rendering [17, 4] stands out among these meth-

ods as an approach that leverages proxy scene geometry to

interpolate the captured views better. Still, these traditional

approaches have not demonstrated photorealistic view syn-

thesis for general 3D scenes.

Emerging neural scene representations often model an

object or scene explicitly using some 3D proxy geometry,

1http://www.computationalimaging.org/publicati

ons/nlr/

such as an imperfect mesh [21, 57, 45, 62] or depth map [44]

estimated by multi-view stereo or other means, an object-

specific shape template [25], a multi-plane [63, 37, 11]

or multi-sphere [3, 1] image, or a volume [53, 31]. An

overview of recent neural rendering techniques, including

extensive discussions of explicit representations, is pro-

vided by Tewari et al. [56].

As opposed to explicit representations, emerging neu-

ral implicit scene representations promise 3D-structure-

aware, continuous, memory-efficient representations for

shape parts [15, 14], objects [41, 36, 2, 18, 60, 8, 5], or

scenes [10, 54, 23, 43, 52]. These representations im-

plicitly define an object or a scene using a neural net-

work and can be supervised directly with 3D data, such

as point clouds, or with 2D multi-view images [46, 54, 40,

39, 38, 60, 29, 24, 30, 27]. It is important to distinguish

between neural implicit representations that use implicitly

defined volumes [38, 29, 28] from those using implicitly

defined surfaces, for example represented as signed dis-

tance functions (SDFs) [41, 36, 2, 18, 54, 23, 43] or occu-

pancy networks [35, 6, 39]. Surface-based representations

allow for traditional mesh representations to be extracted

and rendered efficiently with traditional computer graphics

pipelines.

The neural rendering methods closest to our work are

neural radiance fields (NeRF) [38], which provide the

best image quality for view synthesis to date but do

not directly model object shape, and implicit differen-

tiable renderer (IDR) [60], which recently demonstrated

SOTA performance for shape estimation but which does

not achieve the same quality as NeRF for view synthesis.

Our work leverages emerging sinusoidal representation net-

works (SIREN) [52] to achieve both of these capabilities

simultaneously. This is crucial for the neural rendering

pipeline we propose, which first learns a neural implicit sur-

face representation and then exports it into a format that is

compatible with existing real-time graphics pipelines. Al-

though SIRENs have been proposed in prior work [52], we

are the first to demonstrate how to leverage their impressive

capacity with 2D multi-view image supervision – a non-

trivial task due to SIREN’s extreme overfitting behavior.

3. Neural Rendering Pipeline

In this section, we describe our differentiable neural ren-

dering pipeline, which is illustrated in Fig. 1.

3.1. Representation

We represent both shape and appearance of 3D objects

using implicit functions in a framework similar to IDR [60].

Unlike previous work, however, our network architecture

builds on sinusoidal representation networks (SIREN) [52],

which allow us to represent signals of significantly higher

complexity within the same number of learnable parame-
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ters compared with common non-periodic multilayer per-

ceptrons (MLP).

We express the continuous shapes of a scene as the zero-

level set S0 = {x |S(x) = 0} of a signed distance function

(SDF)

S(x; θ) : R3 ! R, (1)

where x 2 R
3 is a location in 3D space and θ are the learn-

able parameters of our SIREN-based SDF representation.

Next, we model appearance as a spatially varying emis-

sion function, or radiance field, E for directions rd 2 R
3

defined in a global coordinate system. This formulation

does not allow for relighting but it enables photorealistic re-

construction of the appearance of a scene under fixed light-

ing conditions. We leave the problem of modeling lighting

and shading as an avenue of future work.

We additionally condition E by the local normal direc-

tion n = rxS(x) as computed by automatic differentia-

tion. This does not constrain any degrees of freedom but it

has been shown to improve the training performance [60].

Finally, we also reuse θ to increase the network capacity

and allow for modeling of fine spatial details and micro-

reflections that are of a notably higher spatial complexity

than the underlying shape. Together, we express the radi-

ance field as

E(x, rd,n; θ,φ) : R
9 ! R

3, (2)

to represent RGB appearance using the additional learnable

parameters φ.

3.2. Neural Rendering

The goal of neural rendering is to project a 3D neural

scene representation into one or multiple 2D images. We

solve this task in two steps: 1) We find the 3D surface as

the zero-level set S0 closest to the camera origin along each

ray; 2) We resolve the appearance by sampling the local

radiance E.

To address 1), we sphere trace the SDF to find S0 [20].

For this purpose, we define a view and a projection matrix,

V 2 R
4⇥4 and P 2 R

4⇥4, similar to OpenGL’s rendering

API [59]. A ray origin ro and direction rd for an output

pixel at relative projection plane location u 2 [�1, 1]2 is

then

ro = (V �1 · [0, 0, 1, 0]T )x,y,z, (3)

rd = ν
�

(P · V )�1 · [ux,uy, 0, 1]
T
�

, (4)

where (·)x,y,z are vector components and ν(ω) =
ωx,y,z/||ωx,y,z|| is vector normalization.

The sphere-tracing algorithm minimizes |S(x, θ)| along

each ray using iterative updates of the form

x0 = ro, xi+1 = xi + S(xi)rd. (5)

Finally, S0 = {xn |S(xn) = 0} is the zero-set of rays con-

verged to a foreground object for the step count n = 16. A

small residual |S(xn)| < 0.005 is tolerated in practice. As

proposed in recent work [60, 24, 30], we only retain gra-

dients in the last step rather than for all steps of the sphere

tracer. This approach makes sphere tracing memory effi-

cient. Please refer to the supplemental materials for addi-

tional details.

The appearance is directly sampled from our radiance

field as E(S0, rd,rS(S0); θ,φ).

3.3. Loss Function

We supervise our 3D representation using a set of m
multi-view 2D images I = R

m⇥w⇥h⇥3 with known ob-

ject masks M = R
m⇥w⇥h where 1 marks foreground. Our

unique approach to leveraging SIREN as a neural represen-

tation in this setting is challenging, because of SIREN’s ten-

dency to overfit the signal to the supervised views.

In total, we use four different constraints to optimize the

end-to-end representation using mini-batches of image pix-

els U with RGB values IU and object masks MU.

First, we minimize an L1 image reconstruction error for

the true foreground pixels Uf = U \ S0 \ {U |MU = 1}
as

LR =
1

|U|

X

c2IUf

|E(x, rd,n; θ,φ)� c|, (6)

where c is an RGB value of a foreground pixel in a mini-

batch. Both L1 and L2 work well but we have found L1 to

produce marginally sharper images.

Second, we regularize the S by an eikonal constraint

LE =
1

|U|

X

xr

�

�(krxS(xr; θ)k2 � 1)
�

�

2

2
(7)

to enforce its metric properties important for efficient sphere

tracing [19, 24, 52, 60]. Random points xr are uni-

formly sampled from a cube which encapsulates the object’s

bounding unit radius sphere.

Third, we restrict the coarse shape by enforcing its pro-

jected pattern to fall within the boundaries of the object

masks. For this purpose, we adopt the soft mask loss pro-

posed in [60] defined for the non-foreground pixels and

softness parameter α as

LM =
1

α|U|

X

m2MU\Uf

BCE(sigmoid(�αSmin),m), (8)

where BCE is the binary cross entropy and Smin =
argmint S(ro + trd; θ) is the minimum S value along the

entire ray approximated by dense sampling of t.
Finally, we regularize the radiance field E to avoid over-

fitting to training views. SIRENs have a remarkable regres-

sive potential, which biases them to overfit the appearance
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to the training views. We leverage this power to allow for

encoding of photorealistic surface details, but we need to

restrict the behavior of the E in the angular domain con-

ditioned by rd to achieve favorable interpolation behavior.

Inspired by multi-view projective texture mapping [9], we

linearize the angular behavior using a smoothness term

LS =
1

|U|

X

||r2
rd
E(x, rd,n; θ,φ)||

2
2. (9)

Note that such level of control is unique to SIREN and re-

lated architectures as they are C1 differentiable.

Together, we optimize parameters θ and φ as

argmin
θ,φ

LR + wELE + wMLM + wSLS , (10)

with weights wE = 0.1, wM = 100, and wS = 0.01 for

all of our experiments. We have not found the performance

to be very sensitive to this choice with the exception of wS

where large values cause high-frequency artifacts in S.

3.4. Additional Training Details

We optimize the loss in mini-batches of 50,000 indi-

vidual rays sampled uniformly across the entire training

dataset. We have found a large batch size and uniform

ray distribution to be critical to prevent local overfitting of

SIREN, especially for the high-frequency function E.

We implement the MLPs representing S and

E as SIRENs with 5 layers using 256 hidden

units each. Additionally, we use Fourier features

{sin(2kπrd), cos(2kπrd) | k 2 1 . . . 4} in E to fur-

ther support angular resolution [38, 60]. This strategy is

necessary to fit the sparsely supervised rays well while LS

enhances interpolation between them.

We initialize S to a unit sphere of radius 0.5 by pre-

training to a procedural shape as described in [52]. We trace

the object rays in a larger sphere of radius 1, but we have

found that the smaller initial radius improves the initial fit

as well as the consequent convergence rate.

We implement our method in PyTorch [42] and optimize

the loss using the Adam solver [26] with an initial learning

rate of 10�4 decreased by a factor of 2 every 40,000 batches

for the overall training length of 150,000 batches on a single

Nvidia GPU RTX 2080Ti.

4. Real-time Rendering Pipeline

While we show that SIREN is remarkably efficient in

shape and appearance representation with 2D supervision,

the required sphere tracer does not run at real-time rates

for moderate to high image resolutions. To overcome this

challenge, we show how to leverage the compactness of our

surface-based representation and convert our neural model

to a triangular mesh suitable for real-time computer graph-

ics applications. For this purpose, we leverage unstructured

lumigraph rendering, which preserves view-dependent ef-

fects learned by our neural representation [4].

4.1. Mesh extraction

First, we use the marching cubes algorithm [33] to ex-

tract a high-resolution surface mesh from the SDF S vox-

elized at a resolution of 5123. Instead of extracting the zero-

level set, we found that offsetting the iso-surface of S by

0.5% of the object radius in the outside direction optimizes

the resulting image quality in practice. To export the ap-

pearance, we resample the optimized emissivity function E
to synthesize projective textures Ti for N camera poses and

corresponding projection matrices. The ability to resample

the camera poses for efficient viewing space coverage is a

key feature of our method and we explore the choice of N
and camera distributions in the supplement.

4.2. Rendering

First, we rasterize the extracted mesh using OpenGL [59]

and project the vertex positions to each pixel. Next, we

compute angles τ1...N between the ray towards the current

rendering camera and the rays towards each of the N pro-

jective texture map viewpoints. We then apply the unstruc-

tured lumigraph rendering technique of Buehler et al. [4] to

blend contributions from the first k = 5 textures, sorted by

τi in ascending order, yielding a rendered image

R =
P

i=1...k wiTi, (11)

where the weights wi are computed as

ŵi = 1/τi(1� τi/τk), (12)

wi = ŵi/
P

i=1...k ŵi. (13)

This formulation satisfies the epipolar consistency by con-

verging to an exclusive mapping by texture Tj when

τj ! 0 [4]. Additionally, we discard samples from oc-

cluded textures by setting their wi to zero. Occlusions are

detected by a comparison between the pre-rendered depth

associated with a texture and the distance between the mesh

voxel and the texture viewpoint. The same technique is

commonly used in real-time graphics for shadow mapping.

4.3. Evaluation

Efficiency We compare the efficiency of our real-time

rasterized neural lumigraph renderer (NLR-RAS) with our

sphere-traced renderer (NLR-ST, Sec. 3) along with other

baselines in Table 1. We observe, that although both NLR-

ST and IDR are based on sphere tracing, the capacity of

SIREN allows for a smaller and faster model, which is evi-

dent by the model size. Furthermore, the results show how

costly the implicit volumetric rendering is. In conclusion,

only the explicit representations of Colmap and our NLR-

RAS allow for truly real-time performance with framerates

over 60 fps at HD resolution on commodity hardware.
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Method Render time [s] Model size [MB]

Colmap [48] Real-time 30.39

IDR [60] 45 11.13

NV [31] 0.65 438.36

NeRF [37] 150 2.27

NLR-ST 13 2.07

NLR-RAS Real-time 34.68

Table 1. Rendering time and representation size comparison for the

DTU scan 65 [22] at 1600 × 1200 pixel resolution. “Real-time”

denotes framerates of at least 60 fps.

Figure 2. Our custom camera array comprising 16 GoPro HERO7

and 6 central Back-Bone H7PRO cameras (large circular lenses).

Image quality Both the quantitative comparisons in Ta-

bles 2, 3 and qualitative examples in Figures 3, 4 demon-

strate the high NLR-RAS rendering quality. While lower

than that of our NLR-ST renderer, the NLR-RAS still

achieves PSNRs far superior to other explicit (Colmap) and

implicit (IDR) surface representations.

5. Camera Array and Data

Human Head Video Dataset Our dataset consists of 7

multiview captures showing a person performing facial ex-

pressions.

Camera Array Our custom camera array that was used

to capture the dataset is comprised of 16 GoPro HERO7 ac-

tion cameras and 6 Back-Bone H7PRO cameras. The Back-

Bone cameras are modified GoPro cameras that can fit a

standard C-Mount lens. Compared to the unmodified Go-

Pro cameras, the Back-Bone cameras have a narrower field-

of-view (FoV) and are thus able to capture the subject in

more detail. We capture at 4k / 30 fps in portrait orientation

with the Back-Bone cameras and at 1080p / 60 fps in land-

scape orientation with the GoPro cameras. Figure 2 shows

a frontal view of the camera array with the six Back-Bone

cameras in the center of the array and the GoPro cameras

placed around them. We capture our subjects from 60 cm

distance and cover approximately 100�.

Synchronization We trigger the camera shutter with a

WiFi remote. The cameras do not support a generator lock,

so during capture they are only loosely synchronized. We

always capture videos for our dataset, even in the cases in

which we only use a static frame. To improve synchroniza-

tion, we flash an ArUco marker [13] on a cellphone before

each take. We then detect the first frame that sees the marker

in each video which allows us to synchronize the cameras

with an accuracy of 1 frame or better.

6. Experiments

In this section we show that our method is able to achieve

state-of-the-art image reconstruction quality on-par with

volumetric methods such as NeRF [38] while allowing for

efficient surface reconstruction utilized for real-time render-

ing in Sec. 4.

Baselines We compare our method to novel view synthe-

sis techniques with various scene representations. Specif-

ically, we compare to the traditional multi-view stereo of

Colmap [48], the explicit volumetric representation of Neu-

ral Volumes (NV) [31], the implicit volume representation

of NeRF [38], and the implicit signed distance function of

IDR [60]. Please refer to the supplemental material for im-

plementation details.

Regression performance We have used the popular DTU

MVS dataset [22] with 49 or 64 calibrated camera im-

ages along with object masks provided by previous work

[60, 39] to measure the image reconstruction error metrics.

We held out three views for testing. Table 2 shows that

our method achieves SOTA training error comparable with

NeRF. Moreover, our image quality is significantly better

than that of our closest competitor, IDR. We attribute this

major separation to the unparalleled representation capacity

of SIRENs. A qualitative comparison is available in Fig. 3.

Additionally, we report the shape reconstruction error

as Chamfer distance from the ground-truth provided in the

dataset. Although the shape reconstruction is not our ex-

plicit goal, we note that our error is on par with other tech-

niques, though worse than IDR which explicitly focuses

on this problem [60]. We observe that this emerges as a

trade-off between the accuracy of view-dependent and high-

frequency details in the image reconstruction on one hand,

and the view consistency reflected in the geometry on the

other one.

View interpolation Our angular smoothness loss LS is

specifically designed to avoid collapse of the emissivity

function E for interpolated views. We tested its efficiency

quantitatively by measuring the image reconstruction error

on test views the held out from results in Table 2. Please

refer to the supplement for details. As expected, there is

a measurable quality drop when compared to the training

views observed consistently for all of the methods. How-

ever, the interpolated views produced by our method main-

tain many of the favorable characteristics from the regres-
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Scan
Colmap [48] IDR [60] NeRF [37] NLR-ST NLR-RAS

CD↓ PSNR↑ SSIM↑ LPIPS↓ CD↓ PSNR↑ SSIM↑ LPIPS↓ CD↓ PSNR↑ SSIM↑ LPIPS↓ CD↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

65 2.42 15.25 0.862 0.143 0.70 23.87 0.948 0.094 1.02 33.57 0.962 0.055 1.03 32.13 0.961 0.063 31.46 0.960 0.066

97 0.72 11.93 0.843 0.154 1.09 23.02 0.921 0.117 1.43 28.28 0.933 0.089 1.16 28.48 0.939 0.088 28.37 0.939 0.089

106 0.78 15.75 0.887 0.141 0.58 20.97 0.907 0.183 0.84 33.50 0.947 0.092 0.82 32.98 0.951 0.083 31.32 0.951 0.090

118 0.44 22.73 0.921 0.091 0.50 22.62 0.944 0.139 0.88 35.62 0.966 0.070 1.71 34.87 0.964 0.075 33.33 0.963 0.078

Table 2. Image error metrics PNSR, SSIM [58] and LPIPS [61] computed on DTU [22] for the supervised views. See Supp. for metrics of

the held-out views. The Chamfer distance (CD) is computed based on the scripts from [22]. Best scores in bold, second best underlined.

Figure 3. Reconstructed shape and image from various multi-view datasets. The reprojection error is listed in dB of PSNR.

sion case. We provide a qualitative comparison of both su-

pervised and interpolated views in Fig. 4 and in our video.

Human representation View-synthesis of human sub-

jects is particularly challenging due to the complex reflec-

tion properties of skin, eyes and hair, as well as a lack of

high-quality multi-view data. We address the first challenge

with our high-capacity representation network and the lat-

ter with our own dataset described in Sec. 5. Additionally,

we provide experimental results for 360 degree human cap-

tures provided by Volucap GmbH [16] and high-resolution

face captures from the Digital Ira project [12]. Refer to the

supplemental for a detailed description of these data. Ta-

ble 3 summarizes the reconstruction errors and Fig. 3 shows

a few example scenes. Similar trends as in the DTU datasets

can again be observed. Interestingly, our method achieves
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and learned shape. Close-ups enhance detail of the rightmost view. PSNR showed for supervised views.
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Act. LS

Batch

size

Extra

FF

PSNR↑ LPIPS↓ [61]

Train Test Train Test

(1) Relu No 2K No 24.99 10.57 0.171 0.285

(2) Sine No 2K No 28.49 19.27 0.161 0.239

(3) Sine Yes 2K No 28.26 24.77 0.151 0.179

(4) Sine Yes 50K No 30.06 25.20 0.143 0.172

(5) Sine Yes 50K Yes 30.75 26.04 0.132 0.151

Figure 5. Learned shapes with interpolated close-ups (left) and reconstruction metrics for each condition (right) in our ablation study.

Dataset Colmap IDR NV NeRF NLR-ST N.-RAS

Volucap (1) 19.6/.037 22.3/.043 29.3/.034 32.7/.026 28.6/.022 28.6/.022

Dig. Ira (1) Fail. 23.9/.286 26.5/.287 31.2/.267 31.6/.255 31.1/.260

Ours (7) 17.6/.187 22.3/.202 25.1/.186 28.5/.171 30.5/.147 30.3/.151

Table 3. Average reconstruction PSNR/LPIPS [61] scores com-

puted across datasets (number of scenes in parentheses). Italic:

Only 5 scenes tested. See Supplement for an extended version.

a bigger advantage for very high-resolution (3000 ⇥ 4000

px) detailed images in our own dataset. We speculate that

this shows that the traditional ReLU based networks used

by IDR and NeRF have reached their capacity, while the

explicit representations of Colmap and NV lack easy scal-

ing. Once again, this does not come at cost of interpolation

properties as shown in Figure 4 and our videos.

Ablation study Finally, we verify that the performance of

our method is based on the choice of our representation and

training procedure. In Figure and Table 5, we compare sev-

eral variants of our method on the scene in Fig. 4. A stan-

dard MLP with ReLU does not have the capacity to train a

detailed representation (1). SIREN remedies this but tends to

quickly overfit to the trained pixels (2). We resolve this first

by adding our angular smoothness loss LS that regularizes

behavior in the angular domain (3), and then by increasing

the batch size in order to achieve spatially uniform image

quality (4). Additional Fourier Features [38] for the ray di-

rection remove low frequency noise in E (5).

7. Discussion

In summary, we propose a neural rendering framework

that optimizes an SDF-based implicit neural scene repre-

sentation given a set of multi-view images. This frame-

work is unique in combining a representation network ar-

chitecture using periodic activations with a sphere-tracing-

based neural renderer that estimates the shape and view-

dependent appearance of the scene. Enabled by a novel

loss function that is applied during training, our framework

achieves a very high image quality that is comparable with

state-of-the-art novel view synthesis methods. As opposed

to those methods, our neural representation can be directly

converted into a mesh with view-dependent textures that en-

able high-quality 3D image synthesis in real time using tra-

ditional graphics pipelines.

Our approach is not without limitations. Currently, we

only consider emissive radiance functions that are adequate

to model a scene under fixed lighting conditions. Fu-

ture work could additionally consider dynamic lighting and

shading, which some recent neural rendering approaches

have started to incorporate [34, 62]. Further, similar to

IDR [60], our method requires annotated object masks. Au-

tomatic image segmentation could be explored in the future

to address this. Although the synthesized image quality of

our approach is competitive with the state of the art, the

proxy shapes produced by our method are not quite as ac-

curate as alternative approaches [48, 60]. While this is not

important for the novel view synthesis application we con-

sider in this paper, other applications may benefit from es-

timating more accurate shapes. This includes occasionally

visible seam artifacts caused by inaccuracies of the camera

calibration. Similar to some other recent neural rendering

pipelines, ours focuses on overfitting a neural representa-

tion on a single 3D scene. An interesting avenue of future

work includes the learning of shape spaces, or priors, for

certain types of objects, such as faces. While several meth-

ods have explored related strategies using conditioning-

by-concatenation [41, 35], hypernetwork [54], or meta-

learning [51] approaches using synthetic data, there is a

lack of publicly available photorealistic multi-view image

data. In hope of mitigating this shortcoming, we released

our datasets on the project website. Still, these data may be

insufficiently large for learning priors. Finally, although the

inference time of our method is fast, the training time is still

slow. This hurdle along with the limited computational re-

sources at our disposal is the primary reason preventing us

from exploring dynamic video sequences.

Conclusion Emerging neural rendering approaches are

starting to outperform traditional vision and graphics ap-

proaches. Yet, traditional graphics pipelines still offer sig-

nificant practical benefits, such as real-time rendering rates,

over these neural approaches. With our work, we take a sig-

nificant step towards closing this gap, which we believe to

be a critical aspect for making neural rendering practical.
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