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Abstract

Since its inception, Visual Question Answering (VQA) is no-

toriously known as a task, where models are prone to exploit

biases in datasets to find shortcuts instead of performing

high-level reasoning. Classical methods address this by re-

moving biases from training data, or adding branches to

models to detect and remove biases. In this paper, we argue

that uncertainty in vision is a dominating factor preventing

the successful learning of reasoning in vision and language

problems. We train a visual oracle and in a large scale study

provide experimental evidence that it is much less prone

to exploiting spurious dataset biases compared to standard

models. We propose to study the attention mechanisms at

work in the visual oracle and compare them with a SOTA

Transformer-based model. We provide an in-depth analy-

sis and visualizations of reasoning patterns obtained with

an online visualization tool which we make publicly avail-

able1. We exploit these insights by transferring reasoning

patterns from the oracle to a SOTA Transformer-based VQA

model taking standard noisy visual inputs via fine-tuning.

In experiments we report higher overall accuracy, as well

as accuracy on infrequent answers for each question type,

which provides evidence for improved generalization and a

decrease of the dependency on dataset biases.

1. Introduction

The high prediction performance obtained by high-capacity

deep networks trained on large-scale data has led to ques-

tions concerning the nature of these improvements. Vi-

sual Question Answering (VQA) in particular has become

a testbed for the evaluation of the reasoning and generaliza-

tion capabilities of trained models, as it combines multiple

modalities of heterogeneous nature (images and language)

with open questions and large varieties. It has been shown,

*Both authors contributed equally.
1https://reasoningpatterns.github.io
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Figure 1. We argue that noise and uncertainties in visual inputs

are the main bottleneck in VQA preventing successful learning

of reasoning capacities. In a deep analysis, we show that oracle

models with perfect sight, trained on noiseless visual data, tend to

depend significantly less on bias exploitation. We exploit this by

training models on data without visual noise, and then transfer the

learned reasoning patterns to real data. We illustrate successful

transfer by an analysis and visualization of attention modes.

that current models are prone to exploiting harmful biases in

the data, which can provide unwanted shortcuts to learning

in the form of “Clever Hans” effects [36, 22].

In this work we study the capabilities of VQA models to

“reason”. An exact definition of this term is difficult, we

refer to [7, 22] and define it as “algebraically manipulating

words and visual objects to answer a new question”. In par-

ticular, we interpret reasoning as the opposite of exploiting

spurious biases in training data. We argue, and in Section 3

will provide evidence for this, that learning to algebraically

manipulate words and objects is difficult when visual input

is noisy and uncertain compared to learning from perfect in-

formation about a scene. When objects are frequently miss-

ing, detected multiple times or recognized with ambiguous

visual embeddings wrongly overlapping with different cate-

gories, relying on statistical shortcuts may be an easy short-

14207



cut for the optimizer 2 We show, that a perfect-sighted ora-

cle model learns to predict answers while significantly less

relying on biases in training data. We claim that once any

noise has been removed from visual input, replacing object

detection output by Ground Truth (GT) object annotations,

a deep neural network can more easily learn the reasoning

patterns required for prediction and for generalization.

In the line of recent work in AI explainability [28, 32],

and data visualization [18, 38, 11], we propose an in-

depth analysis of attention mechanisms in Transformer-

based models and provide indications of the patterns of rea-

soning employed by models of different strengths. We visu-

alize different operating modes of attention and link them to

different sub tasks (“functions”) required for solving VQA.

In particular, we use this analysis for a comparison between

oracle models and standard models processing noisy and

uncertain visual input, highlighting the presence of reason-

ing patterns in the former and less so in the latter.

Drawing conclusions from this analysis, we propose to

fine-tune the perfectly-sighted oracle model on the real

noisy visual input (see Fig. 1). Using the same analysis

and visualization techniques, we show that attention modes

absent from noisy models are transferred successfully from

oracle models to deployable 3 models, and we report im-

provements in overall accuracy and generalization.

Contributions — (i) An in-depth analysis of reasoning

patterns at work in Transformer-based models, comparing

Oracles vs. deployable models, including visualization of

attention modes; an analysis of the relationships between

attention modes and reasoning, and the impact of attention

pruning on reasoning. (ii) We propose to transfer reasoning

capabilities, learned by the oracle, to SOTA VQA methods

with noisy input and improve overall performance and gen-

eralization on the GQA [19] dataset (iii) We show that this

transfer is complementary with self-supervised large-scale

pre-training (LXMERT [35]/BERT-like).

2. Related work

Visual Question Answering (VQA) — as a task

was introduced in various datasets, such as VQAv1 [5]

and VQAv2 [17] (built from human annotators), or

CLEVR [20] and GQA [19] (automatically-generated from

fully-synthetic and real-world images, respectively). Ad-

ditional splits were proposed to evaluate specific reasoning

capabilities. For instance, VQA-CP [1] explicitly inverts

the answer distribution between train and test splits. Fol-

lowing recent critics and controversies about these evalua-

tions [36, 33], the GQA-OOD dataset [22] introduced a new

split of GQA focusing on rare (Out-Of-Distribution / OOD)

question-answer pairs, and showed that many VQA mod-

2See [16] for an interesting review of shortcut learning.
3Deployable: the model does not use ground-truth visual inputs.

els strongly rely on dataset biases. This growing amount of

diverse datasets has been accompanied by the development

of more sophisticated VQA models. While an exhaustive

survey of methods is out of the scope of this paper, one can

mention families based on object-level attention [3], bilin-

ear fusion [23], tensor decomposition [6], neural-symbolic

reasoning [41], neural [4] and meta [9] module networks.

Transformers and Vision-Language reasoning — In

this work, we focus on Transformers [37] due to their

wide adoption and their powerful attention mechanism.

MCAN [42] and DFAF [15] introduced the use of object-

level self-attention and co-attention mechanisms to model

intra- and inter-modality interactions in VQA. More re-

cent work [21, 10, 29, 35] suggests that the combination

of Transformers with a large-scale BERT [12]-like pretrain-

ing can be beneficial for VQA. Self-attention on pixel-level

[2, 13] is, but up to our knowledge, not used done for VQA.

Attention and reasoning patterns in Transformers —

Analysis of self-attention mechanisms has received consid-

erable attention recently. In [39], a visualization tool for

analysing BERT attention layers is introduced. [11] studies

how training strategies and fine-tuning impact attention in

BERT-like models. Voita et al. [40] classifies BERT’s atten-

tion heads according to their functionality, reporting a sig-

nificant simplification of the model’s complexity via prun-

ing. Finally, [30, Appendix A.5] measures energy distribu-

tions and classifies them based on their meta-stable states.

Following this work in NLP, similar studies have ap-

peared in vision and language. [21] explores the emergence

of word-object alignment in the attention maps when adding

a weakly supervised objective. [8, 26] study to what ex-

tent the attention maps in BERT-like pretrained VQA Trans-

fomers encode various vision-language information. While

these methods provide a better understanding of the amount

of information captured by VQA models, they do not shed

light on how this information is used. In our work, we

analyze how various VQA tasks are encoded in different

attention heads. To this end, we apply an energy-based

analysis inspired by [30]. In addition, we study attention

in perfect-sighted oracle Transformers in order to identify

which patterns lead to better reasoning. Our findings lead

to an Oracle Transfer strategy, which allows to improve per-

formance and generalization in standard transformer mod-

els. Finally, our work is related to [14], which found evi-

dence for relationships between questions and the modula-

tion of (non transformer) model parameters on the synthetic

CLEVR [20] dataset.

3. Analysis of Reasoning Patterns

In this section we will analyze reasoning behavior in

Transformer-based VQA models and make the case for the

impact of training on visual GT data. First, to make the

paper self-contained, we provide a short introduction into
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Vision-Language (VL)-Transformers as proposed in stan-

dard literature [42, 15, 35, 29, 25, 10, 34].

Given two different modalities, Vision (V) and Lan-

guage (L), VL-Transformers are composed of the succes-

sion of intra-modality TV
−
(·), TL

−
(·) and inter-modality

TV←L
×

(·, ·), TL←V
×

(·, ·) multi-head attention layers [37].

As defined in the seminal paper [37], multi-head atten-

tion layers T (·) (both intra- and inter-modality ones) can

be expressed as a set of self-attention layers t(·) which

are performed in parallel on several “heads”. For exam-

ple, given an input sequence v of the visual embeddings,

a visual intra-modality n-head attention layer TV
−
(·) per-

forms as a set of h visual intra-modality self-attention layers

{tV
−

(1)
(·), ..., tV

−

(h)
(·)}, the outputs of which are concate-

nated and then combined:

TV
−
(v) =

[

tV
−

(1)
(v), ..., tV

−

(h)
(v)

]

WO (1)

where WO is a trainable matrix which is particular for each

multi-head attention layer. Each layer t−(·) is defined on a

set of input (vision or language) embeddings x of the same

dimension d as

t−(x) =
∑

j

αijx
v
j , (2)

where the query x
q , key x

k and value xv matrices are given

as follows: xq=W
q
x, xk=W

k
x and x

v=W
v
x. All W .

are trainable parameters. In particular, xq and x
k are used

to calculate the self-attention weights α·j as follows:

α·j=(α1j , ...,αij , ...,αnj)=σ(...,
x
q
i

T
x
k
j√

d
, ...), (3)

with σ being the softmax operator. In this paper, we mainly

focus on the attention maps {αij} which are composed of

these self-attention weights.

Finally, inter-modality self-attention layers t×(·, ·) are

defined in the same way, as the intra-modality ones, but un-

like the latter they calculate queries, keys and values on two

sets of input embeddings of different modalities. More pre-

cisely, for the self-attention layer tV←L
×

(v, l), the query ma-

trix v
q = W

q
v is calculated on vision embeddings, while

the key l
k = W

k
l and the value matrices l

v = W
v
l are

calculated on the language ones. For the tL←V
×

(l,v) self-

attention layer, the matrices are calculated symmetrically

(lq = W
q
l, vk = W

k
v and v

v = W
v
v, respectively).

In addition, each tV←L
×

(resp. tL←V
×

) is followed by a self-

attention tV
−

(resp. tL
−

). A general view of the architecture

is available in the supp. mat..

Experimental setup — All analyses in this section

have been performed with a hidden embedding size d =
128 and a number of per-layer heads h = 4. This

corresponds to a tiny version of the architecture used in

LXMERT [35] where d = 768 and h = 12. Therefore,

“tiny-LXMERT” corresponds to the VL-Transformer archi-

tecture plus BERT-like (LXMERT) pre-training. Unless

specified otherwise, objects have been detected with Faster

R-CNN [31]. Visualizations are done on GQA [19] (valida-

tion set) as it is particularly well suited for evaluating a large

variety of reasoning skills. However, as GQA contains syn-

thetic questions constructed from pre-defined templates, the

dataset only offers a constrained VQA environment. Addi-

tional experiments might be required to extend our conclu-

sions to more natural setups.

3.1. Visual noise vs. models with perfect­sight

We conjecture that difficulties in the computer vision

pipeline are the main cause preventing VQA models in

learning to reason well, and which leads them to exploit

spurious biases in training data. Most of these methods

use pre-trained off-the-shelf object detectors during training

and evaluation steps. But in a significant number of cases,

the visual objects necessary for reasoning are misclassified,

or even not detected at all, as indicated by detection rates

of SOTA detectors on the Visual Genome dataset [24], for

instance. Under these circumstances, even a perfect VQA

model is unable to predict correct answers without relying

on statistical shortcuts.

To further explore this working hypothesis, we trained an

oracle model with perfect sight, i.e a model which receives

perfect visual input, and compare it with tiny-LXMERT.

Based on the same VL-Transformer, it receives the GT ob-

jects from the GQA annotations, encoded as GT bounding

boxes and 1-in-K encoded object classes replacing the vi-

sual embeddings of the classical model. All GT objects are

fed to the model, not only objects required for reasoning.

We study the capabilities of both models, the oracle model

and the classical one, to “reason”. Following [22] we mea-

sure the reasoning capabilities of a VQA model as the ca-

pacity to correctly answer questions, where the GT answer

is rare w.r.t. the question group, i.e the type of questions

being asked. We evaluate the models on the GQA-OOD

benchmark [22] designed for OOD evaluation.

Fig. 2 illustrates the model behavior in different situa-

tions. At the extreme case (left side of the plot), the model

is evaluated on the rarest samples only, while on the right

side all samples are considered. We observe that the per-

formance of the classical model taking noisy visual (tiny-

LXMERT) drops sharply for (image, question) pairs with

rare GT answers, which is an indication for a strong de-

pendency on dataset biases. We would like to insist that

in this benchmark the rarity of a GT answer is determined

w.r.t. the question type, which allows to measure biases tak-

ing into account language. The oracle model, on the other

hand, obtains performances which are far less dependent on

answer rarity, providing evidence for its ability to overcome
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Figure 2. Uncertainties and noise in visual input dominate the diffi-

culties in learning reasoning: comparison of the out-of-distribution

generalization between two different VQA Models. A perfectly-

sighted oracle model and a standard noisy vision based model

trained on the GQA-OOD benchmark [22]. For the classical

model, accuracy drops for questions where the GT answer is rare

(left side) compared to frequent answers (right side), indicating

probable bias exploitation. In contrast, the oracle obtains high per-

formance also on rare answers. Both models are “tiny-LXMERT”.

(a) Bimorph (b) Dirac (c) Uniform

Figure 3. Attention modes learned by the oracle model. Follow-

ing [30], for each head we plot the distribution of the number k of

tokens required to reach 90% of the attention energy (GQA-val).

X-axis (from 0 to 100%): ratio of the tokens k w.r.t. the total

number of tokens. Plots are not attention distributions, but distri-

butions of indicators of attention distributions. We observe three

major modes: (a) “bimorph” attention5, unveil two different types

of attention distribution for the same head; (b) dirac attention with

high k-median, i.e small meta stable state; (c) uniform attention,

with low k-median, i.e very large meta stable state.

statistical biases. As a consequence, we conjecture that the

visual oracle is closer to a real “reasoning process”, by pre-

dicting answer resulting from a manipulation of words and

objects, rather than by having captured statistical shortcuts.

In the absence of GT on reasoning, we admit that there is

no formal proof to this statement, but we believe that the

evidence above is sufficient.

3.2. Attention modes in VL­Transformers

Attention distributions are at the heart of the VL-

Transformer. They are not directly supervised during train-

ing, their behavior emerges from training the different VQA

objectives, i.e the discriminative loss as well as the even-

tual additional BERT-like objectives [35]. Their definition

as a strength of association between different items makes

them a prime candidate for visualization of inner workings

of deep models. We analyze attention, and in particular we

observe different attention modes in trained VQA models.

Following [30] , we visualize the distribution of atten-

tion energy associated with each Transformer head in multi-

headed attention. For each attention map, associated with a

vl_0_0 vl_0_1 vl_0_2 vl_0_3

vl_1_0 vl_1_1 vl_1_2 vl_1_3

vl_2_0 vl_2_1 vl_2_2 vl_2_3
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vl_4_0 vl_4_1 vl_4_2 vl_4_3

(a) (b)

Figure 4. Comparison of k-distribution of tL←V

× attention heads

for two different models: (a) oracle; (b) noisy visual input. Rows

indicates different TL←V

× layers. Heads are colored according to

the median of the k-number.

given head for a given sample, we calculate the number k

of tokens required to reach a total sum of 90% of the dis-

tribution energy. A low k-number is caused by peaky at-

tention, called small meta-stable state in [30], while a high

k-number indicates uniform attention, close to an average

operation (very large meta-stable state). For each head, and

over a subset of validation samples, we plot the distribution

of k-numbers, and for some experiments we summarize it

with a median value taken over samples and over tokens.

Diversity in attention modes — In this experiment we

focus on the oracle VL-Transformer, where we observed

a high diversity in attention modes. We also observed

that some layers’ heads, especially those processing the

visual modality (tV
−

or tV←L
×

) are mainly working with

close-to-average attention distributions (very large meta-

stable states [30]). On the other hand, we observed smaller

meta-stable states in the language layers (tL
−

or tL←V
×

).

This indicates that the reasoning process in the oracle VL-

Transformer is in large part executed by the model as a

transformation of the language features, which are succes-

sively contextualized (i.e. influenced) by the visual features

(and not the opposite).

In contrast to the attention modes reported in [30], we

also observed bi-modal k-number distributions, shown in

Fig. 3-a, which are a combination of a dirac ( Fig. 3-b)

and uniform (cf Fig. 3-c) attention modes. We call these

modes “bimorph” attention, since they reveal the existence

of two different shapes of attention distribution: for some

samples, a dirac activation is generated, while other samples

lead to uniform attention (averaging over tokens)5. Besides,

in Fig. 4, we compare attention mode diversity between the

noisy visual model and the oracle tL←V
×

heads, where we

observe higher diversity for the oracle. In particular, “bi-

morph” attention are mostly performed by the oracle.

3.3. Attention modes and task functions

In this experiment, we study the relationships between at-

tention modes and question types, which correspond to dif-

5We remind that these plots are distributions of indicators of distribu-

tions: uniform behavior does not show up as a flat plot, but as plot with a

peak on the right side — it may in these plots look like a Dirac.
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ferent functions of reasoning required to solve the problem

instance. In other words, we explore to what extent the neu-

ral model adapts its attention distribution to the question at

hand. We group the set of questions according to functions

using the GQA [19] annotation, using 54 different functions

such as e.g “filter color”, “verify size”, etc.6.

We link functions to the attention modes introduced in

Section 3.2. In Fig. 5 we show functions in columns and a

selection of attention heads in rows, while the color encodes

the median k-number for the oracle model. We observe

a strong dependency. Certain functions, e.g the majority

of the “choose X” functions, tend to cause the emergence

of small meta-stable states. In these modes, the attention

mechanism is fundamental as it allows the model to attend

to specific token combinations by detecting specific pat-

terns. On the other hand, some functions requiring to attend

to very general image properties, such as “choose location”

or “verify weather”, seem to be connected to very large

meta-stable states. We conjecture, that to find general scene

properties, a large context is needed. In this modes, the at-

tention mechanism is less important, and replacing it with a

simple averaging operation is likely to keep performance —

an experiment we explore in Section 3.4. Similarly, when

focusing on heads instead of functions, we observe that a

majority of heads typed as tV←L
×

(·) or tV
−
(·) tends to be-

have independently of the question functions and they gen-

erally show close-to-uniform attention. On the other hand,

the tL
−
(·) and tL←V

×
(·) heads are highly dependant on the

question functions. As shown in Fig.s 5 and 6, these heads

does not behave in the same way and are not “activated” (i.e

have a smaller metastable-state) for the same combination

of functions. This provides some evidence for modularity

of the oracle VL-Transformer, each attention head learn-

ing to specialize to one or more functions. In addition, in

Fig. 6, we visualize the difference in oracle attention modes

between two different function configurations: Fig. 6-a is

the distribution of median k-numbers over all samples, i.e

involving all functions, whereas Fig. 6-b shows the distri-

bution over samples involving the “choose color” function.

We show the 3rd TV←L
×

Transformer layer heads. Over all

functions, these heads show “bimorph” behavior, whereas

on questions requiring to choose a color, these same heads

show either dirac or uniform behavior.

Oracle vs. Noisy Input — In the next experiment,

we explore the difference in behavior between the perfect-

sighted oracle and the classical model taking noisy vi-

sual input. For each input sample, we create a 80-

dimensional representation describing the attention behav-

ior of the model by collecting the k-numbers of the 80 cross-

attention heads into a flat vector, taking the median over

the tokens for a given head. Fig. 7 shows two different t-

6There is limited overlap between functions, e.g “filter” contains,

among others, the “filter color” and “filter size”.

Figure 5. Attention modes for selected attention heads (rows)

related to functions required to be solved to answer a question

(columns). The head’s notation x, i, j refers to the head j of the i-

th Transformer layer of type x: ‘lang’/‘ll’=tL−(·), ‘vis’/‘vv’=tV−(·),
‘vl’=tL←V

× (·), ‘lv’=tV←L

× (·). The VL-Transformer’s architecture

is presented in supp. mat.. The color encodes the attention mode,

i.e median of the k-number [30]. We observe (1) attention heads

behave differently depending on the function; (2) a given function

causes different attention modes for different heads.

(a)

overall

(b)

choose
color

Figure 6. Influence of the question on oracle’s “bimorph” atten-

tion heads. We compare attention modes of the third layer of

TL←V

× heads as a distribution of the k-numbers [30] over (a) sam-

ples of all functions, and (b) samples with questions involving the

“choose color” function, and observe a clear difference. The func-

tion “choose color” seems to cause the activation (i.e emergence

of a small meta-stable state) of the 1st, 2nd and 4th head, and the

desactivation of the 3rd one, further indicating task dependence of

attention head behavior.

SNE projections of these attention behavior space, one for

the oracle model and one for the noisy model. While the

former produces clusters regrouping functions according to

their general type, the function representation of the noisy

model is significantly more entangled. We conjecture, that

the attention-function relationship provides insights into the

reasoning strategies of the model. VQA requires to handle a

large variety of reasoning skills and different operations on

the input objects and words. Question-specific manipula-

tion of words and objects is essential for correct reasoning.

In contrast to the oracle one, the t-SNE plot for the noisy

visual model paints a muddier picture, and does not show

clear relationships between attention modes and functions.

Caveat — visualizing attention modes does not provide

any indication of the attention operation itself, only about

the shape of the operation. In particular, an attention head

might result in the same low k-number for two different in-

put samples, showing Dirac attention, but could attend do

quite different objects or words in both cases.
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Figure 7. t-SNE projection of the attention mode space, i.e the 80-

dim representation median k-numbers, one per head of the model.

Colors are functions, also provided as overlaid text. We compare

projections of (a) the oracle, and (b) the noisy visual model, and

observe a clustering of functions in the attention mode space for

the oracle, but significantly less for the noisy input model.

Pruned attentions n/a L V L←V V←L

Accuracy 91.5 37.9 91.4 52.8 68.1

Table 1. Impact of pruning different types of attention heads

of the trained oracle model. We observe that ‘vision’ and

‘language→vision’ Transformers are hardly impacted by pruning,

in contrast to ‘language’ and ‘vision→language’. Accuracies (in

%) on the GQA validation set.

3.4. Attention pruning

We further analyze the role of attention heads by evaluating

the effect of pruning heads on model performance. As re-

ported by [40, 30], specific attention heads may be useful

during training, but less useful after training. In the same

lines, for specific heads we replace the query-key attention

map by a uniform one, “pruned” heads will therefore sim-

ply contextualize each token by an averaged representation

of all other tokens, as a head with large meta-stable state

would have done. In Table 1 we report the effect of pruning

on GQA validation accuracy according to different attention

categories and observe that the oracle model is resilient to

pruning of the tV
−
(·) and tV←L

×
(·) heads, but that pruning

of tL
−
(·) and tL←V

×
(·) heads results in sharp drops in perfor-

mance. This indicates that the bulk of reasoning occurs over

the language tokens and embeddings, which are contextu-

alized from the visual information through tL←V
×

(·) cross-

attention. We can only conjecture why this solution emerges

after training — we think that among reasons are the deep

structure of language and the fact that in current models the

answer is predicted from the CLS language token.

Impact on functions — We study the impact of prun-

ing on the different task functions by randomly pruning n

cross-attention heads and measuring accuracy for different

function: and choose filter verify
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(a) Oracle (b) Noisy visual
Figure 8. Impact of random pruning of varying numbers of atten-

tion heads in cross-modal layers on GQA-validation accuracy. (a)

For the oracle, the impact is related to the nature of the function,

highlighting its modular property. (b) For the noisy-vision-based

model, pruning seems to be unrelated to function types.

function groups, n being varied between 0% (no pruning)

to 100% (all heads are pruned), as shown in Fig. 8 for the

oracle and noisy vision-based models. For the sake of clar-

ity only 4 different function are shown, additional results are

provided in supplementary material. For the perfect-sighted

oracle (Fig. 8-a), we first observe that the pruning has a dif-

ferent impact depending on the function. Thereby, while fil-

ter and choose are dominated by negative curvature where

performance drops only when a large number of heads are

pruned, verify and and, are characterized by a sharp inflec-

tion point and an early steep drop in performance. This indi-

cates that the model has learned to handle functions specif-

ically, resulting in various degrees of reasoning distribution

over attention heads. For the noisy vision-based model, on

the other hand, the effect of head pruning seems to be unre-

lated to the function type (Fig. 8-b).

3.5. Interactive visualization

The analysis described above was based on integrating

information of various kinds over a full dataset, GQA-

validation. Additional insights can be gained by exploring

the behavior of individual problem instances and relating

them to statistics extracted from the population, in particu-

lar attention modes and groups of functions. We have per-

formed this analysis on a large number of samples and we

provide a tool, which allows the reader to perform similar

experiments online, making it possible to load different or-

acle or noisy vision based models. This tool is available at
1 (online experience + source code). Fig. 9 gives a simple

visualization (see Section 4 for a discussion), a video of its

usage is provided in the supplementary material.

Discussion — The experiments of this section have

shown a pronounced difference in attention modes between

the perfectly-sighed oracle and a noisy vision based model.

More importantly, the oracle model shows a strong relation-

ship between attention mode and task function, which we

interpret as the capability of adapting reasoning to the task
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“Is	the	fork	to	the	right	or	to	the	
left	of	the	bowl	the	sauce	is	in?”

(a) Oracle (b) Oracle transfer (c) Baseline
Figure 9. Example for the difference in attention in the second TL←V

× layer. The oracle drives attention towards a specific object, “fork”,

also seen after transfer but not in the baseline (we checked for permutations). The transferred model overcame a miss-labelling of the fork

as a knife. This analysis was performed with our interactive visualization tool, which also allows to visualize attention models, not shown

here (https://reasoningpatterns.github.io, online experience + source code; video provided in the supp. mat.).

at hand. The classical model significantly lacks this abil-

ities, suggesting a strategy of transferring patterns of rea-

soning from an oracle model pre-trained on visual GT to a

model taking noisy visual input.

4. Transferring Reasoning Patterns

We propose Oracle Transfer, transferring reasoning pat-

terns from a perfectly-sighted model to a deployable model

taking noisy visual inputs. We argue, that the first optimiza-

tion steps are crucial for the emergence of specific attention

modes. Training proceeds as follows (see Fig. 1):

1. Training of a perfectly-sighted oracle model on GT vi-

sual inputs from the GQA [19] annotations, in particu-

lar a symbolic representation concatenating the 1-in-K

encoded object class and attributes of each object.

2. Initialize a new model with the oracle parameters.

This new model is taking noisy visual input in a form

of the dense representation (2048-dim feature vector

extracted by Faster-RCNN [31] fused with bounding-

boxes). The first visual layers (TV
−

) are initialized ran-

domly due to the difference in nature between dense

and symbolic representations.

3. Optionally and complementary, continue train-

ing with large-scale self-supervised objectives

(LXMERT [35]/BERT-like) on combined data from

Visual Genome [24], MS COCO [27], VQAv2 [17].

4. Fine-tune with the standard VQA classification objec-

tive on the target dataset (GQA [19] or VQAv2 [17]).

Experimental setup — We use the same VL-

Transformer architecture defined in Section 3 (more details

in supp. mat.), with d=128 and h=4, which corresponds

to a tiny version of LXMERT [35] architecture. Follow-

ing [35], we use 36 objects per image. We evaluate on the

GQA [19], GQA-OOD [22] and VQAv2 [17] datasets.

(a)

overall

(b)

choose
color

Figure 10. We reproduce Fig. 6 with our VL-Transformer + dense

Oracle Transfer (same heads/layers). As we can see in (a), the

attention heads have retained their “bimorph” property, although

their shape is distorted by the noisy visual training. In addition,

when we measure the attention mode on questions involving the

choose color function, in (b), we observe that the attention heads

are still function-dependant, although in a lesser extent.

Evaluating transfer — We evaluate the impact of Ora-

cle Transfer on three different benchmarks in Table 2, ob-

serving that transferring knowledge from the oracle sig-

nificantly boosts accuracy. We also evaluate the effect

of Oracle Transfer on bias reduction and benchmark on

GQA-OOD [22], reporting gains in Out-Of-Distribution

settings — rare samples, “acc-tail” — by a large mar-

gin, which suggests improved generalization ability. Our

experiments show that Oracle Transfer is complementary

to large-scale vision-language self-supervised objectives of

type LXMERT/BERT-like pretraining as introduced in [35].

An overall gain of about +1 accuracy points is observed

from models (c) to (d) in Table 2, attributed to Oracle Trans-

fer. As a comparison, LXMERT/BERT pretraining alone

does not improve “acc-tail” on GQA-OOD.

Cross-dataset training — We explore whether the ef-

fects of oracle knowledge generalize beyond the GQA

dataset, and evaluate training the oracle on GQA GT anno-

tations, performing LXMERT/BERT pretraining, and trans-

ferring to a model trained on VQAv2 dataset [17]. We im-

prove VQAv2 accuracy by a significant margin, suggesting

positive transfer beyond GQA (Table 2).

Transfer ablation studies — We evaluate different vari-

ants of knowledge transfer, shown in Table 3, on the GQA

validation set only. We explore a direct transfer from the
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Model
Pretraining GQA-OOD [22] GQA [19] VQAv2 [17]

Oracle LXMERT/BERT acc-tail acc-head overall overall

(a) Baseline 42.9 49.5 52.4 -

(b) Ours X 48.5 55.5 56.8 -

(c) Baseline (+LXMERT/BERT) X 47.5 54.7 56.8 69.7

(d) Ours (+LXMERT/BERT) X X 48.3 55.2 57.8 70.2

Table 2. Quantitative evaluation of the proposed knowledge transfer from oracle models. All listed models are deployable, no GT input is

used for testing. Models: (c)+(d) are pre-trained with LXMERT [35]/BERT-like objectives after Oracle Transfer. All scores GQA-OOD-

testdev [22]; GQA [19]-testdev; VQAv2-test-std [17]. Training hyperparameters selected on respective validation sets.

Method Input train Input test Acc.

(a) Baseline Dense Dense 61.7

(b) Transf. w/o retrain 1-in-K GT 1-in-K pred. 58.8

(c) Transf. w/ TV

− retrain 1-in-K GT Dense 61.7

(d) Transf. w/ retrain 1-in-K GT Dense 66.3

Table 3. Impact of different types of transfer, GQA [19] val. ac-

curacy. All models are deployable (no GT used for testing).

oracle to a deployable model without retraining, by mak-

ing visual input representations comparable. To this end,

the deployable model receives 1-in-K encoded class infor-

mation, albeit not from GT classes but taking classes from

the Faster R-CNN detector (Table 3-b). While inferior to

the baseline, its performance is surprisingly high, suggest-

ing that the oracle learns knowledge which is applicable in

real/noisy settings. Performance gains are, however, only

obtained by finetuning the model to the uncertainties in

dense visual embeddings. Retraining only the visual block

(Table 3-c), performances are on par with the baseline, re-

training the full model (Table 3-d) gains +4.6p.

Comparison with SOTA — Oracle Transfer allows to

improve performance of the tiny-LXMERT model both in

and out of distribution [22] (Table 4, bottom part). Transfer

is parameter efficient and achieves on-par overall accuracy

with MCAN-6 [23] while halving capacity.

Qualitative analysis & interpretability — Finally, we

qualitatively study the effects of Oracle Transfer and in-

terpretability of attention heads. As shown in Fig. 10, af-

ter transfer, the VL-Transformer preserves the “bimorph”

property of its attention heads, which was present in the

original oracle model (Fig. 4-a), but absent in the baseline

(Fig. 4-b). In addition, Fig. 9 shows the attention maps of

the TL←V
×

heads in the second cross-modal layer for an in-

stance. This head, referenced as V L, 1, 0 in Fig. 5, is ob-

served to be triggered to questions such as “verify attr” and

“verify color” provided as example. We observe that the

oracle model draws attention towards the object “fork” in

the image, and also, to a lesser extend, in the transferred

model, but not in the baseline model. Similar attention pat-

terns were observed on multiple heads in the corresponding

Method |Θ| O L OOD GQA

BUTD [3] 22 42.1 51.6

BAN-4 [23] 50 47.2 54.7

MCAN-6 [42] 52 46.5 56.3

Ours 26 X 48.5 56.8

LXMERT-tiny 26 X 47.5 56.8

LXMERT-tiny + Ours 26 X X 48.3 57.8

LXMERT [35] 212 X 49.8 59.6

|Θ| = number of parameters (M); OOD = GQA-OOD [22] Acc-tail.

O = Oracle Transfer, L = LXMERT/BERT pretraining.

Table 4. Comparison with SOTA on GQA and GQA-OOD on test-

dev. Hyperparameters were optimized on GQA-validation.

cross-modal layer — this analysis took into account possi-

ble permutations of heads between models. Interestingly

the miss-classification as a “knife” prevents the baseline

from drawing attention to it, but not the transferred model.

5. Conclusion

We have provided a deep analysis and visualizations of sev-

eral aspects of deep VQA models linked to reasoning on the

GQA dataset. We have shown, that oracle models produce

significantly better results on questions with rare GT an-

swers than models on noisy data, that their attention modes

are more diverse and that they are significantly more depen-

dent on questions. We have also performed instance level

analysis and we propose a tool available online1, which

allows to visualize attention distributions and modes, and

their links to task functions and dataset wide statistics.

Drawing conclusions from this analysis, we have shown

that reasoning patterns can be partially transferred from or-

acle models to SOTA VQA models based on Transform-

ers and BERT-like pre-training. The accuracy gained from

the transfer is particularly high on questions with rare GT-

answers, suggesting that the knowledge transferred is re-

lated to reasoning, as opposed to bias exploitation.
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