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Abstract

This paper presents a novel method for embedding trans-

fer, a task of transferring knowledge of a learned embed-

ding model to another. Our method exploits pairwise sim-

ilarities between samples in the source embedding space

as the knowledge, and transfers them through a loss used

for learning target embedding models. To this end, we de-

sign a new loss called relaxed contrastive loss, which em-

ploys the pairwise similarities as relaxed labels for inter-

sample relations. Our loss provides a rich supervisory sig-

nal beyond class equivalence, enables more important pairs

to contribute more to training, and imposes no restriction

on manifolds of target embedding spaces. Experiments on

metric learning benchmarks demonstrate that our method

largely improves performance, or reduces sizes and output

dimensions of target models effectively. We further show

that it can be also used to enhance quality of self-supervised

representation and performance of classification models. In

all the experiments, our method clearly outperforms exist-

ing embedding transfer techniques.

1. Introduction

Deep metric learning aims to learn an embedding space

where samples of the same class are grouped tightly to-

gether. Such an embedding space has played important

roles in many tasks including image retrieval [19, 20, 29,

40, 41], few-shot learning [35, 39, 42], zero-shot learn-

ing [3, 58], and self-supervised representation learning [4,

14, 44]. In these tasks, the performance and efficiency of

models rely heavily on the quality and dimension of their

learned embedding spaces. To obtain high-quality and com-

pact embedding spaces, previous methods have proposed

new metric learning losses [19, 29, 40, 41, 46, 52], ad-

vanced sampling strategies [13, 22, 47, 49], regularization

techniques [18, 28], or ensemble models [21, 30, 31].

For the same purpose, we study transferring knowledge

of a learned embedding model (source) to another (target),

which we call embedding transfer. This task can be consid-

ered as a variant of knowledge distillation [16] that focuses

on metric learning instead of classification. The knowl-

edge captured by the source embedding model can provide

rich information beyond class labels such as intra-class vari-

ations and degrees of semantic affinity between samples.

Given a proper way to transfer the knowledge, embedding

transfer enables us to improve the performance of target em-

bedding models or compress them, as knowledge distilla-

tion does for classification models [11, 16, 36, 50, 55].

Existing methods for embedding transfer extract knowl-

edge from a source embedding space in forms of proba-

bility distributions of samples [33], their geometric rela-

tions [32, 53], or the rank of their similarities [6]. The

knowledge is then transferred by forcing target models to

approximate those extracted patterns directly in their em-

bedding spaces. Although these methods shed light on the

effective yet less explored approach to enhancing the perfor-

mance of metric learning, there is still large room for further

improvement. In particular, they fail to utilize detailed inter-

sample relations in the source embedding space [6, 33] or

blindly accept the transferred knowledge without consider-

ing the importance of samples [32, 53].

This paper presents a new embedding transfer method

that overcomes the above limitations. Our method defines

the knowledge as pairwise similarities between samples in a

source embedding space. Pairwise similarities are useful to

characterize an embedding space in detail, thus have been

widely used for learning embedding spaces [12, 37, 40, 46]

and identifying underlying manifolds of data [9, 43]. Also,

they capture detailed inter-sample relations, which are miss-

ing in probability distributions [33] and the rank of similar-

ities [6] used as knowledge in previous work.

To transfer the knowledge effectively, we propose a new

loss, called relaxed contrastive loss, that is used for learning

target embedding models with the knowledge in the form

of pairwise similarities. Our loss utilizes the pairwise sim-

ilarities as relaxed labels of inter-sample relations, unlike

conventional metric learning losses that rely on binary la-

bels indicating class equivalence between samples (i.e., 1 if

two samples are of the same class and 0 otherwise) as su-

pervision. By replacing the binary labels with the pairwise

similarities, our loss can provide rich supervision beyond
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Figure 1. Accuracy in Recall@1 on the three standard benchmarks for deep metric learning. All embedding transfer methods adopt

Proxy-Anchor (PA) [19] with 512 dimension as the source model. Our method achieves the state of the art when embedding dimension is

512, and is as competitive as recent metric learning models even with a substantially smaller embedding dimension. In all experiments, it

is superior to other embedding transfer techniques. More results can be found in Table 1 and 2.

what the binary labels offer, such as the degree of similarity

and hardness of a pair of training samples.

Specifically, the proposed loss pushes apart or pulls to-

gether a pair of samples in a target embedding space fol-

lowing the principle of the original contrastive loss [12], but

the semantic similarity of the pair given by the knowledge

controls the strength of pushing and pulling. Also, we re-

veal that the loss lets more important pairs contribute more

to learning the target embedding model, thus resolves the

limitation of previous methods that treat samples equally

during transfer [32, 53]. In addition to the use of relaxed

relation labels, we further modify the loss so that it does not

impose any restriction on the manifold of target embedding

space, unlike conventional losses that enforce target embed-

ding spaces ℓ2 normalized. This modification enables to

utilize given embedding dimensions more effectively and

provides extra performance improvement.

The efficacy of the proposed method is first demon-

strated on public benchmark datasets for deep metric learn-

ing. Our method substantially improves image retrieval per-

formance when the target model has the same architecture

as its source counterpart, and greatly reduces the size and

embedding dimension of the target model with a negligible

performance drop when the target model is smaller than the

source model, as shown in Fig. 1. We also show that our

method enhances the quality of self-supervised representa-

tion through self embedding transfer and the performance

of classification models in the knowledge distillation set-

ting. In all the experiments, our method outperforms exist-

ing embedding transfer techniques [6, 32, 33].

2. Related Work

Deep metric learning. Deep metric learning is an approach

to learning embedding spaces using class labels. Previous

work in this field has developed loss functions for mod-

eling inter-sample relations based on class labels and re-

flecting them on the learned embedding spaces. Contrastive

loss [7, 12] pulls a pair of samples together if their class la-

bels are the same and pushes them away otherwise. Triplet

loss [37, 45] takes a triplet of anchor, positive, and negative

as input, and makes the anchor-positive distance smaller

than the anchor-negative distance. The idea of pushing and

pulling a pair is extended to consider higher order rela-

tions in recently proposed losses [40, 41, 46]. Meanwhile,

self-supervised representation learning has been greatly ad-

vanced by leveraging pairwise relations between data as in

deep metric learning. For example, MoCo [5, 14] and Sim-

CLR [4] pull embedding vectors of the same image closer

and push those of different images away. Since these ap-

proaches to learning embedding spaces demand binary re-

lations, i.e., the equality of classes or identities, they cannot

be used directly for transferring knowledge of an embed-

ding space that is not binary.

Knowledge distillation. Knowledge distillation means a

technique that transfers knowledge of a source model to

a target model; embedding transfer can be regarded as its

variant focusing on metric learning. A seminal work by

Hinton et al. [16] achieves this goal by encouraging the tar-

get model to imitate class logits of the source model, and

has been extended to transfer various types of knowledge

of the source model [1, 36, 50, 55]. Knowledge distillation

has been employed for various purposes including model

compression [16, 36, 50, 55], cross-modality learning [44],

and network regularization [54] as well as performance im-

provement [11]. In terms of target task, however, it has been

applied mostly to classification; only a few methods intro-

duced in the next paragraph study transferring knowledge

of embedding spaces, i.e., embedding transfer.

Embedding transfer. Early approaches in this area extract

and transfer the rank of similarities between samples [6]

and probability distributions of their similarities [33] in the

source embedding spaces. Unfortunately, these methods

have trouble capturing elaborate relations between samples.

On the other hand, recently proposed methods utilize geo-
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metric relations between samples like distances and angles

as the knowledge to take fine details of the source embed-

ding space into account [32, 53]. However, they let the tar-

get model blindly accept the knowledge without consider-

ing the relative importance of samples, leading to less effec-

tive embedding transfer. Our method overcomes the afore-

mentioned limitations: It makes use of rich pairwise sim-

ilarities between samples as the knowledge, and can take

relative importance of samples into account when transfer-

ring the knowledge.

3. Proposed Method

This section first introduces the problem formulation of

embedding transfer, then reviews briefly the original con-

trastive loss [12] and describes the derivation of the relaxed

contrastive loss in detail. It also discusses the effect of label

relation with empirical evidences.

3.1. Problem Formulation of Embedding Transfer

Embedding transfer is the task of transferring knowledge

from a source embedding model s to a target embedding

model t. Let fs : X → Zs and f t : X → Zt denote the

two embedding models, which are mapping functions from

the same data space X to their own embedding spaces. The

goal of embedding transfer is to transfer knowledge cap-

tured in Zs to Zt for various purposes like performance

enhancement, embedding dimension reduction, and embed-

ding model compression.

3.2. Revisiting Original Contrastive Loss

Contrastive loss [12] is one of the most representative

losses for learning semantic embedding by leveraging pair-

wise relations of samples. Let fi := f(xi) be the embed-

ding vector of input data xi produced by the embedding

network f , and dij := ||fi − fj ||2 denote the Euclidean

distance between embedding vectors fi and fj . The con-

trastive loss is then formulated as

L(X) =
1

n

n∑

i=1

n∑

j=1

yijd
2
ij

︸ ︷︷ ︸

attracting

+
1

n

n∑

i=1

n∑

j=1

(1− yij)
[
δ − dij

]2

+

︸ ︷︷ ︸

repelling

,

(1)

where X is a batch of embedding vectors, n is the num-

ber of samples in the batch, δ is a margin, and [·]+ de-

notes the hinge function. Also, yij is the binary label in-

dicating the class equivalence between the pair of samples

(i, j): yij = 1 if the pair is of the same class (i.e., posi-

tive pair), and 0 otherwise (i.e., negative pair). Note that

all embedding vectors are l2 normalized to prevent the mar-

gin from becoming trivial. This loss consists of two con-

stituents, an attracting term and a repelling term. In the em-

bedding space, the attracting term forces positive pairs to be

closer, and the repelling term encourages to push negative

pairs apart beyond the margin.

The gradient of the loss with respect to dij is given by

∂L(X)

∂dij
=







2

n
dij , if yij = 1,

2

n
(dij − δ), else if yij = 0 and dij < δ,

0, otherwise.

(2)

As shown in Eq. (2), the magnitude of the gradient increases

as the distance of a positive pair increases or the distance of

a negative pair decreases. When the distance of a negative

pair is larger than the margin δ, the gradient becomes 0.

3.3. Relaxed Contrastive Loss

The basic idea of the relaxed contrastive loss is to pull

or push a pair of samples in the target embedding space ac-

cording to their semantic similarity captured in the source

embedding space as knowledge. Unlike the original con-

trastive loss, it relaxes the binary labels indicating class

equivalence relations using pairwise similarities given in the

transferred knowledge.

This idea can be implemented simply by replacing yij
in Eq. (1) with the semantic similarity of xi and xj in the

source embedding space. The loss then becomes a linear

combination of the attracting and repelling terms in which

their weights (i.e., relaxation of yij) are proportional to the

semantic similarities. Specifically, it is formulated as

L(X) =
1

n

n∑

i=1

n∑

j=1

ws
ijd

t
ij

2
+

1

n

n∑

i=1

n∑

j=1

(1− ws
ij)

[

δ − dtij

]2

+

,

(3)

where ws
ij is the weight derived from the semantic similar-

ities in the source embedding space, f t
i := f t(xi) ∈ R

d

indicates the embedding vector of input xi produced by

f t, and dtij is Euclidean distance between target embedding

vectors f t
i and f t

j . For computing the weight terms, we em-

ploy a Gaussian kernel based on the Euclidean distance as

follows:

ws
ij = exp

(

−
||fs

i − fs
j ||

2
2

σ

)

∈ [0, 1], (4)

where σ is kernel bandwidth fs
i := fs(xi) indicates the

embedding vector of input xi given by the fs, and || · ||2
denotes l2 norm of vector.

Eq. (3) shows that the strength of pulling or pushing em-

bedding vectors is now controlled by the weights in the new

loss function. In the target embedding space, a pair of sam-

ples that the source embedding model regards more simi-

lar attract each other more strongly while those considered

more dissimilar are pushed more heavily out of the margin
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δ. This behavior of the loss can be explained through its

gradient, which is given by

∂L(X)

∂dtij
=







2

n

{
dtij − δ(1− ws

ij)
}
, if dtij < δ,

2

n
ws

ijd
t
ij , otherwise.

(5)

Unlike the original one, the aspect of our loss gradient de-

pends on the transferred knowledge ws
ij , thus the force of

pushing a pair (i, j) apart and that of pulling them together

are determined by both dtij and ws
ij . In the ideal case, dtij

will converge to δ(1− ws
ij), which is the semantic dissimi-

larity scaled by δ, and where the two forces are balanced.

This aspect of gradient also differentiates our method

from the previous arts that imitate the knowledge through

regression losses [32, 53]. As illustrated in Fig. 2, the pro-

posed loss rarely cares about a pair (i, j) when its distance

is large in both the source and target spaces, i.e., ws
ij ≈ 0

and dtij > δ, as its loss gradient is close to 0. This behavior

can be interpreted as that our loss disregards less important

pairs to focus on more important ones. Recall that what

we expect from a learned embedding space is that nearby

samples are semantically similar in the space; if the dis-

tance of a semantically dissimilar pair is sufficiently large,

it does not impair such a quality of the embedding space

and can be regarded as less important consequently. On the

other hand, the previous methods using regression losses

handle samples equivalently without considering their im-

portance [32, 53], leading to suboptimal results.

The loss in Eq. (3) takes advantage of the rich semantic

information of the source embedding space in a flexible and

effective manner, but it still has a problem to be resolved:

It imposes a restriction on the manifold of the target space

since it demands l2 normalization of the embedding vectors

to prevent the divergence of their magnitudes and to keep

the margin non-trivial, as in the original contrastive loss.

To resolve this issue, we replace the pairwise distances of

the loss in Eq. (3) with their relative versions, then the final

form of the relaxed contrastive loss is given by

L(X) =
1

n

n∑

i=1

n∑

j=1

ws
ij

(
dtij

µi

)2

+
1

n

n∑

i=1

n∑

j=1

(1− ws
ij)

[

δ −
dtij

µi

]2

+

,

where µi =
1

n

n∑

k=1

dtij .

(6)

The relative distance between f t
i and f t

j is their pairwise

distance divided by µi, the average distance of all pairs as-

sociated with f t
i in the batch. Since scales of pairwise dis-

tances are roughly canceled in their relative versions, the
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0

項失岫隙岻穴沈珍痛

Figure 2. Gradients of relaxed contrastive loss versus pairwise dis-

tance given different weights.

above loss can alleviate the aforementioned normalization

issue. Thus, although the source embedding space is lim-

ited to the surface of unit hypersphere due to the l2 normal-

ization, the target embedding model can exploit the entire

space of Rd with no restriction on its manifold. We found

empirically that this advantage helps improve performance

of target embedding models and reduce their embedding di-

mensions effectively.

3.4. Discussion on Label Relaxation

Label relaxation allows our loss to exploit rich informa-

tion such as degree of similarity between samples, within-

class variation, and between-class affinity, all of which can-

not be offered by the binary inter-sample relations. To

demonstrate this property empirically, we in Fig. 3 enu-

merate image pairs with top-5 and bottom-5 normalized

weights, i.e., ws
ij of Eq. (4). As shown in the figure, pairs

exhibiting more similar poses or backgrounds have higher

weights even in the same class while those of different

classes showing large appearance variations are assigned

low weights.

Label relaxation thus improves generalization of target

models by providing such rich and diverse supervisory sig-

nals, in contrast to the binary labels which only allow the

model to learn to discriminate different classes and lead

to degraded performance on unseen classes consequently.

This is demonstrated by evaluating two embedding models

trained by the relaxed contrastive loss and its unrelaxed ver-

sion using yij instead of ws
ij in Eq. (6), respectively. Fig. 4

compares the performance of the two models on the train-

ing and test splits of the Cars-196 dataset [23]. As shown in

the figure, relaxed contrastive loss helps the model general-

ize well to unseen test data while the model trained by the

unrelaxed version is quickly overfitted to training data.

Our label relaxation method is independent of loss func-

tions, thus can be integrated with other metric learning

losses based on pairwise relations of samples. Relaxed con-

trastive loss is yet chosen as our loss due to its simplicity,

interpretability, and superior performance. We have also ap-

plied the same method to Multi-Similarity (MS) loss [46],

and observed that relaxed MS loss achieves comparable per-
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Figure 3. Image pairs sorted by their normalized weights of Eq. (4) on the Cars-196 dataset.
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Figure 4. Accuracy in Recall@1 versus epochs on the Cars-196

dataset [23]. The dotted and solid lines represent training and test

accuracy, respectively.

formance but demands more hyper-parameters and careful

tuning of them. More analysis and comparisons are given

in the supplementary material.

4. Experiments

This section demonstrates the effectiveness of embed-

ding transfer by our method in three different tasks, deep

metric learning, self-supervised representation learning,

and knowledge distillation for classification.

4.1. Deep Metric Learning

On standard benchmarks for metric learning, we evalu-

ate and compare target embedding models trained by em-

bedding transfer methods, RKD [32], PKT [33], and Dark-

Rank [6] as well as ours. These methods train target models

solely by embedding transfer losses; no other supervision

is required for the target model. In addition, three knowl-

edge distillation techniques, FitNet [36], Attention [55], and

CRD [44] are also evaluated on the same datasets to ex-

amine their effectiveness for embedding transfer.1 In this

case, knowledge distillation losses are coupled with a met-

ric learning loss since they extract knowledge from interme-

diate layers of the source model and are not directly aware

1Knowledge distillation methods relying on classification logits cannot

be applied to our task where source model has no classification layer.

of its embedding space consequently.

The experiments are conducted in the following three

settings by varying the type of target model. (i) Self-transfer

for performance improvement: Transfer to a model with

the same architecture and embedding dimension. (ii) Di-

mensionality reduction: Transfer to the same architecture

with a lower embedding dimension. (iii) Model compres-

sion: Transfer to a smaller network with a lower embedding

dimension.

4.1.1 Setup

Datasets and evaluation. Target models are evaluated

in terms of image retrieval performance on the CUB-200-

2011 [48], Cars-196 [23] and SOP datasets [41]. Each

dataset is split into training and test sets following the stan-

dard setting presented in [41]. As a performance measure,

we adopt Recall@K that counts how many queries have at

least one correct sample among their K nearest neighbors

in learned embedding spaces.

Source and target embedding networks. For the self-

transfer and dimensionality reduction experiments, we em-

ploy BatchNorm Inception [17] with 512 output dimension

as the source model. Target models for the two settings basi-

cally have the same architecture as the source model, but for

dimensionality reduction, the output dimension is reduced

to 64. On the other hand, in the model compression exper-

iment, we adopt ResNet50 [15] with 512 output dimension

as the source model and ResNet18 [15] with 128 output di-

mension as the target model. In all the three settings, the

source models are trained by proxy-anchor loss [19] with l2
normalization of embedding vectors, while the target mod-

els are pre-trained for the ImageNet classification task [10]

and have no l2 normalization applied.

Implementation details. We train all the models using

the AdamW optimizer [26] with the cosine learning de-

cay [25] and initial learning rate of 10−4. They are learned

for 90 epochs in the CUB-200-2011 and Cars-196 datasets,

and 150 epochs on the SOP dataset. Training images are

randomly flipped horizontally and cropped to 224 × 224,

and test images are center-cropped after being resized to

256×256. Further, we generate two different views of each
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Recall@K

CUB-200-2011 Cars-196 SOP

1 2 4 1 2 4 1 10 100

(a)

Source: PA [19] BN512 69.1 78.9 86.1 86.4 91.9 95.0 79.2 90.7 96.2

FitNet [36] BN512 69.9 79.5 86.2 87.6 92.2 95.6 78.7 90.4 96.1

Attention [55] BN512 66.3 76.2 84.5 84.7 90.6 94.2 78.2 90.4 96.2

CRD [44] BN512 67.7 78.1 85.7 85.3 91.1 94.8 78.1 90.2 95.8

DarkRank [6] BN512 66.7 76.5 84.8 84.0 90.0 93.8 75.7 88.3 95.3

PKT [33] BN512 69.1 78.8 86.4 86.4 91.6 94.9 78.4 90.2 96.0

RKD [32] BN512 70.9 80.8 87.5 88.9 93.5 96.4 78.5 90.2 96.0

Ours BN512 72.1 81.3 87.6 89.6 94.0 96.5 79.8 91.1 96.3

(b)

Source: PA [19] BN512 69.1 78.9 86.1 86.4 91.9 95.0 79.2 90.7 96.2

FitNet [36] BN64 62.3 73.8 83.0 81.2 87.7 92.5 76.6 89.3 95.4

Attention [55] BN64 58.3 69.4 79.1 79.2 86.7 91.8 76.3 89.2 95.4

CRD [44] BN64 60.9 72.7 81.7 79.2 87.2 92.1 75.5 88.3 95.3

DarkRank [6] BN64 63.5 74.3 83.1 78.1 85.9 91.1 73.9 87.5 94.8

PKT [33] BN64 63.6 75.8 84.0 82.2 88.7 93.5 74.6 87.3 94.2

RKD [32] BN64 65.8 76.7 85.0 83.7 89.9 94.1 70.2 83.8 92.1

Ours BN64 67.4 78.0 85.9 86.5 92.3 95.3 76.3 88.6 94.8

(c)

Source: PA [19] R50512 69.9 79.6 88.6 87.7 92.7 95.5 80.5 91.8 98.8

FitNet [36] R18128 61.0 72.2 81.1 78.5 86.0 91.4 76.7 89.4 95.5

Attention [55] R18128 61.0 71.7 81.5 78.6 85.9 91.0 76.4 89.3 95.5

CRD [44] R18128 62.8 73.8 83.2 80.6 87.9 92.5 76.2 88.9 95.3

DarkRank [6] R18128 61.2 72.5 82.0 75.3 83.6 89.4 72.7 86.7 94.5

PKT [33] R18128 65.0 75.6 84.8 81.6 88.8 93.4 76.9 89.2 95.5

RKD [32] R18128 65.8 76.3 84.8 84.2 90.4 94.3 75.7 88.4 95.1

Ours R18128 66.6 78.1 85.9 86.0 91.6 95.3 78.4 90.4 96.1

Table 1. Image retrieval performance of embedding transfer and knowledge distillation methods in the three different settings: (a) Self-

transfer, (b) dimensionality reduction, and (c) model compression. Embedding networks of the methods are denoted by abbreviations:

BN–Inception with BatchNorm, R50–ResNet50, R18–ResNet18. Superscripts indicate embedding dimensions of the networks.

image in a batch by the random augmentations; details and

effects of this augmentation strategy are described in the

supplementary material. We set both δ and σ in our loss to

1 for all the experiments. For knowledge distillation, Proxy-

Anchor loss [19] is coupled with distillation losses using the

same weight.

4.1.2 Results

The proposed method is compared to the embedding trans-

fer and knowledge distillation methods in terms of perfor-

mance of target embedding models on the three bench-

mark datasets in Table 1. Its records are also compared

with those of state-of-the-art metric learning methods on the

same datasets in Table 2.

In the self-transfer setting (Table 1(a)), the proposed

method notably improves retrieval performance and clearly

surpasses the state of the art on all the datasets without

bells and whistles (Table 2); the effect of embedding trans-

fer by our method is qualitatively demonstrated in Fig. 5.

On the other hand, the performance of existing embedding

transfer methods is inferior to that of the source model on

the SOP dataset. The proposed method demonstrates more

interesting results in the dimensionality reduction setting

(Table 1(b)): It outperforms recent metric learning meth-

ods, MS and DiVA, whose embedding dimension is 8 times

higher (Table 2). This result enables significant speedup

of image retrieval systems at the cost of a tiny perfor-

mance drop. Finally, in the model compression setting (Ta-

ble 1(c)), our method achieves impressive performance even

with a substantially smaller network and a lower embed-

ding dimension; the performance drop by the compression

is marginal and its accuracy is as competitive as MS with a

heavier network and a larger embedding dimension.

We found that the knowledge distillation methods tend to

underperform, especially on the CUB-200-2011 and Cars-

196 datasets. In particular, their performance depends heav-

ily on the coupled metric learning loss since they cannot di-

rectly transfer knowledge of the source embedding space.

In contrast, our method is superior to them in most experi-

ments with no additional loss nor memory buffer [44].

4.1.3 Ablation Study

We conduct ablation study in the self-transfer setting to ex-

amine the contribution of each component of the relaxed

contrastive loss. The results are summarized in Table 3.

We first validate the effect of label relaxation by re-

placing indicator yij in Eq. (1) with semantic similarity

ws
ij obtained from source embedding model. The result
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Recall@K

CUB-200-2011 Cars-196 SOP

1 2 4 1 2 4 1 10 100

MS [46] BN512 65.7 77.0 86.3 84.1 90.4 94.0 78.2 90.5 96.0

SoftTriple [34] BN512 65.4 76.4 84.5 84.5 90.7 94.5 78.3 90.3 95.9

DiVA [27] BN512 66.8 77.7 - 84.1 90.7 - 78.1 90.6 -

PA [19] BN512 69.1 78.9 86.1 86.4 91.9 95.0 79.2 90.7 96.2

Ours BN512 72.1 81.3 87.6 89.6 94.0 96.5 79.8 91.1 96.3

MS [46] BN64 57.4 69.8 80.0 77.3 85.3 90.5 74.1 87.8 94.7

SoftTriple [34] BN64 60.1 71.9 81.2 78.6 86.6 91.8 76.3 89.1 95.3

DiVA [27] BN64 63.0 74.5 83.3 78.3 86.6 91.2 73.7 87.5 94.8

PA [19] BN64 61.7 73.0 81.8 78.8 87.0 92.2 76.5 89.0 95.1

Ours BN64 67.4 78.0 85.9 86.5 92.3 95.3 76.3 88.6 94.8

PA [19] R18128 61.8 72.9 82.1 78.7 86.5 91.7 76.2 89.1 95.2

Ours R18128 66.6 78.1 85.9 86.0 91.6 95.3 78.4 90.4 96.1

Table 2. Image retrieval performance of the proposed method and the state-of-the-art metric learning models. Embedding networks of the

methods are fixed by Inception with BatchNorm (BN) for fair comparisons, and superscripts indicate embedding dimensions.

(c)

(b)

(a)

Query After Embedding TransferBefore Embedding Transfer
Figure 5. Top 5 image retrievals of the state of the art [19] before and after the proposed method is applied. (a) CUB-2020-2011. (b)

Cars-196. (c) SOP. Images with green boundary are success cases and those with red boundary are false positives. More qualitative results

can be found in the supplementary material.

Methods
Recall@1

CUB Cars

Original contrastive loss 65.3 80.5

+ Label relaxation 70.4 88.2

+ Relative distance 72.1 89.6

Table 3. Ablation study of the components of our loss on the

CUB-200-2011 (CUB) and Cars-196 (Cars) datasets.

suggests that label relaxation significantly improves perfor-

mance by exploiting the rich semantic relations between

samples. Also, we investigate the effect of using the relative

distance, i.e., removing l2 normalization to be free from the

restriction on the embedding manifold. The result shows

that adopting the relative distance further improves the per-

formance as it allows to fully exploit the entire embedding

dimensions with no restriction; a similar observation has

been reported in [32].

4.2. Self-supervised Representation Learning

Knowledge distillation has been known to improve the

performance of classification models by self-transfer [11],

but is not available for self-supervised representation learn-

ing due to the absence of class labels. We argue that em-

bedding transfer can play this role for networks trained in a

self-supervised manner since it distills and transfers knowl-

edge without relying on class labels.

This section examines a potential of embedding trans-

fer methods in this context, by learning representations us-

ing the embedding transfer methods and the knowledge ex-

tracted from existing self-supervised networks. Our method

is compared with RKD [32] and PKT [33], but Dark-

Rank [6] is excluded since its complexity, proportional to

the number of sample permutations, is excessively large in

the self-supervised learning setting. We adopt a network

trained by SimCLR [4], the state of the art in self-supervised

representation learning, as the source embedding model.

4.2.1 Setup

Datasets and evaluation. Self-supervised models and

those enhanced by embedding transfer are evaluated on the

CIFAR-10 [24] and STL-10 [8] datasets. In the STL-10

dataset, both the labeled training set and unlabeled set are
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Dataset CIFAR-10 STL-10

Before embedding transfer 93.4 89.2

PKT [33] 65.3 71.6

RKD [32] 93.6 79.8

Ours 93.9 89.6

Table 4. Performance of linear classifiers trained on representa-

tions obtained by embedding transfer techniques incorporated with

self-supervised learning frameworks.

used for training, and the rest are kept for testing. The per-

formance of the models is measured by the linear evaluation

protocol [2, 56, 57], in which a linear classifier on top of a

frozen self-supervised network is trained and evaluated.

Source models and their training. We reimplement Sim-

CLR [4] framework to train source embedding models. Fol-

lowing the original framework, ResNet50 is employed as

the base network of the source models and a Multi-Layer

Perceptron (MLP) head is appended to its last pooling layer.

On the CIFAR-10 dataset, the source models are trained

for 1K epochs while following the details (e.g., augmen-

tation, learning rate, and temperature) described in [4]. On

the STL-10 dataset, we adopt the same configuration ex-

cept that Gaussian blur is additionally employed for data

augmentation.

Target models and their training. For training of target

models, the MLP on top of the source models are removed

and their embedding vectors are l2 normalized. Target mod-

els have the same architecture as their source counterpart

where the MLP head is removed, but with no l2 normaliza-

tion. Details of training target models are the same as those

for the corresponding source models. All target models are

trained using the LARS optimizer [51] with initial learn-

ing rate of 4.0 and weight decay of 10−6. We warm up the

learning rate linearly during the first 10 epochs and apply

the cosine decay [25] after that. Regarding hyperparame-

ters, both δ and σ in our loss are set to 1.

4.2.2 Results

The performance of embedding transfer methods in the self-

supervised learning task is summarized in Table 4. The pro-

posed method improves the quality of the learned represen-

tations on both of the two datasets. Moreover, it clearly out-

performs the existing embedding transfer techniques when

incorporated with SimCLR. In contrast, other embedding

transfer methods are often inferior to the source model, and

especially PKT shows unstable performance in every ex-

periment. This is because of their limitations: As the batch

size increases, the probability distributions considered by

PKT becomes nearly uniform, and the computational bur-

den of RKD grows significantly due to its angle calculation.

Our method enhances the performance of the existing self-

supervised models without such difficulties.

Source ResNet56 (72.34) VGG13 (74.64)

Target ResNet20 (69.06) VGG8 (70.36)

HKD [16] 70.66 72.98

RKD [32] + HKD 71.18 72.97

CRD [44] + HKD 71.63 74.29

Ours + HKD 71.95 73.82

Table 5. Test accuracy of target models on the CIFAR100 dataset.

4.3. Image Classification

Finally, we demonstrate that the proposed method can be

used also for enhancing classifiers as a knowledge distilla-

tion technique. Following the convention in this task, its ef-

ficacy is validated in the model compression setting on the

CIFAR-100 [24] dataset with two source–target combina-

tions: ResNet56–ResNet20 [15] and VGG13–VGG8 [38].

Our method is compared with RKD [16] and CRD [44] as

well as HKD [16]; all methods including ours are combined

with HKD and use the cross-entropy loss additionally. In

detail, our relaxed contrastive loss utilizes the outputs from

the last pooling layer of the source and target models, and

the embedding vectors of the source are l2 normalized. We

directly follow [44] for other training details, and both δ and

σ in our loss are set to 1.

As shown in Table 5, our method is comparable to or out-

performing the state of the art [44]. This result indicates that

our method is universal and can be applied to tasks other

than metric learning.

5. Conclusion

We have presented a novel method to distill and transfer

knowledge of a learned embedding model effectively. Our

loss utilizes rich pairwise relations between samples in the

source embedding space as the knowledge through relaxed

relation labels, and effectively transfers the knowledge by

focusing more on sample pairs important for learning target

embedding models. As a result, our method has achieved

impressive performance over the state of the art on metric

learning benchmarks and demonstrated that it can reduce

the size and embedding dimension of an embedding model

significantly with a negligible performance drop. Moreover,

we have shown that our method can enhance the quality of

self-supervised representation and performance of classifi-

cation models.

Acknowledgement: This work was supported by the

NRF grant, the IITP grant, and R&D program for Ad-

vanced Integrated-intelligence for IDentification, funded

by Ministry of Science and ICT, Korea (No.2019-0-

01906 Artificial Intelligence Graduate School Program–

POSTECH, NRF-2021R1A2C3012728–30%, NRF-

2018R1A5A1060031–20%, NRF-2018M3E3A1057306–

30%, IITP-2020-0-00842–20%).

3974



References

[1] Sungsoo Ahn, Shell Xu Hu, Andreas Damianou, Neil D.

Lawrence, and Zhenwen Dai. Variational information dis-

tillation for knowledge transfer. In Proc. IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2019.
[2] Philip Bachman, R Devon Hjelm, and William Buchwalter.

Learning representations by maximizing mutual information

across views. In Proc. Neural Information Processing Sys-

tems (NeurIPS), 2019.
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