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Abstract

Generative adversarial networks (GANs) synthesize re-

alistic images from random latent vectors. Although ma-

nipulating the latent vectors controls the synthesized out-

puts, editing real images with GANs suffers from i) time-

consuming optimization for projecting real images to the

latent vectors, ii) or inaccurate embedding through an en-

coder. We propose StyleMapGAN: the intermediate latent

space has spatial dimensions, and a spatially variant mod-

ulation replaces AdaIN. It makes the embedding through

an encoder more accurate than existing optimization-based

methods while maintaining the properties of GANs. Exper-

imental results demonstrate that our method significantly

outperforms state-of-the-art models in various image ma-

nipulation tasks such as local editing and image interpo-

lation. Last but not least, conventional editing methods on

GANs are still valid on our StyleMapGAN. Source code

is available at https://github.com/naver-ai/

StyleMapGAN .

1. Introduction

Generative adversarial networks (GANs) [16] have

evolved dramatically in recent years, enabling high-fidelity

image synthesis with models that are learned directly from

data [6, 24, 25]. Recent studies have shown that GANs

naturally learn to encode rich semantics within the la-

tent space, thus changing the latent code leads to ma-

nipulating the corresponding attributes of the output im-

ages [22, 42, 17, 15, 43, 3, 50, 5]. However, it is still chal-

lenging to apply these manipulations to real images since

the GAN lacks an inverse mapping from an image back to

its corresponding latent code.

One promising approach for manipulating real images is

image-to-image translation [21, 57, 9, 26, 28], where the

model learns to synthesize an output image given a user’s

input directly. However, these methods require pre-defined

tasks and heavy supervision (e.g., input-output pairs, class

labels) for training and limit the user controllability at infer-

ence time. Another approach is to utilize pretrained GAN

models by directly optimizing the latent code for an indi-

vidual image [1, 2, 56, 34, 36]. However, even on high-end

GPUs, it requires minutes of computation for each target

image, and it does not guarantee that the optimized code

would be placed in the original latent space of GAN.

A more practical approach is to train an extra encoder,

which learns to project an image into its corresponding la-

tent code [31, 55, 39, 33, 40]. Although this approach en-

ables real-time projection in a single feed-forward manner,

it suffers from the low fidelity of the projected image (i.e.,

losing details of the target image). We attribute this limita-

tion to the absence of spatial dimensions in the latent space.

Without the spatial dimensions, an encoder compresses an

image’s local semantics into a vector in an entangled man-

ner, making it difficult to reconstruct the image (e.g., vector-

based or low-resolution bottleneck layer is not capable of

producing high-frequency details [30, 8]).

As a solution to such problems, we propose StyleMap-

GAN which exploits stylemap, a novel representation of

the latent space. Our key idea is simple. Instead of learn-

ing a vector-based latent representation, we utilize a tensor

with explicit spatial dimensions. Our proposed representa-

tion benefits from its spatial dimensions, enabling GANs to

easily encode the local semantics of images into the latent

space. This property allows an encoder to effectively project

an image into the latent space, thus providing high-fidelity

and real-time projection. Our method also offers a new ca-

pability to edit specific regions of an image by manipulating

the matching positions of the stylemap.

On multiple datasets, our stylemap indeed substantially

enhances the projection quality compared to the traditional

vector-based latent representation (§4.3). Furthermore, we

show the advantage of our method over state-of-the-art

methods on image projection, interpolation, and local edit-

ing (§4.4 & §4.5). Finally, we show that our method can

transplant regions even when the regions are not aligned be-

tween one image and another (§4.6).

2. Related work

Optimization-based editing methods iteratively update

the latent vector of pre-trained GANs to project a real image
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into the latent space [56, 7, 1, 55, 20, 4]. For example, Im-

age2StyleGAN [1] reconstructs the image by optimizing in-

termediate representation for each layer of StyleGAN [24].

In-DomainGAN [55] focuses not only on reconstructing the

image in pixel space, but also on landing the inverted code

in the semantic domain of the original latent space. Neural

Collage [47] and pix2latent [20] present a hybrid optimiza-

tion strategy for projecting an image into the latent space of

class-conditional GANs (e.g., BigGAN [6]). On the other

hand, we exploit an encoder, which makes editing two to

three orders of magnitude faster than optimization methods.

Learning-based editing methods train an extra encoder to

directly infer the latent code given a target image [31, 13,

12, 14, 40]. For example, ALI [14] and BiGAN [12] intro-

duce a fully adversarial framework to jointly learn the gen-

erator and the inverse mapping. Several work [31, 45, 49]

has been made towards combining the variational autoen-

coder [29] with GANs for latent projection. ALAE [40]

builds an encoder to predict the intermediate latent space

of StyleGAN. However, all the above methods provide lim-

ited reconstruction quality due to the lack of spatial dimen-

sions of latent space. Swap Autoencoder [38] learns to en-

code an image into two components, structure code and tex-

ture code, and generate a realistic image given any swapped

combination. Although it can reconstruct images fast and

precisely thanks to such representation, texture code is still

a vector, which makes structured texture transfer challeng-

ing. Our editing method successfully reflects not only the

color and texture but also the shape of a reference image.

Local editing methods tackle editing specific parts [11, 3,

58, 53, 44] (e.g., nose, background) as opposed to the most

GAN-based image editing methods modifying global ap-

pearance [42, 50, 38]. For example, Editing in Style [11]

tries to identify each channel’s contribution of the per-layer

style vectors to specific parts. Structured Noise [3] replaces

the learned constant from StyleGAN with an input tensor,

which is a combination of local and global codes. However,

these methods [11, 3, 5] do not target real image, which

performances are degraded significantly in the real image.

SEAN [58] facilitates editing real images by encoding im-

ages into the per-region style codes and manipulating them,

but it requires pairs of images and segmentation masks for

training. Besides, the style code is still a vector, so it has the

same problem as Swap Autoencoder [38].

3. StyleMapGAN

Our goal is to project images to a latent space accu-

rately with an encoder in real-time and locally manipu-

late images on the latent space. We propose StyleMap-

GAN which adopts stylemap, an intermediate latent space

with spatial dimensions, and a spatially variant modulation

based on the stylemap (§3.1). Note that the style denotes
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Figure 1: StyleMapGAN Generator. The stylemap w is

resized to w
+ through convolutional layers to match the

spatial resolution of each feature in the synthesis network.

Here “A” stands for a learned affine transform, which pro-

duces spatial modulation parameters (γ and β in Equa-

tion 1). “Mod” indicates modulation consisting of element-

wise multiplication and addition. Note that the synthesis

network starts from a learned constant input, and the out-

put image’s style is adjusted by resized stylemaps.

not only textures (fine style) but also shapes (coarse style)

following [24]. Now an encoder can embed an image to

the stylemap which reconstructs the image more accurately

than optimization-based methods, and partial change in the

stylemap leads to local editing on the image (§3.3).

3.1. Stylemap-based generator

Figure 1 describes the proposed stylemap-based gener-

ator. While a traditional mapping network produces style

vectors to control feature maps, we create a stylemap with

spatial dimensions, which not only makes the projection

of a real image much more effective at inference but also

enables local editing. The mapping network has a reshape

layer at the end to produce the stylemap which forms the

input to the spatially varying affine parameters. Since the

feature maps in the synthesis network grow larger as getting

closer to the output image, we introduce a stylemap resizer,

which consists of convolutions and upsampling, to match

the resolutions of stylemaps with the feature maps. The

stylemap resizer resizes and transforms the stylemap with

learned convolutions to convey more detailed and structured

styles.

Then, the affine transform produces parameters for the

modulation regarding the resized stylemaps. The modula-

tion operation of the i-th layer in the synthesis network is as

follows:

hi+1 =

(
γi ⊗

hi − μi

σi

)
⊕ βi (1)
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Figure 2: The upper figure contains an overall training

scheme. Green and red arrows refer to flows associated with

the real image and the generated image from Gaussian dis-

tribution, respectively. Dashed lines indicate loss functions.

The lower figure shows our local editing method on the

stylemap.

where μi, σi ∈ R are the mean and standard deviation of

activations hi ∈ R
Ci×Hi×Wi of the i-th layer, respectively.

γi, βi ∈ R
Ci×Hi×Wi are modulation parameters. ⊗ and ⊕

are element-wise multiplication and addition, respectively.

We remove per-pixel noise which was an extra source of

spatially varying inputs in StyleGAN, because our stylemap

already provides spatially varying inputs and the single in-

put makes the projection and editing simpler. Please see the

supplementary material for other details about the network

and relationship with the autoencoder approach [19].

3.2. Training procedure and losses

In Figure 2, we use F, G, E, and D to indicate the map-

ping network, synthesis network with stylemap resizer, en-

coder, and discriminator, respectively, for brevity. D is the

same as StyleGAN2, and the architecture of E is similar

to D except without minibatch discrimination [41]. All net-

works are jointly trained using multiple losses as shown in

Table 1. G and E are trained to reconstruct real images in

terms of both pixel-level and perceptual-level [54]. Not only

the image but E tries to reconstruct the stylemap with mean

squared error (MSE) when G(F) synthesizes an image from

z. D attempts to classify the real images and the fake im-

ages generated from Gaussian distribution. Lastly, we ex-

ploit domain-guided loss for the in-domain property [55]. E

tries to reconstruct more realistic images by competing with

D, making projected stylemap more suitable for image edit-

Loss G D E

Adversarial loss [16] ✓ ✓

R1 regularization [35] ✓

Latent reconstruction ✓

Image reconstruction ✓ ✓

Perceptual loss [54] ✓ ✓

Domain-guided loss [55] ✓ ✓ ✓

Table 1: Losses for training each network. Non-saturating

loss [16] is used as the adversarial loss. R1-regularization

is applied every 16 steps [25] for D to stabilize training.

Latent reconstruction loss is mean squared error (MSE) in

the w space. Image reconstruction is MSE in image pixel-

level space. We use learned perceptual image patch sim-

ilarity (LPIPS) as perceptual loss for calculating percep-

tual differences between original and reconstructed images.

Domain-guided loss is related to adversarial training that re-

constructed images from the encoder tries to be classified as

real by the discriminator.

ing. If we remove any of the loss functions, generation and

editing performance are degraded. Refer to the supplemen-

tary material for the effect of each loss function and joint

learning. Further training details are also involved.

3.3. Local editing

As shown at the bottom of Figure 2, the goal of local

editing is to transplant some parts of a reference image to

an original image with respect to a mask, which indicates

the region to be modified. Note that the mask can be in

any shape allowing interactive editing or label-based edit-

ing with semantic segmentation methods.

We project the original image and the reference image

through the encoder to obtain stylemaps w and w̃, respec-

tively. The edited stylemap ẅ is an alpha blending of w and

w̃:

ẅ = m⊗ w̃ ⊕ (1−m)⊗w (2)

where the mask m is shrunk by max pooling, and ⊗ and ⊕

are the same as Equation 1. In general, the mask is finer than

8×8, so we blend the stylemaps on the w+ space to achieve

detailed manipulation. But for simplicity, we explain blend-

ing on the w space; the w
+ space blending method is in

the supplementary material. Unless otherwise stated, local

editing figures are blends on the w
+ space.

Contrarily to SPADE [37] or SEAN [58], even rough

masks as coarse as 8× 8 produces plausible images so that

the burden for user to provide detailed masks is lifted. This

operation can be further revised for unidentical masks of the

two images (§4.6).
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4. Experiments

Our proposed method efficiently projects images into the

style space in real-time and effectively manipulates specific

regions of real images. We first describe our experimental

setup (§4.1) and evaluation metrics (§4.2) and show how the

proposed spatial dimensions of stylemap affect the image

projection and generation quality (§4.3). We then compare

our method with the state-of-the-art methods on real image

projection (§4.4) and local editing (§4.5). We finally show a

more flexible editing scenario and the usefulness of our pro-

posed method (§4.6). Please see the supplementary material

for high-resolution experiments and additional results such

as random generation, style mixing, semantic manipulation,

and failure cases.

4.1. Experimental setup

Baselines. We compare our model with recent generative

models, including StyleGAN2 [25], Image2StyleGAN [1],

In-DomainGAN [55], Structured Noise [3], Editing in

Style [11], and SEAN [58]. We train all the baselines from

scratch until they converge using the official implemen-

tations provided by the authors. For optimization-based

methods [25, 1, 55, 3, 11], we use all the hyperparame-

ters specified in their papers. We also compare our method

with ALAE [40] qualitatively in the supplementary mate-

rial. Note that we do not compare our method against Im-

age2StyleGAN++ [2] and Swap Autoencoder [38], since

the authors have not published their code yet.

Datasets. We evaluate our model on CelebA-HQ [23],

AFHQ [10], and LSUN Car & Church [52]. We adopt

CelebA-HQ instead of FFHQ [24], since CelebA-HQ in-

cludes segmentation masks so that we can train the SEAN

baseline and exploit the masks to evaluate local editing ac-

curately in a semantic level. The AFHQ dataset includes

wider variation than the human face dataset, which is suit-

able for showing the generality of our model. The opti-

mization methods take an extremely long time, we lim-

ited the test and validation set to 500 images the same as

In-DomainGAN [55]. The numbers of training images for

CelebA-HQ, AFHQ, and LSUN Car & Church are 29K,

15K, 5.5M, and 126K, respectively. We trained all models

at 256×256 resolution for comparison in a reasonable time,

but we also provide 1024 × 1024 FFHQ results in the sup-

plementary material.

4.2. Evaluation metrics

Fréchet inception distance (FID). To evaluate the per-

formance of image generation, we calculate FID [18] be-

tween images generated from Gaussian distribution and

training set. We set the number of generated samples equal

to that of training samples. We use the ImageNet-pretrained

Inception-V3 [48] for feature extraction.

FIDlerp. To evaluate the global manipulation performance,

we calculate FID between interpolated samples and training

samples (FIDlerp). To generate interpolated samples, we first

project 500 test images into the latent space and randomly

choose pairs of latent vectors. We then generate an image

using a linearly interpolated latent vector whose interpola-

tion coefficient is randomly chosen between 0 and 1. We set

the number of interpolated samples equal to that of train-

ing samples. Low FIDlerp indicates that the model provides

high-fidelity and diverse interpolated samples.

MSE & LPIPS. To evaluate the projection quality, we esti-

mate pixel-level and perceptual-level differences between

target images and reconstructed images, which are mean

square error (MSE) and learned perceptual image patch

similarity (LPIPS) [54], respectively.

Average precision (AP). To evaluate the quality of locally

edited images, we measure the average precision with the

binary classifier trained on real and fake images [51], fol-

lowing the convention of the previous work [38]. We use

the Blur+JPEG(0.5) model and full images for evaluation.

The lower AP indicates that manipulated images are more

indistinguishable from real images.

MSEsrc & MSEref. In order to mix specific semantic, we

make merged masks by combining target semantic masks

of original and reference images. MSEsrc and MSEref mea-

sure mean square error from the original image outside the

mask and from the reference image inside the mask, respec-

tively. To naturally combine them, images are paired by tar-

get semantic mask similarity. For local editing comparison

on CelebA-HQ, 250 sets of test images are paired in each

semantic (e.g., background, hair) [32], which produces a to-

tal of 2500 images. For local editing on AFHQ, 250 sets of

test images are paired randomly, and masks are chosen be-

tween the horizontal and vertical half-and-half mask, which

produces 250 images.

4.3. Effects of stylemap resolution

To manipulate an image using a generative model, we

first need to project the image into its latent space accu-

rately. In Table 2, we vary the spatial resolution of stylemap

and compare the performance of reconstruction and gener-

ation. For a fair comparison, we train our encoder model af-

ter training the StyleGAN2 generator. As the spatial resolu-

tion increases, the reconstruction accuracy improves signifi-

cantly. It demonstrates that our stylemap with spatial dimen-

sions is highly effective for image projection. FID varies

differently across datasets, possibly due to different contex-

tual relationships between locations for a generation. Note

that our method with spatial resolution accurately preserves

small details, e.g., the eyes are not blurred.

Next, we evaluate the effect of the stylemap’s resolution

in editing scenarios, mixing specific parts of one image and

another. Figure 3 shows that the 8×8 stylemap synthesizes
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Input 1× 1 4× 4 8× 8 16× 16 32× 32

Method
Style

Runtime (s)
CelebA-HQ AFHQ

resolution MSE LPIPS FID MSE LPIPS FID

StyleGAN2 1×1 0.030 0.089 0.428 4.97 0.139 0.539 8.59

StyleMapGAN 4×4 0.085 0.062 0.351 4.03 0.070 0.394 14.82

StyleMapGAN 8×8 0.082 0.023 0.237 4.72 0.037 0.304 11.10

StyleMapGAN 16×16 0.078 0.010 0.146 4.71 0.016 0.183 6.71

StyleMapGAN 32×32 0.074 0.004 0.076 7.18 0.006 0.090 7.87

Table 2: Comparison of reconstruction and generation quality across different resolutions of the stylemap. The higher res-

olution helps accurate reconstruction, validating the effectiveness of stylemap. We observe that 8 × 8 stylemap already

provides accurate enough reconstruction and accuracy gain, and afterward, improvements get visually negligible. Although

FID varies differently across datasets, possibly due to the different contextual relationships between locations for generation,

the stylemap does not seriously harm the images’ quality; rather, it is even better in some configurations. Using our encoder

and generator, total inference time is less than 0.1s with almost perfectly reconstructed images. Although StyleGAN2 with

our encoder is faster than StyleMapGAN, but it suffers from poorly reconstructed images (second column).

Original Reference 4× 4 8× 8 16× 16 32× 32

Figure 3: Local editing comparison across different resolutions of the stylemap. Regions to be discarded are faded on the

original and the reference images. 4 × 4 suffers from the poor reconstruction. Resolutions greater than or equal to 16 × 16
result in too heterogeneous images. 8 × 8 resolution shows acceptable reconstruction and natural integration. Note that our

method works well even in the case that the mask locates improperly as shown in the reference image of the first row.

5856



Input A Inversion A ←−−−−−−−− Interpolation −−−−−−−−→ Inversion B Input B

Im
2

S
ty

le
G

A
N

O
u

rs

Method Runtime (s)
CelebA-HQ AFHQ

MSE LPIPS FIDlerp MSE LPIPS FIDlerp

StyleGAN2 [25] 80.4 0.079 0.247 30.30 0.091 0.288 13.87

Image2StyleGAN [1] 192.5 0.009 0.203 23.68 0.018 0.282 40.80

Structured Noise [3] 64.4 0.097 0.256 27.96 0.144 0.332 34.99

In-DomainGAN [55] 6.8 0.052 0.340 22.05 0.077 0.414 17.54

SEAN [58] 0.146 0.064 0.334 30.29 N/A N/A N/A

StyleMapGAN (Ours, 8× 8) 0.082 0.024 0.242 9.97 0.037 0.304 12.42

Table 3: Comparison with the baselines for real image projection. Runtime covers the end-to-end interval of projection and

generation in seconds. FIDlerp measures the quality of the images interpolated on the style space as a proxy for the poten-

tial quality of the manipulated images. Our method allows real-time manipulation of real images while achieving the best

reconstruction accuracy and the best quality of the interpolated images. Although Image2StyleGAN produces the smallest

reconstruction error, it suffers from minutes of runtime and poor interpolation quality, which are not suitable for practical

editing. Its flaws can be found in the figure: rugged details in overall images, especially in teeth. SEAN is not applicable

to AFHQ because it requires segmentation masks for training which are not available. The horizontal line between methods

separates optimization-based methods and encoder-based methods.

the most plausible images in terms of seamlessness and pre-

serving the identities of an original and reference image. We

see that when the spatial resolution is higher than 8× 8, the

edited parts are easily detected.

Furthermore, we estimate FIDlerp in different resolution

models in CelebA-HQ. The 8 × 8 model shows the best

FIDlerp value (9.97) than other resolution models; 10.72,

11.05, and 12.10 for 4×4, 16×16, and 32×32, respectively.

We suppose that the larger resolution of stylemap, the more

likely projected latent from the encoder gets out of the latent

space, which comes from a standard Gaussian distribution.

Considering the editing quality and FIDlerp, we choose the

8×8 resolution as our best model and use it consistently for

all subsequent experiments.

4.4. Real image projection

In Table 3, we compare our approach with the state-of-

the-art methods for real image projection. For both datasets,

StyleMapGAN achieves better reconstruction quality (MSE

& LPIPS) than all competitors except Image2StyleGAN.

However, Image2StyleGAN fails to meet requirements for

editing in that it produces spurious artifacts in latent inter-

polation (FIDlerp and figures) and suffers from minutes of

runtime. Our method also achieves the best FIDlerp, which

implicitly shows that our manipulation on the style space

leads to the most realistic images. Importantly, our method

runs at least 100× faster than the optimization-based base-

lines since a single feed-forward pass provides accurate pro-

jection thanks to the stylemap, which is measured in a sin-

gle V100 GPU. SEAN also runs with a single feed-forward

pass, but it requires ground-truth segmentation masks for

both training and testing, which is a severe drawback for

practical uses.

4.5. Local editing

We evaluate local editing performance regarding three

aspects: detectability, faithfulness to the reference image in

the mask, and preservation of the original image outside the

mask. Figures 4 and 5 visually demonstrate that our method

seamlessly composes the two images while others struggle.
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Original Reference Structured Noise Editing in Style In-DomainGAN SEAN Ours

Figure 4: Local editing comparison on CelebA-HQ. The first two baselines [3, 11] even fail to preserve the untouched region.

In-DomainGAN loses a lot of the original image’s identity and poorly blends the two images, leaking colors to faces, hair, or

background, respectively. SEAN locally transfers coarse structure and color but significantly loses details. Ours seamlessly

transplants the target region from the reference to the original.

Original Reference Structured Noise Editing in Style In-DomainGAN Ours

Figure 5: Local editing comparison on AFHQ. Each row blends the two images with horizontal and custom masks, respec-

tively. Our method seamlessly composes two species with well-preserved details resulting in novel creatures, while others

tend to lean towards one species.

Method Runtime (s)
CelebA-HQ AFHQ

AP MSEsrc MSEref AP MSEsrc MSEref

Structured Noise [3] 64.4 99.16 0.105 0.395 99.88 0.137 0.444

Editing in Style [11] 55.6 98.34 0.094 0.321 99.52 0.130 0.417

In-DomainGAN [55] 6.8 98.72 0.164 0.015 99.59 0.172 0.028

SEAN [58] 0.155 90.41 0.067 0.141 N/A N/A N/A

StyleMapGAN (Ours, 8× 8) 0.099 83.60 0.039 0.105 98.66 0.050 0.050

Table 4: Comparison with the baselines for local image editing. Average precision (AP) is measured with the binary classifier

trained on real and fake images [51]. Low AP shows our edited images are more indistinguishable from real images than other

baselines. Low MSEsrc and MSEref imply that our model preserves the identity of the original image and brings the charac-

teristics of the reference image well, respectively. Our method outperforms in all metrics except MSEref in In-DomainGAN.

In-DomainGAN uses masked optimization, which only optimizes the target mask so that the identity of the original image

has a great loss as shown in Figures 4 and 5.
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Figure 6: Examples of unaligned transplantation. StyleMapGAN allows composing arbitrary number of any regions. The size

and pose of the tower, bumper and wheels are automatically adjusted regarding the surroundings. The masks are specified on

8 × 8 grid and the stylemaps are blended on w space. The first row shows an example of copying one area of the reference

image into multiple areas of the original images. The second row shows another example of copying two areas of the reference

image. Our method can transplant the arbitrary number and size of areas of reference images.

Since there is no metric for evaluating the last two aspects,

we propose two quantitative metrics: MSEsrc and MSEref.

Table 4 shows that the results from our method are the hard-

est for the classifier to detect fakes, and both original and

reference images are best reflected. Note that MSEs are not

the sole measures, but AP should be considered together for

the realness of the image.

4.6. Unaligned transplantation

Here, we demonstrate a more flexible use case, unaligned

transplantation, showing that our local editing does not re-

quire the masks on the original and the reference images to

be aligned. We project the images to the stylemaps and re-

place the designated region of the original stylemap with the

crop of the reference stylemap even though they are in dif-

ferent locations. Users can specify what to replace. Figure

6 shows examples of LSUN Car & Church.

5. Discussion and Conclusion

Invertibility of GANs has been essential for editing real

images with unconditional GAN models at a practical time,

and it has not been properly answered yet. To achieve this

goal, we propose StyleMapGAN, which introduces explicit

spatial dimensions to the latent space, called a stylemap.

We show that our method based on the stylemap has a num-

ber of advantages over prior approaches through an exten-

sive evaluation. It can accurately project real images in real-

time into the latent space and synthesize high-quality output

images by both interpolation and local editing. We believe

that improving fidelity by applying our latent representa-

tion to other methods such as conditional GANs (e.g., Big-

GAN [6]) or variational autoencoders [29] would be excit-

ing future work.

Acknowledgements. All experiments were conducted on

NAVER Smart Machine Learning (NSML) [27, 46].
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