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Abstract

Convolutional neural networks have made remarkable

progress in the face recognition field. The more the technol-

ogy of face recognition advances, the greater discriminative

features into a face template. However, this increases the

threat to user privacy in case the template is exposed.

In this paper, we present a modular architecture for face

template protection, called IronMask, that can be combined

with any face recognition system using angular distance

metric. We circumvent the need for binarization, which is

the main cause of performance degradation in most existing

face template protections, by proposing a new real-valued

error-correcting-code that is compatible with real-valued

templates and can therefore, minimize performance degra-

dation. We evaluate the efficacy of IronMask by extensive

experiments on two face recognitions, ArcFace and Cos-

Face with three datasets, CMU-Multi-PIE, FEI, and Color-

FERET. According to our experimental results, IronMask

achieves a true accept rate (TAR) of 99.79% at a false ac-

cept rate (FAR) of 0.0005% when combined with ArcFace,

and 95.78% TAR at 0% FAR with CosFace, while providing

at least 115-bit security against known attacks.

1. Introduction

Biometric-based authentication has long been the sub-

ject of intensive research, and deep convolutional neural

networks (CNNs) have allowed significant recent advances

in recognition. The success of the CNN architecture comes

from its ability to extract discriminative features from user

biometric traits, such as facial images. Within face recog-

nition systems, user face images are well-compressed into

deep face templates. Therefore, the exposure of user face

templates constitutes a severe threat to user privacy as well

as to system security. For instance, face images can be re-

constructed from the corresponding templates [20] and this
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is a direct threat to user privacy. In addition, the recon-

structed face image can be used to gain unauthorized access

to the system. A high number of attacks have already been

reported, which shows how risky the leakage of templates

is [20, 4, 10, 9, 3].

The goal of face template protection is to satisfy irre-

versibility, revocability, and unlinkability properties with-

out significant degradation in face recognition performance.

In terms of security, in the event a protected face template

is leaked to an adversary, reconstructing the original face

template from the compromised template should be compu-

tationally infeasible. Thus, the compromised template must

be revoked and generation of a new protected face template

should be feasible. In addition, two or more protected tem-

plates created from the same user biometric traits should

hide relations between them. Furthermore, the template pro-

tection scheme is expected to maintain high matching per-

formance with high intra-user compactness and inter-user

discrepancy. Achieving both high template security and

high match performance at the same time is a fundamental

challenge in the design of face template protection schemes.

Most of recent research on CNN-based face template

protection can be categorized into two groups, training-in-

enrollment and training-before-enrollment. The former ap-

proach [23, 12, 13] requires face images of the target user

to train the CNN, which maps from face images into binary

code during enrollment; at this stage, the resulting binary

codes are randomly generated and so have no correlation

with the original face images. The hashed value of the re-

sulting binary code is stored as a protected template of the

target user. This approach is incompatible with dynamic en-

rollment systems because, once the initial enrollment has

been completed, the CNN would need to be retrained from

scratch whenever a new user is added to the system. The

latter approach [31, 21] was proposed to mitigate the effect

of the above problem. In this case, the CNN can be pre-

trained before enrollment, and performance degradation is

minimized using additional methods, e.g., neural network
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Figure 1: IronMask is a template protecting modular architecture, which can be combined with any face recognition systems using angular

distance metric.

based error-correction [31] and significant feature extrac-

tion [21]. However, compared to the training-in-enrollment

approach, these algorithms suffer from low matching ac-

curacy. The common feature of both approaches is the use

of a binary code either as an intermediate step or as the

final protected template. This artificial binarization makes

template-protected face recognition systems quite different

from state-of-the-art (non-protected) face recognition sys-

tems in terms of both architecture and/or matching perfor-

mances.

1.1. Our Contributions

We present a novel design architecture that maintains

the advantages of state-of-the-art (non-protected) biometric

recognition as much as possible, while adding high tem-

plate security. To this end, we propose a modular archi-

tecture, called IronMask, that provides template protection

to any (non-protected) face recognition system using angu-

lar distance metric. A pictorial explanation of the approach

is provided in Fig. 1. By combining IronMask with well-

known face recognition systems, we achieve the best match-

ing performance in the training-before-enrollment category.

Our performance results are even comparable with existing

results in the training-in-enrollment category.

In this paper, we consider an arbitrary biometric recogni-

tion system, which measures the closeness of two templates

by angular distance metric (or cosine similarity). Two bio-

metric templates t1, t2 are considered as vectors on the unit

n-sphere Sn−1, and the distance between them is defined

as the angle cos−1(〈t1, t2〉) between them, where 〈t1, t2〉
denotes the standard inner product of t1 and t2. It is worth

noting that the angular distance [11, 18, 19, 25, 36, 17, 35,

37, 5, 39] has been widely used along with the Euclidean

distance in many recent successful face recognition systems

to measure closeness between two templates.

In developing IronMask, we devise a new real-valued

error-correcting-code (ECC) that is compatible with the an-

gular distance metric and enables to use real-valued codes

instead of binary codes, unlike prior works. Hence, given

an original template t ∈ Sn−1, IronMask generates a real-

valued codeword c and a linear transformation P mapping

from t to c, which has the form of an n-by-n matrix. The

hashed value H(c) of the codeword and P are stored as

the protected template, where H is a collision resistant hash

function. If we set P to be an orthogonal matrix, then it

becomes an isometry that preserves the inner product, so

that any noisy template with distance d from t can be trans-

formed via P into the one with the same distance from

c. Thus, no additional performance degradation is imposed

by this transformation. Finally, with the help of the error-

correcting capability of our ECC, we can recover the origi-

nal codeword and check its originality with H(c).

If the protected template is leaked, the adversary gains

only P and H(c). We inject sufficient randomness into P to

hide information on the original template via the mathemat-

ical tool of choosing a uniform orthogonal matrix. Then, we

show that the protected template satisfies the three required

properties, irreversibility, revocability, and unlinkability un-

der appropriate parameter sizes.

IronMask can be combined with arbitrary face recog-

nition systems using angular distance metrics. To demon-

strate the efficacy of IronMask, we apply IronMask to two

well-known face recognition systems, ArcFace [5] and Cos-

Face [37], with three widely used datasets, CMU Multi-

PIE [28], FEI [33], and Color-FERET [24]. Here, ArcFace

and CosFace are one of the state-of-the-art face recognition

systems. Our experiments show that IronMask with Arc-

Face achieves 98.76% true accept rate (TAR) at 0% false ac-
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cept rate (FAR), and with CosFace achieves 81.13% TAR at

0% FAR. Through additional processes involving multiple

face images as input of IronMask, we improve the match-

ing performance up to 99.79% TAR at 0.0005% FAR for

ArcFace and 95.78% TAR at 0% FAR for CosFace.

1.2. Related Works

Many biometric template protection techniques have

been proposed in the literature. Secure sketch [6], fuzzy

commitment [14], and fuzzy vault [15] are biometric cryp-

tographic schemes that not only enable rigorous analysis

on template security but also guarantee high template se-

curity. These cryptographic solutions employ ECCs and

cryptographic hash functions as main building blocks. In

the cryptographic approach, an original template is mapped

onto a random codeword, and its hash value is subsequently

stored as the protected template. These schemes vary ac-

cording to the metric of the space containing the templates.

Many face template protection proposals [30, 1, 38, 31, 21]

follow this approach. However, this requires to use bi-

nary codes or points, which leads to loss of discrimina-

tory information on the original template and degradation

of matching performance. Biohashing [32], cancelable bio-

metric [26], and robust hashing [34] are feature transfor-

mation approaches that transform the original template into

an element in a new domain using a non-invertible trans-

formation and salting. A hybrid approach for face template

protection that combines the cryptographic approach with

the feature transformation approach was proposed in [8].

Local region based hashing was suggested as a way to ex-

tract discriminative features from face images [22]; how-

ever, the feature extraction consists of quantization and

cryptographic hashing, so that this algorithm still suffers

from low matching accuracy in the same way as the cryp-

tographic approach. To improve matching performance as

well as security, several studies have proposed CNN-based

approaches [23, 12, 13], which minimize intra-user vari-

ability and maximize inter-user variability using neural net-

works. These works [23, 12, 13] essentially require one or

multiple face image(s) of the target user when training the

neural networks, and this requirement is impractical in some

applications such as dynamic enrollment systems.

There is another approach [2, 7] based on fully homo-

morphic encryption that provides a strong security against

attacks using biometric distribution. However, unlike afore-

mentioned works and ours, its security is guaranteed only

under the additional assumption that the decryption key of

fully homomorphic encryption is kept secret.

2. Modular Architecture for Protecting Tem-

plates

The more the technology of face recognition advances,

the greater the number of discriminative features that are

well-compressed into a face template. Ironically, this phe-

nomenon can be demonstrated by applying previously pro-

posed face image reconstruction attacks to the state-of-the-

art face recognition system. For example, we apply the face

image reconstruction attack that was originally proposed for

attacking Facenet [27], to ArcFace [5], which is one of the

state-of-the-art face recognition system. It shows that the

success probability of the attack against ArcFace is higher

than that against FaceNet. Refer to Appendix A of the full

version [16] of this paper for the details.

In this section, we propose a modular architecture for

protecting angular distance based templates including those

of ArcFace. More precisely, we present a transformation,

called IronMask, which transforms a (non-protected) bio-

metric recognition system using angular distance metric

into a template-protected one. Biometric recognition sys-

tems can be classified into ‘identification’ and ‘verification’

according to usage scenarios. The goal of the identification

is to identify a given template among templates in the repos-

itory. On the other hand, the verification is equivalent to the

authentication. For the sake of simplicity, in this paper we

focus on the verification, but note that the proposed protec-

tion method also works for the identification. IronMask is

a transformation of the verification system and consists of

two algorithms, template protection algorithm Protect and

verification algorithm Verify. The Protect algorithm takes

an original template as an input and returns a protected tem-

plate. Given a template t and a protected template pt, intu-

itively, it is non-trivial to check the closeness between t and

pt, so that a specialized verification algorithm Verify is nec-

essary in our approach. The Verify algorithm takes a non-

protected template t′ and a protected template pt where pt

is the output of the Protect algorithm with input t, and then

it outputs 1 (Accept) or 0 (Reject) according to the closeness

between t and t′.

Mathematical Concepts. We introduce some mathematical

concepts used in the paper. A cryptographic hash function,

denoted by H, is a one-way function such as SHA-256 that

given a hash value, it is computationally infeasible to find

its preimage. An error correcting code (ECC) is a set of

codewords, C, in the metric spaceM with decoding func-

tion Decode such that, informally speaking, given an ele-

ment inM, it finds the closest codeword in C. In this paper,

we are interested in the case M = Sn−1, the set of all

unit vectors in R
n. An orthogonal matrix is a square matrix

whose columns and rows are orthonormal vectors. Through-

out the paper, O(n) denotes the set of n × n orthogonal

matrices.

IronMask: Transformation for Template Protection. We ob-

serve that templates in our target recognition systems are

vectors in the unit n-sphere Sn−1 with angular distance.

Here, our basic idea for transformation is to use an orthogo-
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nal matrix, which is an isometry keeping angular distance

between templates once transformed. Then, the orthogo-

nal matrix becomes a part of protected template. To gen-

erate this special orthogonal matrix, we define an algorithm

HRMG that takes two inputs a,b ∈ Sn−1 and returns a

random orthogonal matrix P such that b = Pa. This algo-

rithm will be specified in Section 2.2. In addition, we use a

sub-algorithm, called USample, to describe an abstract con-

struction of IronMask. The USample algorithm generates a

uniform element from the set of codewords and the details

will be described in Section 2.1. Now we present the ab-

stract construction of IronMask in Algorithms 1 and 2.

Algorithm 1: Protect Algorithm

Input : Template t ∈M
Output: Protected template pt

1 c← USample

2 P← HRMG(t, c) such that c = Pt and r← H(c).
3 Output pt := (r,P).

Algorithm 2: Verify Algorithm

Input : Protected template pt and template

t′ ∈M
Output: Accept or Reject

1 Parse pt as (r,P).
2 c′ ← Decode(P · t′) and r′ ← H(c′).
3 Output Accept if r′ = r. Otherwise, output Reject.

By the definition of HRMG(t, c), P is an isometry trans-

formation from the original template t to the codeword c.

That is, since the orthogonal matrix P preserves inner prod-

ucts, the angular distance between the original template t

and a newly recognized template t′ is equal to that between

c = Pt and c′ = Pt′. Therefore, if both t and t′ are cre-

ated from the same user, then we expect that c and c′ have

a small angular distance, so that Decode(c′) returns c with

high probability where Decode is the decoding function of

the employed ECC.

Our abstract construction of IronMask is quite simple,

but its realization is challenging mainly due to the following

reasons:

1. We need a suitable candidate for ECC over Sn−1 with

angular distance.

2. The HRMG algorithm should prevent from leaking an

important information on the input template t.

In the next subsections, we will resolve the above two

issues to complete our IronMask construction.

2.1. Error Correcting Codes over Sn−1 with Angu­
lar Distance

In this subsection, we design a new real-valued ECC,

which is a special building block for IronMask and quite

different from usual binary ECCs such as BCH codes. To

clarify the design rationale, we first list requirements that

ECCs for IronMask should satisfy.

• (Discriminative) All codewords are well-spread on

Sn−1, so that any two of codewords are sufficiently

far to each other. This property is necessary for high

accuracy of IronMask.

• (Uniformly-Samplable) There exists an efficient algo-

rithm USample generating a codeword with uniform

distribution over the set of all codewords. This prop-

erty will be used in the Protect algorithm of IronMask.

• (Efficiently-Decodable) There exists an efficient algo-

rithm Decode that takes any vector in Sn−1 as an input

and returns a codeword with the shortest angular dis-

tance from the input vector. This property will be used

in the Verify algorithm of IronMask.

• (Template-Protecting) The number of codewords is

sufficiently large in order to prevent the brute-force at-

tack, e.g., 280 for 80 bits security.

Next, we devise a new ECC satisfying all the above four

requirements. To this end, we first define a family of code-

word sets {Cα}α.

Definition 1. For any positive integer α, Cα is defined as

a set of all unit vectors whose entries consist of only three

real numbers − 1√
α

, 0, and 1√
α

. Then, each codeword in Cα
has exactly α nonzero entries.

In order to handle codewords for our purpose, we de-

velop two algorithms, called Decode and USample. The

Decode algorithm takes an arbitrary unit vector in Sn−1

as an input and returns a codeword that is the closest to

the input vector. The USample algorithm efficiently sam-

ples a codeword with uniform distribution over Cα. The de-

tailed descriptions of both algorithms are presented in Al-

gorithms 3 and 4, respectively.

We present a useful proposition showing features of the

proposed ECC Cα in terms of our requirements.

Proposition 1. Let Cα be the set of codewords defined in

Definition 1.

1. The minimum angular distance between any two dis-

tinct codewords in Cα is cos−1(1− 1

α
).

2. The output of the USample algorithm is uniformly dis-

tributed over Cα.

3. For any u ∈ Sn−1, the output c of the Decode algo-

rithm satisfies the following inequality:

〈c,u〉 ≥ 〈c′,u〉 for all c′ ∈ Cα.

4. The number of all codewords in Cα is
(
n
α

)
· 2α.
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Algorithm 3: Decode Algorithm

Input : u = (u1, . . . , un) ∈ Sn−1

Output: c = (c1, . . . , cn) ∈ Sn−1 such that

〈c,u〉 ≥ 〈c′,u〉 for all c′ ∈ Cα
1 Find a set of indices J ⊂ [1, n] of size α such that

∀j ∈ J and ∀k ∈ [1, n] \ J , |uj | ≥ |uk|.
2 if j ∈ J then cj ←

uj

|uj |
√
α

else cj ← 0
3 Output c := (c1, . . . , cn).

Algorithm 4: USample Algorithm

Input : Randomness seed

Output: c = (c1, . . . , cn) ∈ Sn−1 that is uniformly

sampled from Cα
1 Choose α distinct positions j1, . . . , jα from

{1, . . . , n} and set J := {j1, . . . , jα}.
2 For j ∈ J , set cj to one of − 1√

α
and 1√

α
at random.

For other indices j 6∈ J set cj := 0.

3 Output c := (c1, . . . , cn).

Due to the space constraint, the proof of Proposition 1 is

relegated to Appendix B of the full version [16].

The above proposition tells us that the proposed ECC,

Cα, is a suitable candidate for ECCs in IronMask. The first

result gives the minimum angular distance of Cα and it con-

firms that Cα is fairly discriminative. However, it is still un-

clear, as of yet, whether such the minimum distance is suffi-

cient for real world applications. To clarify it, we will com-

plement this argument both experimentally (in Section 4)

and theoretically (in Appendix B of the full version [16]).

The second and third results show that Cα is uniformly-

sampleable and efficiently-decodable, respectively. In prac-

tical face recognition systems such as ArcFace [5] and Cos-

Face [37], n is set to be 512. Thus, if α is set appropri-

ately, the fourth result shows that Cα satisfies the last re-

quirement. For example, the number of all codewords in C16
with n = 512 is larger than 2115.

2.2. Hidden Rotation Matrix Generation

In this subsection, we construct an HRMG algorithm that

takes two input vectors t, c in Sn−1 and returns an isometry

which preserves angular distance (equivalently, inner prod-

uct) as well as maps from t to c.

Naive Approach. First, we present a naive approach to gen-

erate such an isometry, a rotation in the plane uniquely

defined by two input vectors t and c. More precisely, let

w = c − tT ct and Rθ =

[
cos θ − sin θ
sin θ cos θ

]

where

θ = cos−1(〈t, c〉). Then, the naive isometry R mapping

from t to c can be precisely calculated as follows:

R = I− ttT −wwT

︸ ︷︷ ︸

projection part

+ [t w]Rθ[t w]T
︸ ︷︷ ︸

rotation part

where I is the n× n identity matrix.

Proposition 2. Given t and c, the above matrix R is

an orthogonal matrix such that Rt = c.

The proof of Proposition 2 is given in Appendix B of the

full version [16], due to the space limitation.

Template-Protecting Approach. Although the above naive

algorithm functions correctly, from the privacy point of

view it might leak some information on input vectors t and

c because it only rotates on the plane that includes both t

and c which should be kept secret in our application, bio-

metric recognition system. As aforementioned, we expect

that the algorithm HRMG(t, c) hides information on t as

much as possible. To this end, we add a randomizing step

to blind two input vectors while preserving the necessary

property for mapping from t to c. The proposed HRMG al-

gorithm is described in Algorithm 5 and a pictorial expla-

nation for the HRMG algorithm is given in Figure 2.

Algorithm 5: HRMG Algorithm

Input : A pair of template and codeword (t, c)
Output: An isometry P ∈ O(n) mapping t 7→ c

1 Choose an orthogonal matrix Q ∈ O(n) at random.

2 Compute a rotation matrix R mapping Qt 7→ c.

3 Output P := RQ.

As for the first step of the HRMG Algorithm, we use a

well-known algorithm [29] which generates a random or-

thogonal matrix Q from the uniform distribution. As for the

second step to generate R, we use a naive rotation matrix

generation given at the beginning of this subsection.

Figure 2: Geometrical interpretation of an orthogonal matrix Q,

a rotation matrix R, and the final result P
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3. Security Analysis

In this section, we look into the security of IronMask,

proposed in Section 2. For this purpose, we first introduce

security requirements for biometric recognition system, and

then present plausible attack scenarios and their counter-

measures.

3.1. Security Requirements

For the security of biometric recognition systems, the

following three conditions are required to be satisfied.

• Irreversibility: It is computationally infeasible to re-

cover the original biometric data from the protected

template.

• Revocability: It is possible to issue new protected tem-

plates to replace the compromised one.

• Unlinkability: It is computationally infeasible to re-

trieve any information from two protected templates

generated in two different applications.

In IronMask, the Protect algorithm outputs a pair of a

hash output of a randomly selected codeword and an or-

thogonal matrix which maps from a biometric template to

the selected codeword. So, we assume that the adversary

can access to a database that stores those pairs, which were

generated by the Protect algorithm.

3.2. Plausible Attacks and Their Countermeasures

Now, we look into irreversibility, revocability, and un-

linkability of IronMask by describing several plausible at-

tacks and then presenting countermeasures.

Irreversibility. Given a pair of (r,P), the goal of the adver-

sary who wants to break the irreversibility of IronMask, is

to recover the biometric template t, which was the input of

the Protect algorithm once the given (r,P) was generated.

Then, they hold that c = Pt and r = H(c) for the exploited

hash function H. Since P is an invertible matrix, there ex-

ists a unique t for each c in the set of codewords, Cα. How-

ever, if the distribution of t is hidden, the only way to check

whether (t, c) is the solution to c = Pt and r = H(c),
is to check whether r is H(c) or not. On the other hand,

there is no known result about the distribution of biometric

templates generated by the face recognition systems that we

consider in this paper. So, it is reasonable to assume that the

distribution of t is hidden to the adversary. Therefore, under

assuming that the distribution of t is hidden, the exploited

hash function H is one-way, and the cardinality of Cα is suf-

ficiently large, e.g., larger than 280, it is computationally

infeasible to recover t from the given (r,P).

Revocability. For the revocability, it should be guaranteed

that the irreversibility holds with a newly issued protected

template, even though the old protected templates generated

by the same biometric source are given to the adversary. In

our setting, since the underlying face recognition systems

are based on CNN, once a user would like to generate a new

protected template again for the revocation, the unprotected

template t is newly generated. It is different from the pre-

viously generated ones, but the distances between them are

very close. By considering this feature, the revocability can

be regarded that any ti’s should not be revealed once sev-

eral (ri,Pi)’s are given, where (ri,Pi) is the outcome of

the Protect algorithm with input ti and each ti is generated

from the same biometric source.

Because IronMask satisfies the irreversibility, it is com-

putationally infeasible to recover ti from given a pair of

(ri,Pi) only. However, by using several pairs of (ri,Pi),
the adversary may obtain relations PT

i ci = PT
j cj + eij for

each i, j where eij = ti − tj since the relations ci = Piti,

cj = Pjtj hold and Pi’s are orthogonal matrices. It is

equivalent to ci = PiP
T
j cj + Pieij and thus we replace

breaking the revocability by finding (ci, cj , eij) such that

Pcj +Pieij = ci with eij = ti − tj ,

Piti = ci ∈ Cα, and Pjtj = cj ∈ Cα (1)

for given orthogonal matrices Pi, Pj , and P = PiP
T
j .

Here, we again remark that ci, cj are codewords and so they

are sparse unit vectors of a fixed small weight whose non-

zero elements have the same absolute value.

A naive way to resolve the above problem is to check

all possible candidates, but it is computationally infeasible

if the cardinality of the set of codewords is exponentially

large in the security parameter. Someone who is familiar

with mathematical structures may consider to apply struc-

tural attacks, such as lattice reductions. However, unfortu-

nately, since Pi’s (and thus P) are orthogonal matrices, a

lattice reduction with input Pi returns Pi itself.

Also, someone who is familiar with cryptanalysis may

consider to apply a time-memory-trade-off (TMTO) strat-

egy whose complexity is approximately a square-root of

the cardinality of the search space. However, eij is also un-

known and its space is very huge since it is a vector of small

real numbers. Thus, the search space for (ci, cj , eij) is suf-

ficiently large under appropriate parameters and this type of

attacks does not work well. We elaborate the details of the

TMTO strategy to solve Equation (1) in Appendix C of the

full version [16].

Unlinkability. For the unlinkability, the adversary should

not find any information of the biometric data from two

protected templates generated in two different applications.

Suppose that two protected templates (r1,P1) and (r2,P2)
are given to the adversary. If they are generated from the

same biometric source, it has a solution to Equation (1), as

in the case of revocability. That is, the adversary knows that
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there is a solution to Equation (1) if he can break the unlink-

ability of IronMask. To the best of our knowledge, however,

the best way to decide the existence of such a solution to

Equation (1), is to find it directly. It is infeasible under our

parameter setting, as in the case of revocability. Thus, Iron-

Mask satisfies the unlinkability.

4. Performance Evaluation

In this section, we investigate implementation aspects of

IronMask combining with main CNN-based face recogni-

tion systems.

4.1. Face Datasets and Recognition Algorithm

We use three popular datasets targeted face recogni-

tion to demonstrate the feasibility of IronMask. Below we

briefly explain which face images were used in each dataset

for our experiments.

• CMU Multi-PIE Dataset [28]: It consists of 750,000

face images of 337 subjects. The photos are captured

under 4 different sessions, 15 different rotated view

points, and 19 illumination conditions. We selected 20

face images randomly in the sessions 3 and 4 for 194

common subjects each. Then, we used 5 poses (p04,

p05.0, p05.1, p13, p14) and 2 illumination conditions

(i08, i18) for each session, respectively.

• FEI Dataset [33]: It consists of 2,800 face images of

200 subjects. The photos are captured under 14 differ-

ent rotated view points for each subject. We selected

11 poses (p02, p03, p04, p05, p06, p07, p08, p09, p11,

p12, p13) among them for each subject in our experi-

ments.

• Color-FERET Dataset [24]: We used 4 face images for

237 subjects each where the photos are varied with re-

spect to pose, illumination, expression, and glasses.

In order to show compatibility of our proposed modular

architecture, we implement it over two notable face recog-

nition systems using angular distance metric. One of them

is CosFace in [37] and the other is ArcFace in [5]. We note

that ArcFace that achieves the state-of-the-art performance

on the NIST Face Recognition Vendor Test (FRVT)1. In our

experiments, we use ResNet50 with 512-dimensional out-

put as a backbone scheme for both ArcFace and CosFace.

In many real world applications, multiple face images

for a single user are available during the enrollment, so

that multiple templates are also available once applying

face recognition. As an intermediate process before apply-

ing our IronMask, we find a kind of center point of multi-

ple face templates and use it as the final template of user,

where the center point has a minimal cost in inner prod-

1https://github.com/deepinsight/insightface

ucts with multiple templates.2 This procedure contributes to

both high compactness for intra-class and small degradation

of discrimination for inter-class. We experimentally show

that IronMask is well compatible with not only the orig-

inal face recognition systems but also the above interme-

diate process with multiple images. Multiple linear regres-

sion (MLR) is sufficient for realizing the above intermediate

process to find the center because the center is linearly de-

fined from multiple templates. In our implementation, MLR

is fine-tuned, where weights are normally initialized and the

cost function with L1 loss is optimized using stochastic gra-

dient descent (SGD) with learning rate (0.01, 0.001) during

(1000, 500) epochs. We normalize the output of MLR and

then use it as the final template, which is an input of the

Protect algorithm.

4.2. Experimental Results

We provide our experimental results of IronMask over

ArcFace and CosFace with the aforementioned three

datasets. We consider the single-image setting and the

multi-image setting, where the latter applies the intermedi-

ate process that uses a center point and the former does not.

For the single-image setting, we use two standard metrics,

a true accept rate (TAR) and a false accept rate (FAR), to

evaluate matching performance of IronMask. For the multi-

image setting, only a limited number of face images per

each user is available in the target databases. Thus, in or-

der to reasonably evaluate matching performance of Iron-

Mask, we carefully design experiments as follows: 1) We

randomly choose n1 face images among n0 total face im-

ages for each user to extract a centered input feature of

the Protect algorithm. 2) We run the Verify algorithm with

n2 (= n0 − n1) face images of the same user for TAR and

n3 (= n0 × (k − 1)) face images of different users for

FAR, where k is the number of all users in each dataset.

3) We run Steps 1) and 2) r times repeatedly to get more re-

liable performance results. That is, we have n2×r TAR and

n3 × r FAR tests. For the parameter (k, n0, n1, n2, n3, r),
we choose (194, 20, 5, 15, 20×193, 10) for the CMU Multi-

PIE dataset, (200, 11, 5, 6, 11×199, 10) for the FEI dataset,

and (237, 4, 2, 2, 4 × 238, 6) for the Color-FERET dataset

according to Section 4.1.

The graphs of Figure 3 present our experimental results

and Table 1 summarizes TARs/FARs with respect to face

recognition system and dataset. Our construction with Arc-

Face (resp. CosFace) achieves 99.79% (resp. 95.78%) TAR

at 0.0005% (resp. 0%) FAR when using the proposed ECC

C16 with n = 512 (resp. n = 512) that provides at least

115 bits of security level. We further improve the match-

2Each template is considered as a vector in Sn−1 with cosine similarity

distance. Therefore, simple averaging with the Euclidean distance cannot

generate a meaningful center and we need to devise a different center-

finding algorithm.
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Recog CMU Multi-PIE FEI Color-FERET

AF 99.05@0 99.63@0 98.13@0

AF+I 98.95@0 99.27@0 98.06@0

AF+C 99.57@9e-4 99.82@0 99.78@0

AF+I+C 99.96@1.3e-3 99.96@3e-4 99.46@0

CF 96.16@6e-4 98.69@0 96.55@0

CF+I 75.56@0 87.52@0 80.32@0

CF+C 99.92@1.3e-3 99.92@0 98.96@2e-4

CF+I+C 97.37@0 98.53@0 91.45@0

Table 1: TAR@FAR performance of 8 face recognitions for three

databases are given. ‘AF’ and ‘CF’ indicate ArcFace and CosFace,

respectively, and ‘+C’ indicates whether applying the intermedi-

ate process using multiple face images and ‘+I’ indicates whether

applying the proposed template protection method, IronMask.

TAR

0 0.5 1

0.6

0.8

1

FAR(×10
−3 )

0 2 4 6

FAR(×10
−3 )

0 0.05 0.1 0.15

FAR(×10
−3 )

AF

CF

AF+C

CF+C

Figure 3: The experimental results on TARs at different FARs of

our construction for each dataset and face recognition algorithm.

The datasets used for graphs from left to right are CMU Multi-PIE,

FEI, and Color-FERET each.

ing performance by using centered templates as inputs of

the Protect algorithm, as described in Section 4.1. For in-

stance, it provides about 1% (resp. 22%) improvement in

TAR at the cost of 0.0013% (resp. 0%) degradation in FAR

for the CMU Multi-PIE dataset with ArcFace (resp. Cos-

Face).

One may have doubts that the relatively short mini-

mum distance of the proposed ECC Cα causes serious per-

formance degradation of IronMask. According to Proposi-

tion 1, the minimum distance of C16 is cos−1( 15
16
), which

is about 20.36◦, and so the theoretical error capacity is

about 10.18◦ = 20.36◦/2. In case of ArcFace, the thresh-

old which decides the closeness between two templates is

about 37◦ and thus the gap between ArcFace and ours looks

quite large. However, since there are only a limited num-

ber of pairs of codewords whose distance matches the min-

imum and most pairs of codewords have a longer distance

than the minimum in C16, our Decode algorithm may de-

code a longer distance than the minimum distance for many

cases. We confirm the above feature by comparing the per-

formance between the original face recognition systems and

IronMask combined with them. In Table 1, IronMask with

ArcFace (resp. CosFace) degrades a TAR of 0.18 % (resp.

16.00 %) in average at the almost same FAR.

We also compare IronMask over ArcFace with the recent

deep neural network based template protection methods. Ta-

ble 2 presents comparison results of ours with the state-of-

Dataset Alg ET OT TAR@FAR

CMU Multi-PIE

[31] Z
B255 81.40@1e-2

B1023 81.20@1e-2

Ours
Z R512 98.95@0

Z(C) R512 99.96@1.3e-3

FEI

[13]

O
B256 99.73@0

B1024 99.85@0

M
B256 99.84@0

B1024 99.98@0

Ours
Z R512 99.27@0

Z(C) R512 99.96@3e-4

Color-FERET

[13]

O
B256 98.31@0

B1024 99.13@0

M
B256 98.69@0

B1024 99.24@0

Ours
Z R512 98.06@0

Z(C) R512 99.46@0

Table 2: The performance comparison among CNN-based tem-

plate protected face recognition systems is given. In the ET (en-

rollment type) column, ‘Z’, ‘O’, and ‘M’ mean that the number

of face images required for training during the enrollment are

zero, one, and multiple, respectively. That is, both ‘O’ and ‘M’ be-

long to the training-in-enrollment category, but ‘Z’ belongs to the

training-before-enrollment category. ‘Ours/Z’ indicates the com-

bination of ArcFace (ResNet50) and IronMask. ‘Ours/Z(C)’ indi-

cates the combination of ArcFace (ResNet50), the center finding

process (C), and IronMask. In the OT (output type) column, ‘B’

means binary and ‘R’ means real.

the-art researches for each dataset: [31] for CMU Multi-PIE

dataset and [13] for FEI and Color-FERET datasets. The

main difference between ours and others is that we use a

real-valued face feature vector itself without binarization,

which may cause significant deterioration in the matching

performance. In Table 2, ours improves a TAR of at least

17.7% than [31] with the zero-shot enrollment. We note

that the zero-shot enrollment does not re-train even if a new

identity is enrolled in the authentication system. Table 2 also

shows that ours has comparable matching performance to

the schemes that re-train using one or multiple images in

the enrollment system.

For the readers who are interested in time and storage re-

quired for running IronMask, we report our experimental re-

sults in terms of running times and storage below. We have

implemented our construction on Linux using a single ma-

chine with Intel Core i7-6820 HQ running at 2.70 GHz and

16 GB RAM. Our experiments take 250 ms for the Protect

algorithm at the Linux machine. For the Verify algorithm,

it takes 6.72 ms at the Linux machine. On the other hand,

since the protected template pt = (r,P) consists of a hash

value of codeword and an n×n real-valued matrix, the size

of the protected template under C16 with n = 512 is less

than 1 Mb for face recognition. It shows that IronMask is

sufficient to be deployed in real world applications such as

WLogin services using biometric authentication.
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