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Abstract

Blind super-resolution (SR) methods aim to generate a

high quality high resolution image from a low resolution

image containing unknown degradations. However, natural

images contain various types and amounts of blur: some

may be due to the inherent degradation characteristics of

the camera, but some may even be intentional, for aesthetic

purposes (e.g. Bokeh effect). In the case of the latter, it

becomes highly difficult for SR methods to disentangle the

blur to remove, and that to leave as is. In this paper, we pro-

pose a novel blind SR framework based on kernel-oriented

adaptive local adjustment (KOALA) of SR features, called

KOALAnet, which jointly learns spatially-variant degrada-

tion and restoration kernels in order to adapt to the spatially-

variant blur characteristics in real images. Our KOALAnet

outperforms recent blind SR methods for synthesized LR im-

ages obtained with randomized degradations, and we further

show that the proposed KOALAnet produces the most natural

results for artistic photographs with intentional blur, which

are not over-sharpened, by effectively handling images mixed

with in-focus and out-of-focus areas.

1. Introduction

When a deep neural network is trained under a specific

scenario, its generalization ability tends to be limited to that

particular setting, and its performance deteriorates under a

different condition. This is a major problem in single image

super-resolution (SR), where most neural-network-based

methods have focused on the upscaling of low resolution

(LR) images to high resolution (HR) images solely under

the bicubic downsampling setting [13, 15, 16, 26], until very

recently. Naturally, their performance tends to severely drop

if the input LR image is degraded by even a slightly different

downsampling kernel, which is often the case in real images

[23]. Hence, more recent SR methods aim for blind SR,

*Both authors contributed equally to this work.
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where the true degradation kernels are unknown [5, 8].

However, this unknown blur may be of various types with

different characteristics. Often, images are captured with a

different depth-of-field (DoF) by manipulating the aperture

sizes and the focal lengths of camera lenses, for aesthetic

purposes (e.g. Bokeh effect) as shown in Fig. 1. Recent

mobile devices even try to simulate this synthetically (e.g.

portrait mode) for artistic effects [24]. Although a camera-

specific degradation could be spatially-equivariant (similar to

the way LR images are generated for SR), the blur generated

due to DoF of the camera would be spatially-variant, where

some areas are in focus, and others are out of focus. These

types of LR images are extremely challenging for SR, since

ideally, the intentional blur must be left unaltered (should

not be over-sharpened) to maintain the photographer’s intent

after SR. However, the SR results of such images are yet to

be analyzed in literature.

In this paper, we propose a blind SR framework based on

kernel-oriented adaptive local adjustment (KOALA) of SR

features, called KOALAnet, by jointly learning the degrada-

tion and restoration kernels. The KOALAnet consists of two

networks: a downsampling network that estimates spatially-

variant blur kernels, and an upsampling network that fuses

this information by mapping the predicted degradation ker-

nels to the feature kernel space, predicting degradation-

specific local feature adjustment parameters that are applied

by spatially-variant local filtering on the SR feature maps.

After training under a random anisotropic Gaussian degrada-

tion setting, our KOALAnet is able to accurately predict the

underlying degradation kernels and effectively leverage this

information for SR. Moreover, it demonstrates a good gen-

eralization ability on historic images containing unknown

degradations compared to previous blind SR methods. We

further provide comparisons on real aesthetic DoF images,

and show that our KOALAnet effectively handles images

with intentional blur. Our contributions are three-fold:

• We propose a blind SR framework that jointly learns

spatially-variant degradation and restoration kernels.

The restoration (upsampling) network leverages novel
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IKC ZSSR ZSSR+[2] Ours OriginalBicubicOriginal Depth-of-Field Image

Figure 1: Qualitative comparison on artistic photographs with intentional blur for ×4. Some methods (IKC [8], ZSSR [23]+KernelGAN

[2]) over-sharpen even the background (out-of-focus) regions that should be left blurry, while others generate blurry foreground (in-focus)

regions. Our KOALAnet handles both regions well, generating results with similar blurriness characteristics as the original image.

KOALA modules to adaptively adjust the SR fea-

tures based on the predicted degradation kernels. The

KOALA modules are extensible, and can be inserted

into any CNN architecture for image restoration tasks.

• We empirically show that the proposed KOALAnet out-

performs the recent state-of-the-art blind SR methods

for synthesized LR images obtained under randomized

degradation conditions, as well as for historic LR im-

ages with unknown degradations.

• We first analyze SR results on images mixed with

in-focus and out-of-focus regions, showing that our

KOALAnet is able to discern intentionally blurry areas

and process them accordingly, leaving the photogra-

pher’s intent unchanged after SR.

2. Related Work

Single degradation SR. Since the first CNN-based SR

method by Dong et al. [6], highly sophisticated deep learn-

ing networks have been proposed in image SR [13, 15, 16,

22, 25, 26, 30], achieving remarkable quantitative or qual-

itative performance. Especially, Wang et al. [25] intro-

duced feature-level affine transformation based on segmen-

tation prior to generate class-specific texture in the SR re-

sult. Although these methods perform promisingly under the

ideal bicubic-degraded setting, they tend to produce over-

sharpened or blurry results if the degradations present in the

test images deviate from bicubic degradation.

Multiple degradation SR. Recent methods handling mul-

tiple types of degradations can be categorized into non-blind

SR [27, 29], where the LR images are coupled with the

ground truth degradation information (blur kernel or noise

level), or blind SR [2, 5, 8], where only the LR images are

given without the ground truth degradation information that

is then to be estimated. Among the former, Zhang et al. [29]

provided the principal components of the Gaussian blur ker-

nel and the level of additive Gaussian noise by concatenating

them with the LR input for degradation-aware SR. Xu et

al. [27] also integrated the degradation information in the

same way, but with a backbone network using dynamic up-

sampling filters [12], raising the SR performance. However,

these methods require ground truth blur information at test

time, which is unrealistic for practical application scenarios.

Among blind SR methods that predict the degradation

information, an inspiring work by Gu et al. [8] inserted

spatial feature transform modules [25] in the CNN architec-

ture to integrate the degradation information with iterative

kernel correction. However, the iterative framework can

be time-consuming since the entire framework must be re-

peated many times during inference, and the optimal number

of iteration loops varies among input images, requiring hu-

man intervention for maximal performance. Furthermore,

their network generates vector kernels that are eventually

stretched with repeated values to be inserted to the SR net-

work, limiting the degradation modeling capability of local

characteristics. Another prominent work is the KernelGAN

[2] that generates downscaled LR images by learning the

internal patch distribution of the test LR image. The down-

scaled LR patches, or the kernel information, and the original

test LR images are then plugged into zero-shot SR [23] or
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Figure 2: Our proposed blind SR framework, KOALAnet, for ×4. The downsampling network predicts spatially-variant kernels, which are

fed into the KOALA modules that in turn produce degradation-specific multiplicative (m) and local filter parameters (k) used to modulate the

features in the upsampling network. The upsampling network generates an SR result with spatially-variant upsampling kernels.

non-blind SR [29] methods. There also exist methods that

employ GANs to generate realistic kernels for data augmen-

tation [31], or learn to synthesize LR images along with the

SR image [4, 9]. In comparison, our downsampling network

predicts the underlying spatially-variant blur kernels that are

used to modulate and locally filter the upsampling features.

Dynamic filter generation. Jia et al. [11] first proposed

dynamic filter networks that generate image- and location-

specific dynamic filters that filter the input images in a locally

adaptive manner to better handle the non-stationary property

of natural images, in contrast to the conventional convolution

layers with spatially-equivariant filters. Application-wise,

Niklaus et al. [19, 20] and Jo et al. [12] successfully em-

ployed the dynamic filtering networks for video frame inter-

polation, and video SR, respectively. The recent non-blind

SR method by Xu et al. [27] also employed a two-branch dy-

namic upsampling architecture [12]. However, the provided

ground truth degradation kernel is still restricted to spatially

uniform kernels and are entered naively by simple concate-

nation, unlike our proposed KOALAnet that estimates the

underlying non-uniform blur kernels from input LR images

and effectively integrates this information for SR.

3. Proposed Method

We propose a blind SR framework with (i) a downsam-

pling network that predicts spatially-variant degradation ker-

nels, and (ii) an upsampling network that contains KOALA

modules, which adaptively fuses the degradation kernel in-

formation for enhanced blind SR.

3.1. Downsampling Network

Data generation. During training, an LR image, X , is

generated by applying a random anisotropic Gaussian blur

kernel, kg, on an HR image, Y , and downsampling it with

the bicubic kernel, kb, similar to [8, 27, 29], given as,

X = (Y ∗ kg) ∗ kb ↓s= (Y ∗ kd) ↓s, (1)

where ↓s denotes downsampling by scale factor s. Hence,

the downsampling kernel kd can be obtained as kd = kg ∗kb,

and the degradation process can be implemented by an s-

stride convolution of Y by kd. We believe that anisotropic

Gaussian kernels are a more suitable choice than isotropic

Gaussian kernels for blind SR, as anisotropic kernels are the

more generalized superset. We do not apply any additional

anti-aliasing measures (like in the default Matlab imresize

function), since Y is already low-pass filtered by kg .

The downsampling network, shown in the upper part

of Fig. 2, takes a degraded LR RGB image, X , as input,

and aims to predict its underlying degradation kernel that is

assumed to have been used to obtain X from its HR counter-

part, Y , through a U-Net-based [21] architecture with Res-

Blocks. The output, Fd, is a 3D tensor of size H×W ×400,
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composed of 20 × 20 local filters at every (h,w) pixel lo-

cation. The local filters are normalized to have a sum of 1

(denoted as Normalize in Fig. 2) by subtracting each of their

mean values and adding a bias of 1/400. With Fd, the LR

image, X̂ , can be reconstructed by,

X̂ = (Y ©∗ Fd) ↓s, (2)

where ©∗ ↓s represents 20 × 20 local filtering [11] at each

pixel location with stride s, as illustrated in Fig. 2.

For training, we propose to use an LR reconstruction

loss, Lr = l1(X̂,X), which indirectly enforces the down-

sampling network to predict a spatially-variant degradation

kernel at each pixel location based on image prior. To bring

flexibility in the spatially-variant kernel estimation, the loss

with the ground truth kernel is only given to the spatial-

wise mean of Fd. Then, the total loss for the downsampling

network is given as,

Ld = l1(X̂,X) + l1(Ehw[Fd], kd), (3)

where Ehw[·] denotes a spatial-wise mean over (h,w), and

kd is reshaped to 1×1×400 from the original size of 20×20.

Estimating the blur kernel for a smooth region in an LR

image is difficult since dissimilar blur kernels may produce

similar smooth pixel values. Consequently, if the network

aims to directly predict the true blur kernel, the gradient of

a kernel matching loss may not back-propagate a desirable

signal. Meanwhile, for highly textured regions of HR im-

ages, the induced LR images are largely influenced by the

blur kernels, which enables the downsampling network to

find inherent degradation cues from the LR images. In this

case, the degradation information can be highly helpful in

reconstructing the SR image as well, since most of the SR

reconstruction error tends to occur in these regions.

3.2. Upsampling Network

We consider the upsampling process to be the inverse of

the downsampling process, and thus, design an upsampling

network in correspondance with the downsampling network

as shown in Fig. 2. The upsampling network takes in the

degraded LR input, X , of size H ×W × 3, and generates an

SR output, Ŷ , of size sH×sW ×3, where s is a scale factor.

In the early convolution layers of the upsampling network,

the SR feature maps are adjusted by five cascaded KOALA

modules, K, which are explained in detail in the next section.

Then, after seven cascaded residual blocks, R, the resulting

feature map, fu, is given by, fu = (RL◦R7◦K5◦Conv)(X),
where RL is ReLU activation [7]. fu is fed separately into a

residual branch and a filter generation branch similar to [12],

where the residual map, r, and local upsampling filters, Fu,

are obtained as,

r = (Conv ◦ PS ◦ RL ◦ Conv ◦ PS ◦ RL ◦ Conv)(fu), (4)

Fu = (Normalize ◦ Conv ◦ RL ◦ Conv)(fu), (5)

for s = 4, where PS is a pixel shuffler [22] of s = 2 and

Normalize denotes normalizing by subtracting the mean and

adding a bias of 1/25 for each 5× 5 local filter. The second

PS and its preceding convolution layer are removed when

generating r for s = 2.

When applying the generated Fu of size H ×W × (25×
s × s) on the input X , Fu is split into s × s tensors in the

channel direction, and each chunk of H ×W × 25 tensor is

interpreted as a 5×5 local filter at every (h,w) pixel location.

They are applied on X (same filters for RGB channels) by

computing the local inner product at the corresponding grid

position (h,w). After filtering all of the s × s chunks, the

produced H ×W × (s× s× 3) tensor is pixel-shuffled with

scale s to generate the enlarged Ỹ of size sH × sW × 3
similar to [12]. Finally, Ŷ is computed as Ŷ = Ỹ + r, and

the upsampling network is trained with l1(Ŷ , Y ).

Kernel-oriented adaptive local adjustment. We propose

a novel feature transformation module, KOALA, that adap-

tively adjusts the intermediate features in the upsampling

network based on the degradation kernels predicted by the

downsampling network. The KOALA modules are placed

at the earlier stage of feature extraction in order to calibrate

the anisotropically degraded LR features before the recon-

struction phase.

Specifically, when the input feature, x, is entered into a

KOALA module, K, it goes through 2 convolution layers,

and is adjusted by a set of multiplicative parameters, m,

followed by a set of local kernels, k, generated based on

the predicted degradation kernels, Fd. Instead of directly

feeding Fd into K, the kernel features, fd, extracted after 3

convolution layers are entered. After a local residual connec-

tion, the output, y, of the KOALA module is given by,

y = K(x | fd)

= {(Conv ◦ RL ◦ Conv ◦ RL)(x)⊗m}©∗ k + x, (6)

where,

m = (Conv ◦ RL ◦ Conv)(fd), and (7)

k = (Normalize ◦ Conv1×1 ◦ RL ◦ Conv1×1)(fd). (8)

In Eq. 6, ⊗ and ©∗ denote element-wise multiplication

and local feature filtering, respectively. For generating k,

1× 1 convolutions are employed so that spatially adjacent

values of kernel features, fd, are not mixed by convolution

operations. The kernel values of k are constrained to have a

sum of 1 (Normalize), like for Fd and Fu.

The local feature filtering operation, ©∗ , is first applied by

reshaping a 1×1×49 vector at each grid position (h,w) to a

7× 7 2D local kernel, and computing the local inner product

at each (h,w) position of the input feature. Since the same

7× 7 kernels are applied channel-wise, the multiplicative pa-

rameter, m, introduces element-wise scaling for the features

over the channel depth. This is also efficient in terms of the
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Method ×2
Set5 Set14 BSD100 Urban100 Manga109 DIV2K-val DIV2KRK[2] Complexity

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM Time (s)/GFLOPs

Bicubic 27.11/0.7850 26.00/0.7222 26.09/0.6838 22.82/0.6537 24.87/0.7911 28.27/0.7835 28.73/0.8040 - / -

ZSSR [23] 27.30/0.7952 26.55/0.7402 26.46/0.7020 23.13/0.6706 25.43/0.8041 28.69/0.7958 29.10/0.8215 24.69/6,238

KernelGAN [2]
27.35/0.7839 24.57/0.7061 25.56/0.6990 23.12/0.6907 25.99/0.8270 27.66/0.7892 30.36/0.8669 230.66/10,219

+ZSSR [23]

BlindSR [5] 28.61/0.8371 26.63/0.7686 26.86/0.7381 24.11/0.7396 26.19/0.8499 28.90/0.8227 29.44/0.8464 9.21/13,910

Ours 33.08/0.9137 30.35/0.8568 29.70/0.8248 27.19/0.8318 32.61/0.9369 32.55/0.8902 31.89/0.8852 0.71/201

Method ×4 Set5 Set14 BSD100 Urban100 Manga109 DIV2K-val DIV2KRK[2] Complexity

Bicubic 26.41/0.7511 24.73/0.6641 25.12/0.6321 22.04/0.6061 23.60/0.7482 27.04/0.7417 25.33/0.6795 - / -

ZSSR [23] 26.49/0.7530 24.93/0.6812 25.36/0.6526 22.39/0.6327 24.43/0.7813 27.39/0.7590 25.61/0.6911 16.91/6,091

KernelGAN [2]
22.12/0.5989 19.73/0.5194 21.02/0.5377 20.12/0.5743 22.61/0.7345 23.75/0.6830 26.81/0.7316 357.70/11,908

+ZSSR [23]

IKC [8] last 27.73/0.8024 25.38/0.7162 25.68/0.6844 23.03/0.6852 25.44/0.8273 27.61/0.7843 27.39/0.7639 0.67/575

IKC [8] max 28.04/0.8079 25.85/0.7261 26.01/0.6951 23.21/0.6943 25.82/0.8361 27.98/0.7912 27.70/0.7684 0.67/575

Ours 30.28/0.8658 27.20/0.7541 26.97/0.7172 24.71/0.7427 28.48/0.8814 29.44/0.8156 27.77/0.7637 0.59/57

Table 1: Quantitative comparison on various datasets. We also provide a comparison on computational complexity in terms of the average

inference time on Set5, and GFLOPs on “baby” in Set5. Bold and underline indicate the best and the second best performance, respectively.

number of parameters, compared to predicting the per-pixel

local kernels for every channel (49 + 64 vs. 49 × 64 filter

parameters). By placing the residual connection after the fea-

ture transformations (Eq. 6), the adjustment parameters can

be considered as removing the unwanted feature residuals

related to degradation from the original input features.

3.3. Training Strategy

We employ a 3-stage training strategy: (i) the downsam-

pling network is pre-trained with l1(X̂,X); (ii) the upsam-

pling network is pre-trained with l1(Ŷ , Y ) by replacing all

KOALA modules with ResBlocks; (iii) the whole framework

(KOALAnet) including the KOALA modules (with convo-

lution layers needed for generating fd, m and k inserted

on the pre-trained ResBlocks) is jointly optimized based

on l1(X̂,X) + l1(Ŷ , Y ). With this strategy, the KOALA

modules can be effectively trained with already meaningful

features obtained from the early training phases, and focus

on utilizing the degradation kernel cues for SR.

4. Experiment Results

Data generation. In our implementations, kd of size

20 × 20 is computed by convolving kb with a random

anisotropic Gaussian kernel (kg) of size 15 × 15, follow-

ing Eq. 1. It should be noted that kb is originally a bicubic

downscaling kernel of size 4 × 4 same as in the imresize

function of Matlab without anti-aliasing, but is zero-padded

to be 20× 20 to align with the size of kd as well as to avoid

image shift. The Gaussian kernels for degradation are gen-

erated by randomly rotating a bivariate Gaussian kernel by

θ ∼ Uniform(0, π/2), and by randomly selecting its kernel

width that is determined by a diagonal covariance matrix

with σ11 and σ22 ∼ Uniform(0.2, 4.0). With kd, we build

our training data on the DIV2K [1] dataset according to Eq.

1. Testsets are generated using Set5 [3], Set14 [28], BSD100

[17], Urban100 [10], Manga109 [18] and DIV2K-val [1]

for comparison with other methods. When generating the

testsets, we ensure that different parameters are selected

for different images by assigning different random seed val-

ues. We additionally compare to DIV2KRK proposed in [2],

which contains DIV2K images that are randomly degraded.

Training parameters. All convolution filters in the

KOALAnet are of size 3× 3 with 64 output channels follow-

ing [13], unless otherwise noted as 1 × 1Conv or with the

output channel noted next to an operation block in Fig. 2.

All CNN-based networks used in our experiments are trained

with LR patches of size 64×64 normalized to [−1, 1], where

each patch is randomly cropped, and randomly degraded

with kd during training. The mini-batch size is 8, and the

initial learning rate of 10−4 is decreased by 1/10 at 80% and

90% of 200K iterations for each training stage. We consider

s = 2 and s = 4 for SR in our experiments.

4.1. Comparison to Existing Blind SR Methods

We compare our method with recent state-of-the-art blind

SR methods, BlindSR [5] and IKC [8]. For [5], we use the

pre-trained model in an independent implementation by an

author with only s = 2 model. For [8], we use the official

pre-trained model by the authors with only s = 4 model.

We also compare against ZSSR [23] with default degrada-

tion as well as by incorporating KernelGAN [2] to provide

degradation information, both with the official codes.

Quantitative comparison. We compare the Y-channel

PSNR and SSIM for various methods on the six random

anisotropic degradation testsets as well as DIV2KRK [2]

in Table 1. We also provide a comparison on the average

inference time and GFLOPs in the rightmost column, where

the inference time in seconds is measured on Set5 with
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Figure 3: Qualitative comparison to other methods. The estimated or ground truth degradation kernels are placed on the top left.

an NVIDIA Titan RTX excluding file I/O times, and the

GFLOPs is computed on the “baby” image in Set5 that is of

512× 512 resolution in terms of the HR ground truth. The

inference time includes zero-shot training for ZSSR [23] and

optimization for [2, 5]. The inherent limitation of zero-shot

models is that they cannot leverage the abundant training data

that is utilized by other methods as image-specific CNNs

are trained at test time. For IKC [8], we report the results

of the last iteration (IKC last) as well as those producing

the maximum PSNR (IKC max) from total 7 iteration loops.

Since IKC is trained under an isotropic setting, its data mod-

eling capability tends to be limited under a more randomized

superset of anisotropic blur. Note that BlindSR [5] had been

trained under an anisotropic setting like ours. On DIV2KRK

[2], where artificial noise is injected to the synthetic degrada-

tion kernels, internal-learning-based methods ZSSR [23] and

KernelGAN [2] are advantageous over the other methods as

they can adapt to the unorthodox kernels. Nevertheless, our

method outperforms all compared methods on DIV2KRK

even though it was not trained with kernel noise, demon-

strating good generalization ability. On other testsets, our

KOALAnet outperforms the other methods by a large margin

of over 1 dB in most cases.

Qualitative comparison. We compare the visual results

on the randomized anisotropic testset in Fig. 3. We have also

visualized the mean of the predicted spatially-variant kernels

along with the ground truth kernels. Our method is able to

restore sharp edges and high frequency details. Most impor-

tantly, in Fig. 4, we also compare our method under real

conditions on old historic images [14] without ground truth

labels. In this case, the results are generated using the con-

figuration for real images for ZSSR, and we show the results

generated at the last iteration for IKC. Our method performs

well even on these real images with unknown degradations,

demonstrating good generalization ability.

4.2. Results on Aesthetic Images

We collected several shallow DoF images from the web

containing intentional spatially-variant blur for aesthetic pur-

poses, to compare the SR results of existing blind SR meth-

ods [2, 8, 23] to ours. Before applying SR, these images

are bicubic-downsampled so that we can consider the origi-

nal images as ground truth, in order to gauge the intended

blur characteristics in the original images. As shown in

Fig. 1, IKC [8] and ZSSR [23] with KernelGAN [2] tend to

over-sharpen even the intentionally blurry areas that should
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(a) Real images upscaled by 2. 

(left: input, top: ZSSR, middle: BlindSR, bottom: Ours)

(b) Real images upscaled by 4. 

(left: input, top: ZSSR, middle: IKC, bottom: Ours)

Figure 4: Qualitative results on old historic images [14].

be left blurry. ZSSR [23] produces blurry results overall,

even in the foreground (in-focus) regions. In contrast, our

KOALAnet leaves the originally out-of-focus region blurry

and appropriately upscales the overall image, yielding results

that are closest to the original images. For further analysis,

we also compare our KOALAnet with a Baseline that only

has the upsampling network in our framework. As shown

in Fig. 5, the regions with strong blur far away from the

in-focus area remain blurry for both methods. However, the

Baseline cannot correctly disentangle the intentional blur

from the degradation blur in the boundary areas between

the in-focus and completely out-of-focus areas, where it can

be ambiguous whether the blur should be sharpened or left

blurry. With shallow DoF images where only a narrow band

of regions are in focus in Fig. 5, the Baseline tends to pro-

duce results with a deeper DoF than the original image due

to over-sharpening of the boundary areas.

4.3. Ablation Study

In this Section, we analyze the effect of the different

components in our framework with various ablation studies,

and provide visualizations of estimated blur kernels, local

upsampling filters, and local filters in the KOALA modules.

Effect of KOALA modules. We analyzed the effect of

the proposed KOALA modules by retraining the following

Ours OriginalOriginal Depth-of-Field Image Baseline

Figure 5: Comparison with the Baseline on a shallow DoF image

for ×4. The Baseline with only the upsampling network tends to

generate a deeper DoF image compared to the original image.

Baseline

(upsampler)

KOALAnet w/

estimated kernel
Ground Truth

KOALAnet w/

incorrect kernel

Figure 6: Effect of the degradation kernels on KOALAnet for ×4.

Model
Baseline KOALA

KOALAnet
KOALA

(upsampler) only k +GT kernel

PSNR 29.20 29.40 29.44 29.67

SSIM 0.8110 0.8150 0.8156 0.8212

Table 2: Ablation study on the KOALA module for ×4.

SR models: (i) Baseline with only the upsampling network

without using any degradation kernel information (no down-

sampling network, nor KOALA modules), (ii) a model that

only has the parameters k (not m) in the KOALA modules,

(iii) a model to which ground truth kernels are given in-

stead of the estimated degradation kernels (KOALA+GT

kernel). From the Baseline, adding KOALA modules with

only k parameters improves PSNR performance by 0.2 dB,

and adding m further improves the PSNR gain by 0.04 dB,

showing the effectiveness of our proposed KOALA modules

in incorporating degradation kernel information. The SR

performance of KOALA modules with ground truth kernels

can be considered as an upper bound, with 0.23 dB higher

PSNR than the KOALAnet. Fig. 6 compares the ×4 SR

results of the Baseline and the KOALAnet. With the pre-

dicted degradation kernel information, the KOALA modules

help to effectively remove the blur induced by the random

degradations, while revealing fine edges (2nd column). The

images in the 3rd column show the SR results when incorrect

larger or smaller blur kernels are deliberately provided to
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Models
(a) (b) (c) (d) Full

ResNet U-Net Uniform No Norm. Model

PSNR 47.79 47.85 45.78 49.15 49.50

SSIM 0.9967 0.9967 0.9945 0.9976 0.9980

Table 3: Experiment on downsampling network architecture for

×1/4. All networks contain 27 convolution layers.

l2 error KernelGAN[2] BlindSR[5] KOALAnet

DIV2K-val 0.0230 0.0152 0.0010

DIV2KRK[2] 0.0084 0.0081 0.0044

Table 4: Kernel accuracy (average l2 error) measured on the two

random anisotropic datasets, DIV2K-val and DIV2KRK [2].

the KOALA modules. In these cases, the wrong kernels

cause the upsampling network to produce over-sharpened

(for larger kernels) or blurry (for smaller kernels) results. All

models were tested on the DIV2K-val testset.

Downsampling network architecture. To analyze the

downsampling network, we retrained its four variants: (a) a

ResNet model – a ResNet-style architecture trained instead

of a U-Net, (b) a model with residual connection removed

from ResBlocks – thus a common U-Net, not a ResU-Net, (c)

a model that estimates uniform kernels, (d) a model without

normalization (sum to 1) employed for Fd (No Norm). Ta-

ble 3 shows PSNR and SSIM values measured between the

original degraded LR image and the LR image reconstructed

using the kernels produced from the different models, on the

DIV2K-val testset. Full Model in Table 3 denotes our final

downsampling network (a ResU-Net), where there is a large

drop in PSNR if any of the components are ablated. Espe-

cially, if spatially-equivariant kernels are estimated as in (c),

PSNR performance drops drastically by 4.72 dB, showing

the importance of using spatially-variant kernels.

Degradation kernel estimation accuracy. In order to

evaluate the accuracy of degradation kernel estimation,

we measured the average l2 distance between the ground

truth kernels and the kernels estimated by KernelGAN

[2], BlindSR [5] and the downsampler of KOALAnet, on

the random anisotropic degradation testset DIV2K-val and

DIV2KRK [2] in Table 4. We make sure that the centers of

the estimated kernels are aligned to the center of each ground

truth kernel through manual shifting. As shown in Table 4,

KOALAnet predicts more accurate degradation kernels with

lower l2 error compared to other kernel estimators.

Various kernel visualizations. In Fig. 7 (a), we visual-

ized the estimated blur kernels and upsampling kernels of

our KOALAnet on two different locations in the same im-

age. The 1st column shows the spatially-variant degradation

kernels that are predicted by the downsampling network. As

discussed in Section 3.1, the predicted blur kernel is close to

GT kernel

Estimated blur 

kernels

Local filters of 

5th KOALA

module

(b) Examples of estimated blur kernels  and the 

corresponding 7 7 local filters  of the 5th KOALA module. 

(a) Blur kenrel (1st column) and upsampling kernel (2nd column) estimation.

Figure 7: Various kernel visualizations of KOALAnet.

the true kernel in the complex area (red box), while a non-

directional kernel is obtained in the homogeneous region

(green box). In the 2nd column, the s × s 2D upsampling

kernels of size 5 × 5 are also shown to be non-uniform

depending on the location. We have also visualized some

examples of local filters, k, of the KOALA modules in Fig.

7 (b). The top row shows the degradation kernels estimated

by the downsampling network, and the bottom row shows

the 7× 7 local filters (k) of the 5th KOALA module. Even

without any explicit enforcement on the shape of k, they are

learned to be related to the orientations and shapes of the blur

kernel, and thus able to adjust the SR features accordingly.

5. Conclusion

Blind SR is an important step towards generalizing

learning-based SR models for diverse types of degradations

and content of LR data. In order to achieve this goal, we

designed a downsampling network that predicts spatially-

variant kernels and an upsampling network that leverages

this information effectively, by applying these kernels as

local filtering operations to modulate the early SR features

based on the degradation information. As a result, our pro-

posed KOALAnet accurately predicts the HR images under a

randomized synthetic setting as well as for historic data. Fur-

thermore, we first analyzed the SR results on real aesthetic

photographs, for which our KOALAnet appropriately han-

dles the intentional blur unlike other methods or the Baseline.

Our code and data are publicly available on the web.
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