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Abstract

Despite the remarkable performance of deep models on

image recognition tasks, they are known to be suscepti-

ble to common corruptions such as blur, noise, and low-

resolution. Data augmentation is a conventional way to

build a robust model by considering these common corrup-

tions during the training. However, a naive data augmenta-

tion scheme may result in a non-specialized model for par-

ticular corruptions, as the model tends to learn the aver-

aged distribution among corruptions. To mitigate the issue,

we propose a new paradigm of training deep image recog-

nition networks that produce clean-like features from any

quality image via an invertible neural architecture. The pro-

posed method consists of two stages. In the first stage, we

train an invertible network with only clean images under the

recognition objective. In the second stage, its inversion, i.e.,

the invertible decoder, is attached to a new recognition net-

work and we train this encoder-decoder network using both

clean and corrupted images by considering recognition and

reconstruction objectives. Our two-stage scheme allows the

network to produce clean-like and robust features from any

quality images, by reconstructing their clean images via the

invertible decoder. We demonstrate the effectiveness of our

method on image classification and face recognition tasks.

1. Introduction

Deep learning models have shown remarkable perfor-

mance for image recognition (or classification) tasks, even

surpassing human-level performance [30, 41, 42, 17, 23, 4,

48, 22]. They typically assume high-quality (HQ) or clean

images for their training/testing, while such an assumption

may not hold in practice, e.g., images of various qualities

can be encountered in their applications [9]. Moreover,

deep models are known to be vulnerable to image distor-

tions such as noise, blur, JPEG, contrast, weather, and low-

resolution. On the other hand, the human visual system ro-

bustly extracts semantic information from such images due

to its generalization ability [14].
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Figure 1. Quality-agnostic learning scheme based on classifier-

decoder structure. We train an invertible classifier using a clas-

sification objective at the first stage. We use it as an invertible

decoder of the second stage by its inversion and freezing the pa-

rameters. A new classifier is trained with this frozen decoder using

HQ and LQ images at the second stage. As a result, the decoder

evokes HQ features from both HQ and LQ input images.

In practice, data augmentation is a conventional and prin-

cipled way to build models robust against various domains

or corruptions of data.1 For example, one can synthesize

LQ images by using degradation procedures, such as blur,

noise, and low-resolution, and then train a model using both

HQ and LQ images. One can also train a model using HQ

images, and then fine-tune it using both HQ and LQ im-

ages. However, training (or fine-tuning) with such diverse

characteristics of data may generate the averaged distribu-

tion among corruptions [47], such that it results in an under-

fitted (or poor) model for a particular type of data, e.g., HQ

images [14] or LQ images [44, 51, 10]. Indeed, learning a

better single neural network handling such various types is

a challenge to overcome.

To process various types of corruptions better, several

quality-aware deep models have been studied [11, 2, 50].

They introduce an additional network module per quality

type in order to handle multiple corruption types, and show

1In this paper, we primarily assume that types of corruption or LQ im-

ages in test data are known at training time. Hence, our work is orthogonal

to prior works building robust models without the assumption [20, 38, 19].
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promising results with respect to both HQ and LQ images.

However, as the number of corruption types increases, these

approaches may require a large number of resources during

the training and evaluation phases. Instead, we are inter-

ested in a more fundamental question: how to learn a single

and unified model with high HQ and LQ accuracy, without

using such additional quality-related modules?

To address the question, we propose a novel training

scheme to build such a quality-agnostic model, i.e., having

high performance on any input quality images. At a high

level, the proposed training scheme encourages any quality

images (even LQ) to have HQ-like features for the desired

quality-agnostic performance. To this end, we suggest an

additional training loss to reconstruct HQ images by using

features of LQ images via an auxiliary decoder. Namely,

we train the classification model using a multi-task learning

strategy on the original (e.g., classification) task and the re-

construction task. However, in our early experiments, we

found that training the classifier and the decoder in an end-

to-end manner from scratch is not that effective for our pur-

pose. This is because the additional reconstruction task may

obstruct the original classification learning as their effective

features may be different.

To effectively learn a classification model with the recon-

struction decoder, we propose a two-stage training scheme.

We first train a decoder with HQ images only, i.e., it takes

some features as input and reconstructs the original HQ im-

age as output. Then, we freeze the decoder and train a

classifier-decoder architecture with both HQ and LQ im-

ages using two losses for classification and reconstruction.

Under our scheme, LQ images are never fed to train the de-

coder. Hence, at the second stage, the classifier is encour-

aged to produce the features of LQ input images to be simi-

lar to those of HQ images by performing the reconstruction

task well. To design a beneficial decoder for our two-stage

strategy, we suggest training an invertible network under the

classification objective at the first stage and use its inversion

as a decoder of the second stage as shown in Fig. 1. As the

decoder is trained for the classification objective at the first

stage and is not updated at the second stage, the reconstruc-

tion task via the decoder can be regarded as a classification

task in a backward perspective. Therefore, it can mitigate

a potential conflict on our second multi-task learning stage.

Furthermore, the decoder can reconstruct HQ images only

from class-aware HQ features. Hence, under our training

scheme, the classifier can be penalized by the reconstruc-

tion loss if the classifier does not output class-aware HQ

features even in the case of LQ input images (see Fig. 2).

We demonstrate the superiority of our method under var-

ious tasks such as image classification and face recogni-

tion. Our extensive experiments show the effectiveness of

our method on various benchmarks such as ImageNet [5],

ImageNet-C [19], CFP-FP [39] and AgeDB-30 [34].

2. Related Works

Data augmentations and robustness. Data augmentation

is a scheme to improve model performance on various qual-

ity images. A variety of data augmentation strategies has

been studied to improve model robustness [20, 18, 13]. An-

other research line related to data augmentation attempts

to inject noise to input images (or patches) for improv-

ing model robustness to noise corruptions as well as other

types of corruptions [33, 38]. These data augmentation ap-

proaches assume that common corruptions or low-quality

images in test scenarios are unknown. As a result, this may

restrict performance improvement on the common corrup-

tions. On the other hand, we exploit these common corrup-

tion types during the training because many types of corrup-

tions are well-known and encountered in real-world scenar-

ios. Furthermore, our method is specialized to learn a single

model from those corruption types. Hence, it provides bet-

ter robustness to the common corruptions.

Quality-aware methods. There have been efforts to learn

a quality-resilient model. MixQualNet [11] presents a

method that uses the predictions of multiple quality-expert

networks. DeepCorrect [2] introduces additional units to

particularly correct activation outputs of corrupted images

so that their activation outputs are expected to be similar to

clean activation outputs. Auxiliary Training [50] introduces

auxiliary classifiers and selective batch normalization to ef-

fectively learn different types of corruptions. Each corrup-

tion type of input passes through its corresponding auxil-

iary classifier and batch normalization during the training.

In the next step, it uses the knowledge transfer between pri-

mary and auxiliary classifiers, so that it enables only the

use of primary classifier during the evaluation. Unlike re-

lying on the individual components (e.g., expert network,

correct unit, and auxiliary classifier) per corruption type,

our method exploits the invertible decoder which is shared

across all types of corruptions. In particular, our work cov-

ers 15 different corruption types [19] as a quality-agnostic

model whereas they consider two or three corruption types,

e.g., gaussian noise and blur during the training.

3. Quality-Agnostic Image Recognition via In-

vertible Decoder

In this section, we describe a new paradigm of train-

ing deep classification networks, that produces HQ-like fea-

tures from any quality input images via an invertible de-

coder. This decoder imitates the human ability to imagine

enhanced images of the same semantic information given

limited information from any quality images. First, we de-

scribe the conventional recognition task of our interest in

Section 3.1. Then, in Section 3.2, we introduce the neces-

sity of our key component, invertible decoder, designed to
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Figure 2. t-SNE feature visualization on the CIFAR-10 [29] validation set. (a) Naı̈ve data augmentation, (b) Feature-based knowledge

distillation [37], and (c) Proposed method. Note that we train CIFAR-10 with all classes and exhibit four classes of the validation set. The

LQ images (16x16 resolution) are generated by bicubic down-sampling of the HQ images (32x32 resolution). The colored symbols are

feature vectors, and the color of symbols denotes the corresponding class. The dark colors or “o” indicate HQ features, and light colors or

“x” indicate LQ features. The results of (c) show that an individual LQ feature converges to its corresponding HQ feature by our method.

facilitate the classifier to have the quality-agnostic perfor-

mance. The proposed method is summarized in Section 3.3.

Finally, we argue that our method substantially differs from

knowledge distillation methods in Section 3.4.

3.1. Preliminaries on image recognition

Consider a dataset D = {(x, y)}, which consists of high-

quality (e.g., clean or high-resolution) image x 2 X and its

corresponding label (or class) y 2 Y = {1, 2, . . . , c}. We

also let D̃ = {(x̃, y)} denote an image dataset of various

low-qualities, where low-quality images can be obtained by

augmenting from the high-quality dataset D. Formally, one

can write the relation between high-quality (HQ) and low-

quality (LQ) images by

x̃ = '(x). (1)

where ' is a corruption or down-sampling operation in the

set of functions Φ = {'1,'2, . . . ,'k}. In general, the

dataset D̃ can contain HQ images as 'k can be the iden-

tity function (xi = 'k(xi)). We are interested in learn-

ing robust and accurate model parameterized by {✓, w} that

outputs a final feature map fθ(x̃) 2 R
d and a classifica-

tion score wTH(fθ(x̃)) 2 R
c, where H is a feature vector

extractor (e.g., global average pooling). The model param-

eters ✓, w can be jointly found by minimizing the following

softmax loss:

Lsoftmax(✓, w; D̃) =
1

|D̃|

X

(x̃,y)∈D̃

log
ew

T
y H(fθ(x̃))

P
y∈Y

ew
T
y H(fθ(x̃))

.

(2)

3.2. Key ideas: training with pre-trained decoder

When one trains a model with both HQ and LQ images

by using (2) from scratch, several studies show that accu-

racy on HQ images is often decreased [50, 47]. This is

because it is difficult to train diverse types of quality im-

ages in a single model, e.g., see Fig. 2 (a). To tackle this

issue, one naı̈ve solution is to use several specialized mod-

els in order to maximize performance on various types of

quality images, e.g., a deep neural network trained with a

single distortion alone (a specialized model) consistently

outperforms humans under i.i.d train/test conditions [14].

However, maintaining several specialized networks leads to

a large number of resources, and requires accurate quality

assessment for a given image: a certain type specialized net-

work gives a poor performance on other types [14]. We are

interested in incorporating these specialized models into a

single and unified model. Namely, we aim to learn a single

model that has high performance on various types of quality

images, comparable to those of the specialized models.

To this end, we consider the following two-stage train-

ing scheme. We train a specialized model fψ (parameter-

ized by  ) with only HQ images at the first stage. Then, we

train a target classifier fθ (parameterized by ✓) with both

HQ and LQ images by using the knowledge of HQ spe-

cialized model fψ . Namely, for training fθ, we consider

an additional loss (similar to one of knowledge distillation

methods, i.e., FitNet [37]) to minimize the distance between

the features in the two models as follows:

Lquality(✓; D̃) =
1

|D̃|

X

(x̃,y)∈D̃

d(fψ(x), fθ(x̃)), (3)

where x is the HQ image corresponding to an any qual-

ity image x̃ (e.g., HQ or LQ image) and d is some dis-

tance (or divergence) in the feature space, e.g., the `1 loss

kfψ(x) � fθ(x̃)k1. Our intuition here is that the perfor-

mance of the target classifier fθ on any quality image x̃
becomes comparable to that of the specialized model fψ
on HQ images, by minimizing (3). However, in our ex-

periments, we found that minimizing the quality loss (3)

by using `1 or `2 distance is not effective for our purpose:

a relevant feature-level distance metric should be carefully

designed for the effective transfer.

To tackle the challenge, we assume that fψ is invertible

and use its inversion f−1
ψ : Rd ! X as an invertible de-

coder. Then, we suggest using the following loss consider-
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Figure 3. Illustration of (a) Injective property and (b) Non-injective

property. The injective decoder ensures one-to-one mapping from

features to images, such that the features are the same if their re-

constructed images are identical.

ing a distance in the image domain:

Lquality(✓; D̃) =
1

|D̃|

X

(x̃,y)∈D̃

kx� f−1
ψ (fθ(x̃))k1, (4)

where x is the HQ image corresponding to an any quality

image x̃ (e.g., HQ or LQ image). Note that the decoder pa-

rameter is already trained at the earlier stage and is not up-

dated by (4). We highlight that all pixels have the same role

and dynamic range in the image domain, whereas each fea-

ture dimension has a different dynamic range and some of

the dimensions may be redundant. Therefore, considering a

distance (such as `1) in the image domain is more relevant

than doing it in the feature domain. This will be more dis-

cussed in Section 3.4. From the perspective of the decoder

f−1
ψ , it reconstructs HQ images only from class-aware HQ

features. Hence, minimizing the loss (4) enforces the clas-

sifier fθ to output class-aware HQ features even though LQ

input images are given, as in Fig. 2 (c).

We remark that our invertible decoder has injective prop-

erty. This property ensures 1:1 mapping from features to

images as shown in Fig. 3 (a). By the property of 1:1 map-

ping, an HQ image can be only mapped to an HQ feature so

that the target classifier is encouraged to generate an HQ-

like feature from any quality input image. On the other

hand, a non-injective decoder is able to map from differ-

ent features to the same image (N:1 mapping) as shown in

Fig. 3 (b). Hence, some features mapping to an HQ image

may not be HQ-like features although one minimizes (4).

3.3. Quality-agnostic learning

We are now ready to present all the implementation

details of our framework. Our method is based on the

classifier-decoder architecture as shown in Fig. 1. We em-

ploy the existing backbone networks (i.e., ResNet50 [17])

as a target classifier. We adopt i-RevNet300 [25] as an in-

vertible decoder, whose performance is comparable to that

of ResNet50. To connect the classifier to the decoder, we

introduce an additional 3x3 convolution. For more imple-

mentation detail, we present it in Appendix A.

To learn a quality-agnostic single classifier fθ, the invert-

ible decoder f−1
ψ is required in advance. In the first stage,

Algorithm 1 Quality-Agnostic Learning

Input: Training set D = {(xi, yi)}
Require: Invertible Classifier fψ , Class Weight w
while not converged do

Sample a mini-batch {xi, yi}
n
i=1

zi  fψ(xi)
Lstage1  Lsoftmax(zi, yi, w)
Optimize the parameters of  , w by Lstage1

end while

Input: Training set D = {(xi, yi)}
Require: Classifier fθ, Class Weight w
Require: Frozen Decoder f−1

ψ

while not converged do

Sample a mini-batch {xi, yi}
n
i=1

Synthesize a corrupted mini-batch {x̃i, yi}
n
i=1

z̃i  fθ(x̃i)
x̂i  f−1

ψ (z̃i)
Lstage2  Lsoftmax(z̃i, yi, w) + �Lquality(x̂i, xi)
Optimize the parameters of ✓, w by Lstage2

end while

we obtain the decoder f−1
ψ by training its inverse network

fψ with HQ images by minimizing the following loss:

Lstage1( , w;D) = Lsoftmax( , w;D). (5)

In the second stage, we form a classifier-decoder structure.

The classifier fθ is randomly initialized. The decoder f−1
ψ

is transferred from the first stage and is frozen. With the

frozen decoder f−1
ψ , we optimize a quality-agnostic classi-

fier fθ with HQ and LQ images from scratch by using the

following multi-task learning loss:

Lstage2(✓, w; D̃)

= Lsoftmax(✓, w; D̃) + � · Lquality(✓; D̃)
(6)

where � > 0 is a hyper-parameter. Although the decoder is

used in the training phase, it is discarded at the evaluation

phase. Hence, no additional inference cost is required.

In essence, the multi-task learning strategy may cause the

conflict between the classification task and the reconstruc-

tion task due to the effect of negative transfer to each other.

As the decoder is trained by the classification objective at

the first stage and is no longer updated at the second stage,

the reconstruction task minimizing (4) is viewed as the so-

called classification task in a backward perspective. This

mitigates the potential conflict on our multi-task learning at

the second stage.

In summary, the proposed scheme is based on the two-

stage learning framework using an invertible decoder and

provides high performance on various types of quality im-

ages using a single model, comparable to that of each

quality-specialized network. We describe the entire train-

ing procedure of our method in Algorithm 1.
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3.4. Comparison to knowledge distillation methods

Most knowledge distillation (KD) methods including (3)

are based on feature-level matching in their own ways [37,

36, 1, 43]. In the feature-based KD methods, it is hard to

know which features (or channels) contribute to corruption

components and how to minimize them for our purpose. In-

stead, we propose an image-based matching loss (4) utiliz-

ing an invertible decoder, where it is clear how pixels con-

tribute to image corruption. Hence, this aspect allows our

method to semantically minimize corruption components of

individual pixels for generating HQ-like features. As shown

in Fig. 2, we visualize the feature distributions on naı̈ve aug-

mentation, simple feature-based KD (3) and our method (4).

In the feature-based KD as shown in Fig. 2 (b), HQ features

appear to move toward LQ features by the constraint (3)

when compared with naı̈ve augmentation as shown in Fig. 2

(a). This results in no improvement on inter-class separabil-

ity. On the other hand, LQ features converge to individual

HQ features in our method as shown in Fig. 2 (c) so that

inter-class separability is improved.

4. Experiments

4.1. Experimental setup

Common corruptions and evaluations. A common cor-

ruption evaluation dataset (e.g., ImageNet-C [19]) has

been released to assess robustness of neural networks

in image classification [19]. The ImageNet-C con-

sists of 15 corruption types (gaussian/shot/impulse noise,

glass/motion/defocus/zoom blur, contrast, elastic, JPEG,

pixelate, frost, fog, snow, and brightness) as test corrup-

tions and 4 corruption types (speckle noise, gaussian blur,

spatter, and saturate) as holdout corruptions. Each corrup-

tion type contains five severity levels. Each corruption error

(CE) is computed over five severity levels, that is CEc =P5
s=1 Ec,s/

P5
s=1 E

AlexNet
c,s . It represents a relative perfor-

mance of the target model compared with AlexNet model.

To measure total corruption errors, Mean Corruption Error

(mCE) (%) is typically used. The mCE is the average of

15 test corruption errors (CEs), that is mCE = 1
15

P15
c=1 CEc.

For image classification tasks, we compute the mCE (%)

as a metric of seen corruptions. Meanwhile, we calculate

each average accuracy (%) of holdout corruptions over five

severity levels as a metric of unseen corruptions. On the

other hand, the assessment of face recognition tasks is done

by measuring accuracy (%) based on the results calculated

by cosine distance between given positive/negative features.

Image classification. We train several network ar-

chitectures such as ResNet18 [17], ResNet50 [17] and

ResNeXt101 [48] with ImageNet-1K [5]. Since our method

can be adopted to those backbone networks, we refer to our

methods as QualNet18, QualNet50 and QualNeXt101, re-

spectively. To produce better clean accuracy of QualNet, we

make a fine-tuning version of our methods as QualNet18*

and QualNet50*, where QualNet18* and QualNet50* are

fine-tuned from a pre-trained clean classifier2 (unlike Qual-

Net that are trained from scratch). We make a 200-class

version of ImageNet-1K train/validation set and ImageNet-

C for ablation study. Here, 200 classes of ImageNet-200

are drawn from those of Tiny-ImageNet [46]. We train with

ImageNet-1K up to 90 epochs. The initial learning rate is

set to 0.1 and it is divided by 10 at the 30th and 60th epochs.

The batch size is set to 256.

Face recognition. In face recognition tasks, it would be

challenging to learn a large-margin discriminative features

via an invertible classifier in the first stage. To tackle the

challenge, we suggest using the encoder-decoder structure

in both stages as shown in Fig. D.1 in Appendix. This struc-

ture allows for training the classifier with large angular-

margin and the decoder that reconstructs only from the

large-margin features (see Appendix D for more detail).

This modified architecture is referred to as QualNet50-LM.

We train LResNet50A-IR [6] for CASIA-Webface training

dataset [12]. The CASIA-Webface contains 0.49M face im-

ages collected from 10K subjects. The training dataset is

cropped to 112x112 by a face detector, MTCNN [49]. We

use CosFace [45] as an angular-margin softmax loss since it

gives the best performance in our experiments. The initial

learning rate is set to 0.1 and it is divided by 10 at the 18Kth,

28Kth, 36Kth and 44Kth iterations. The training is complete

at the 47Kth iteration. The batch size is set to 256.

Methods. Naı̈ve augmentation is a technique that syn-

thesizes corrupted/low-resolution images from the original

ones, and then trains with original and augmented ones.

A specialized network is a method that trains and tests

a certain corruption/resolution type data under i.i.d con-

dition, which gives the performance guideline of a cer-

tain type [14]. For the target classifier, we remove max-

pooling and replace the first convolution of stride 1 be-

hind max-pooling with the convolution of stride 2, which

produces slightly better performance on corrupted images.

We use the modified architectures as default. We use

50% clean/high-resolution images and 50% corrupted/low-

resolution images during the training unless otherwise spec-

ified. The corrupted images are uniformly sampled from 15

corruption types with five severity levels. For resolution-

agnostic face recognition, the low-resolution images are

also uniformly sampled from three resolution types. We

use the hyperparameter of QualNet as � = 0.1 and Cos-

Face [45] as s = 30,m = 0.25 unless otherwise specified.

For the knowledge distillation methods [21, 37, 36, 1, 43],

the reported hyperparameters are used. In ablation study,

we use the hyperparameter of QualNet as � = 0.6.

2The pre-trained clean classifier is trained with clean images using the

frozen invertible decoder.
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Methods Architecture
Gaussian

Noise " (%)

Gaussian

Blur " (%)

DeepCorrect [2]
ResNet18

60.33 58.21
QualNet18 (ours) 60.52 61.05

Methods Architecture Clean " (%) mCE # (%)

AuxTraining [50]

ResNet18

69.94 78.86
QualNet18 (ours) 68.44 74.98
QualNet18* (ours) 70.16 73.75

Naı̈ve Augmentation

ResNet50

74.88 52.35
Original KD [21] 73.92 56.73
KD FitNet [37] 74.75 52.73
KD PKT [36] 75.29 53.33
KD VID [1] 74.85 51.29
KD SP [43] 74.93 53.34

QualNet50 (ours) 75.30 50.60

Table 1. Comparison results against related works. We train with

ImageNet-1K [5] and evaluate ImageNet-1K validation set and

ImageNet-C [19]. “Clean” indicates Top-1 clean accuracy (%).

“mCE” shows the performance (%) over 15 corruption types (less

is better). Note that gaussian blur and noise are the average accu-

racy (%). “*” denotes the fine-tuning version of our method. The

best results are indicated in bold.

4.2. Quality-agnostic image classification

Comparison to quality-aware methods. This experiment

aims to show the performance improvement compared to

the quality-aware methods. The baselines are chosen as

DeepCorrect [2] and AuxTraining [50]. To fairly compare

with DeepCorrect and AuxTraining, we follow the exper-

imental setup of their literature. To compare with Deep-

Correct, we follow the evaluation protocol of its literature

where accuracy (%) of gaussian noise and blur is computed

by averaging the accuracy of seven levels (including clean).

We measure a Top-1 clean accuracy (%) and mCE (%) over

15 corruption types of ImageNet-C [19] in order to com-

pare against AuxTraining. As shown in Table 1, our method

provides better performance than the quality-aware meth-

ods. In particular, our method improves the accuracy of

gaussian noise from 60.33% to 60.52%, and gaussian blur

from 58.21% to 61.05%, compared to DeepCorrect. Fur-

thermore, our method can be extended to a version of 15

corruption types without any additional modules, whereas

those quality-aware methods require an additional module

per corruption type. Even if they can add modules, they do

not guarantee performance improvement over diverse cor-

ruption types.

Comparison to knowledge distillation methods. Since

our method can be interpreted as a knowledge distillation

method in the image domain, we investigate whether our

method yields better performance than other knowledge dis-

tillation methods [21, 37, 36, 1, 43] under the same knowl-

edge. Namely, we use our invertible classifier trained at

the first stage as a teacher network. Note that KD Fit-

Methods Architecture Clean " (%) mCE # (%)

Vanilla

ResNet18

70.33 87.10
Naı̈ve Augmentation 67.88 63.66

QualNet18 (ours) 68.42 61.66
QualNet18* (ours) 69.91 60.31

Vanilla

ResNet50

76.28 78.20
Naı̈ve Augmentation 74.88 52.35

QualNet50 (ours) 75.30 50.60

QualNet50* (ours) 76.74 51.33
Vanilla

ResNeXt101

-32x8d

79.64 69.84
Naı̈ve Augmentation 79.55 43.38
QualNeXt101 (ours) 79.84 42.50

Table 2. Comparison results over several network architectures.

We train with ImageNet-1K [5] and evaluate ImageNet-1K vali-

dation set and ImageNet-C [19]. “Clean” indicates Top-1 clean

accuracy (%). “mCE” shows the performance (%) over 15 corrup-

tion types (less is better). “*” denotes the fine-tuning version of

our method. The best results are indicated in bold.

Net [37] is implemented by using (3). We measure a Top-1

clean accuracy (%) and mCE (%) over 15 corruption types

of ImageNet-C [19]. As shown in Table 1, we found that

the knowledge distillation methods are not beneficial to im-

prove performance when compared to the naı̈ve augmenta-

tion. As discussed in Section 3.4, most knowledge distilla-

tion methods are not effective to generate HQ-like features

as in Figure 2. They rely on feature-level matching in dif-

ferent ways and their HQ features are prone to become LQ

features, which is opposed to our purpose. Therefore, they

are limited to improve performance as reported in Table 1.

Quality-agnostic models. We investigate our method

to show the consistency of performance improvement

across several network architectures such as ResNet18 [17],

ResNet50 [17] and ResNeXt101-32x8d [48]. Once our de-

coder is trained at the first stage, it can easily be connected

to any classifier architectures at the second stage. In the ex-

periments, we choose a vanilla model (trained with clean

images only) and naı̈ve data augmentation model (trained

with clean and corrupted images) as baselines. As reported

in Table 2, our method provides further performance im-

provement in both clean and corruption types over vari-

ous network architectures, compared with its counterpart

(naı̈ve augmentation). In particular, our method achieves

the mCE from 63.66% to 61.66% and clean accuracy from

67.88% to 68.42%, compared to the naı̈ve augmentation

for ResNet18. Nevertheless, the QualNet18/50 underper-

form the corresponding vanilla models with respect to the

clean accuracy. We believe that the network capacity of

ResNet18/50 may be insufficient to train diverse quality

types from scratch, but sufficient to train with clean images

only (vanilla model). As a result, QualNet18/50 may learn

a deficient model on clean type. On the other hand, the per-

formance of 79.84% (clean accuracy) and 42.50% (mCE)

for QualNeXt101 is better than that of the corresponding

vanilla (79.64%) and naı̈ve augmentation (43.38%) since
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Methods

Top-1 Accuracy (%)

Spatter Saturate
Speckle Gaussian

Noise Blur

Vanilla 58.11 65.92 44.88 44.75
Naı̈ve Augmentation 61.28 68.15 63.13 55.73
QualNeXt101 (ours) 62.48 69.19 64.21 57.24

AugMix [20] 53.27 61.48 50.61 47.22
ANT [38] 52.41 61.30 58.15 43.10

QualNet50 (ours) 54.04 62.28 63.13 50.54

Table 3. Accuracy (%) on unseen corruption types. We train

ResNeXt101-32x8d [48] for the upper three methods. The lower

three methods are based on ResNet50 [17]. We use ImageNet-

1K [5] as a training set. The best results are indicated in bold.

the network capacity is large enough. To further improve

clean accuracy for QualNet18 and QualNet50, we conduct

our fine-tuning version (QualNet18* and QualNet50*) as

described in Section 4.1. We achieve the clean accuracy

of QualNet50* (76.74%) even better than that of the cor-

responding vanilla models (76.28%), but not in the case of

QualNet18* (see Table 2). This is due to the small network

capacity of ResNet18 to learn diverse quality images in a

single model.

4.3. Model robustness

Robustness to unforeseen corruptions. Adversarial Noise

Training (ANT) [38] demonstrated that noise corruptions

help increase the robustness to other common corruption

types. This means that we can achieve better generaliza-

tion to unforeseen corruption types by augmenting diverse

quality images during the training as in [20, 38, 18]. Basi-

cally, our framework encourages a model to be effectively

learned with various quality images, such that we can also

expect that it achieves further performance improvement

with respect to unforeseen corruption types. To confirm

this, we evaluate performance on unforeseen corruption

types such as spatter, saturate, speckle noise, and gaussian

blur in ImageNet-C benchmark [19]. We use ResNeXt101-

32x8d as a classifier in this experiment. As shown in the

upper side of Table 3, the naı̈ve data augmentation results

in better robustness than the vanilla model (trained with

clean only). This implies that data augmentation with var-

ious corruption types helps improve the robustness. We

also observe that our framework improves accuracy from

61.28% to 62.48% on spatter, 68.15% to 69.19% on satu-

rate, 63.13% to 64.21% on speckle noise, and 55.73% to

57.24% on gaussian blur, compared to the naı̈ve augmen-

tation. As a result, our framework contributes not only a

quality-agnostic (seen) model as discussed in Section 4.2

but also a well-generalized (unseen) model.

Comparison to other data augmentation methods. In

this experiment, we compare our method with the state-

of-the-art data augmentation methods such as AugMix [20]

and Adversarial Noise Training (ANT) [38] regarding the

robustness of unseen corruptions. We train our method

(QualNet50) with 15 corruption types and download the

released models (ResNet50) for AugMix and ANT meth-

ods to evaluate performance on unforeseen corruption types

such as spatter, saturate, speckle noise, and gaussian blur in

ImageNet-C benchmark [19]. As shown in the lower side of

Table 3, our method provides better accuracy of all unseen

corruption types than the other data augmentation methods.

Specifically, our method improves the performance from

50.61% to 63.13% on speckle noise, and 47.22% to 50.54%
on gaussian blur, 53.27% to 54.04% on spatter, and 61.48%
to 62.28% on saturate, compared to AugMix.

4.4. Resolution-agnostic face recognition

Comparison to specialized networks. The goal of this

experiment is to verify the performance of our method

that converges to those of the resolution-specialized mod-

els in face recognition tasks. The baselines are chosen as

resolution-specialized networks and naı̈ve data augmenta-

tion. In the training, we augment low-resolution images

such as 56x56, 28x28, and 14x14 from the original im-

ages 112x112 by using the nearest interpolation and then

up-sample those low-resolution images to the original size.

For evaluation on low-resolution face benchmarks, we gen-

erate low-resolution versions of CFP-FP [39] and AgeDB-

30 [34]. AgeDB-30 includes 6, 000 positive and negative

pairs of face images in age variations. CFP-FP contains

7, 000 positive and negative pairs of face images in the

frontal-profile configuration. Each specialized network of-

fers the performance guideline for a certain resolution [14],

which is referred to as target performances of our method.

As shown in Table 4, our method mostly achieves the indi-

vidual performance of the specialized models. Furthermore,

some of the results show the performance of our method

even better than that of the specialized networks. This is

valid to the condition that the model is well-trained with

augmented data since data augmentation helps improve per-

formance. On the other hand, the naı̈ve augmentation model

appears to be an underfitted model that discourages the per-

formance on some resolution types.

Robustness to realistic low-quality images. We have

demonstrated that our method is robust to seen corrupted

images and unseen corrupted images (both synthesized). In

practice, it is more important that the model is robust to real-

istic low-quality images. As discussed in Section 4.3, when

the model considers a diversity of known corruption types

in the training phase, one can naturally expect that it can

be also robust against unknown corruption types (not only

synthetic, but also realistic). To confirm this, we evaluate a

realistic low-resolution test dataset, e.g., TinyFace [3]. This

dataset is drawn from realistic low-resolution faces, not

synthesized by artificial down-sampling of high-resolution

images. To evaluate TinyFace test set, we use the mod-
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Methods
Training

Resolutions

Accuracy (%) on Test Resolutions

112x112 56x56 28x28 14x14

AgeDB-30 CFP-FP AgeDB-30 CFP-FP AgeDB-30 CFP-FP AgeDB-30 CFP-FP

Specialized Network

(Target Performance)

112x112 92.37 95.71 - - - - - -

56x56 - - 91.25 95.34 - - - -

28x28 - - - - 86.00 92.67 - -

14x14 - - - - - - 74.20 84.80
Naı̈ve Augmentation

All
90.32 (-2.05) 95.09 (-0.62) 89.82 (-1.43) 94.99 (-0.35) 85.85 (-0.15) 92.49 (-0.18) 72.48 (-1.75) 84.64 (-0.16)

QualNet50-LM (ours) 92.22 (-0.15) 96.24 (+0.53) 91.27 (+0.02) 95.81 (+0.47) 87.05 (+1.05) 93.03 (+0.36) 73.20 (-1.00) 84.51 (-0.29)

Table 4. Accuracy (%) on face benchmarks such as AgeDB-30 [34] and CFP-FP [39] in four resolution types. We train LResNet50A-

IR [6] with CASIA-Webface dataset [12] for all methods. We use the hyperparameter (λ = 1.0) of our method in this experiment. Each

specialized network is trained and tested with a certain resolution type, which provides the performance guideline on a certain resolution

type. Naı̈ve augmentation model and our method are trained with those resolution types in a single network. “QualNet50-LM” is different

from QualNet, which is described in Section 4.1. The performance difference between naı̈ve augmentation/ours and the corresponding

specialized network is denoted in brackets. The best results are indicated in bold.

Methods Resol. Rank-1 Rank-5 Rank-10

Specialized Network 112x112 24.46 32.64 36.48
Naı̈ve Augmentation All 32.97 40.91 44.31

QualNet50-LM (ours) All 35.54 44.45 47.42

Table 5. Open-set face identification results (%) on realistic cor-

ruption types. We evaluate a realistic low-quality dataset (Tiny-

Face [3]) with the models trained for Table 4. “Resol.” denotes the

training resolution. “QualNet50-LM” is described in Section 4.1.

The best results are indicated in bold.

els trained for Table 4 where the models are trained with

CASIA-WebFace [12]. The result is given in Table 5. Al-

though we use synthetic data augmentation during the train-

ing for naı̈ve augmentation model, it results in more robust

model to realistic corruptions (24.46% to 32.97% for Rank-

1 accuracy). Furthermore, we observe that QualNet50-LM

provides additional improvement from 32.97% to 35.54%
for Rank-1 accuracy. This accounts for the importance of

data augmentation for diverse image qualities as well as the

importance of its effective learning framework (ours).

4.5. Ablation study

In this section, we decompose our method into three main

modules: decoder, two-stage learning strategy, and invert-

ible attribute. We investigate what module significantly

contributes to performance improvement. According to

Table 6, no module means the naı̈ve data augmentation.

Adding a decoder represents the classifier-decoder archi-

tecture and we train it with HQ and LQ images in an end-

to-end manner. Adding a decoder and two-stage learning

means that the decoder is obtained by training an encoder-

decoder architecture with HQ images at the first stage,

and then we train a new classifier-decoder (transferred and

frozen) architecture with HQ and LQ images at the second

stage. Adding a decoder, two-stage learning and invertible

property represent our method (QualNet) where the invert-

ible decoder is obtained by training its inverse network (i.e.,

invertible classifier) with HQ images at the first stage, and

then we train a new classifier-decoder (frozen) architecture

with HQ and LQ images at the second stage. For all models,

With Decoder X X X

Two-Stage Learning X X

With Invertible Attribute X

Clean " (%) 80.45 78.68 81.81 82.33

Corruptions " (%) 70.82 69.91 71.64 72.30

Table 6. Ablation study on our modules. We train ResNet50 [17]

(classifier) with ImageNet-200 and evaluate 200-class versions of

ImageNet-1K validation set and ImageNet-C [19]. “Clean” and

“Corruptions” indicate Top-1 clean accuracy (%) and average ac-

curacy on 15 corruption types, respectively. The best results are

indicated in bold.

we augment 15 corruption types as described in Section 4.1

during the training. The results are shown in Table 6. Sim-

ply introducing the decoder to a classifier leads to lower per-

formance than its counterpart (naı̈ve augmentation) since

the additional reconstruction objective may obstruct to learn

class-aware features which is necessary for classification,

i.e., two tasks are in conflict. This explains the necessity of

the elaborated learning strategy under multi-task learning.

Namely, applying a two-stage learning strategy on top of

classifier-decoder architecture improves the accuracy from

78.68% to 81.81% for clean and 69.91% to 71.64% for cor-

ruptions as shown in Table 6. Furthermore, we observe

that adding the invertible attribute, i.e., using the inverse

of the invertible classifier as a decoder (QualNet), achieves

the best clean accuracy of 82.33% and corruption accuracy

of 72.30%. For more insights on our method, we perform

more ablation studies in Appendix C.

5. Conclusion

In this paper, we propose a new training framework to

produce high performance on any quality images. We train

our method with diverse corruption types and multiple res-

olution types, and demonstrate its effectiveness on various

benchmarks of image classification and face recognition.

We hope that our method will be extended to other appli-

cations such as adversarial robustness, masked face recog-

nition and low-level vision tasks.
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