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Abstract

Generative modeling of set-structured data, such as

point clouds, requires reasoning over local and global

structures at various scales. However, adopting multi-scale

frameworks for ordinary sequential data to a set-structured

data is nontrivial as it should be invariant to the permu-

tation of its elements. In this paper, we propose SetVAE,

a hierarchical variational autoencoder for sets. Motivated

by recent progress in set encoding, we build SetVAE upon

attentive modules that first partition the set and project

the partition back to the original cardinality. Exploiting

this module, our hierarchical VAE learns latent variables

at multiple scales, capturing coarse-to-fine dependency of

the set elements while achieving permutation invariance.

We evaluate our model on point cloud generation task and

achieve competitive performance to the prior arts with sub-

stantially smaller model capacity. We qualitatively demon-

strate that our model generalizes to unseen set sizes and

learns interesting subset relations without supervision. Our

implementation is available at https://github.com/

jw9730/setvae.

1. Introduction

There have been increasing demands in machine learning

for handling set-structured data (i.e., a group of unordered

instances). Examples of set-structured data include object

bounding boxes [19, 2], point clouds [1, 18], support sets

in the meta-learning [6], etc. While initial research mainly

focused on building neural network architectures to encode

sets [32, 17], generative models for sets have recently grown

popular [33, 16, 25, 30, 31].

A generative model for set-structured data should verify

the two essential requirements: (i) exchangeability, mean-

ing that a probability of a set instance is invariant to its

elements’ ordering, and (ii) handling variable cardinality,

meaning that a model should flexibly process sets with vari-

able cardinalities. These requirements pose a unique chal-
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Figure 1: Color-coded attention learned by SetVAE encoder

for three data instances of ShapeNet Airplane [3]. Level 1

shows attention at the most coarse scale. Level 2 and 3 show

attention at more fine-scales.

lenge in set generative modeling, as they prevent the adap-

tation of standard generative models for sequences or im-

ages [7, 12, 28, 27]. For instance, typical operations in these

models, such as convolution or recurrent operations, exploit

implicit ordering of elements (e.g., adjacency), thus break-

ing the exchangeability. Several works circumvented this

issue by imposing heuristic ordering [10, 5, 8, 22]. How-

ever, when applied to set-structured data, any ordering as-

sumed by a model imposes an unnecessary inductive bias

that might harm the generalization ability.

There are several existing works satisfying these require-

ments. Edwards et al., [4] proposed a simple generative

model encoding sets into latent variables, while other ap-

proaches build upon various generative models, such as

generative adversarial networks [18, 25], flow-based mod-

els [30, 13], and energy-based models [31]. All these works

define valid generative models for set-structured data, but

with some limitations. To achieve exchangeability, many

approaches process set elements independently [18, 30],
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Table 1: Summary of several set generative frameworks available to date. Our SetVAE jointly achieves desirable properties,

with the advantages of the VAE framework combined with our novel contributions.

Model Exchangeability
Variable

cardinality
Inter-element
dependency

Hierachical
latent structure

l-GAN [1] × × © ×

PC-GAN [18] © © × ×

PointFlow [30] © © × ×

EBP [31] © © © ×

SetVAE (ours) © © © ©

limiting the models in reflecting the interactions between

the elements during generation. Some approaches take the

inter-element dependency into account [25, 31], but have an

upper bound on the number of elements [25], or less scal-

able due to heavy computations [31]. More importantly,

existing models are less effective in capturing subset struc-

tures in sets presumably because they represent a set with

a single-level representation. For sets containing multiple

sub-objects or parts, it would be beneficial to allow a model

to have structured latent representations such as one ob-

tained via hierarchical latent variables.

In this paper, we propose SetVAE, a novel hierarchical

variational autoencoder (VAE) for sets. SetVAE models in-

teraction between set elements by adopting attention-based

Set Transformers [17] into the VAE framework, and extends

it to a hierarchy of latent variables [23, 26] to account for

flexible subset structures. By organizing latent variables at

each level as a latent set of fixed cardinality, SetVAE is able

to learn hierarchical multi-scale features that decompose a

set data in a coarse-to-fine manner (Figure 1) while achiev-

ing exchangeability and handling variable cardinality. In

addition, composing latent variables invariant to input’s car-

dinality allows our model to generalize to arbitrary cardinal-

ity unseen during training.

The contributions of this paper are as follows:

• We propose SetVAE, a novel hierarchical VAE for

sets with exchangeability and varying cardinality. To

the best of our knowledge, SetVAE is the first VAE

successfully applied for sets with arbitrary cardinal-

ity. SetVAE has a number of desirable properties com-

pared to previous works, as summarized in Table 1.

• Equipped with novel Attentive Bottleneck Layers

(ABLs), SetVAE is able to model the coarse-to-fine de-

pendency across the arbitrary number of set elements

using a hierarchy of latent variables.

• We conduct quantitative and qualitative evaluations of

SetVAE on generative modeling of point cloud in var-

ious datasets, and demonstrate better or competitive

performance in generation quality with less number of

parameters than the previous works.

2. Preliminaries

2.1. Permutation­Equivariant Set Generation

Denote a set as x = {xi}
n
i=1 ∈ Xn, where n is the

cardinality of the set and X represents the domain of each

element xi ∈ R
d. In this paper, we represent x as a matrix

x = [x1, ...,xn]
T ∈ R

n×d. Note that any operation on a

set should be invariant to the elementwise permutation and

satisfy the two constraints of permutation invariance and

permutation equivariance.

Definition 1. A function f : Xn → Y is permutation in-

variant iff for any permutation π(·), f(π(x)) = f(x).

Definition 2. A function f : Xn → Yn is permuta-

tion equivariant iff for any permutation π(·), f(π(x)) =
π(f(x)).

In the context of generative modeling, the notion of per-

mutation invariance translates into exchangeability, requir-

ing a joint distribution of the elements invariant with respect

to the permutation.

Definition 3. A distribution for a set of random variables

x = {xi}
n
i=1 is exchangeable if for any permutation π,

p(x) = p(π(x)).

An easy way to achieve exchangeability is to assume

each element to be i.i.d. and process a set of initial elements

z
(0) = {z

(0)
i }ni=1 independently sampled from p(z

(0)
i ) with

an elementwise function felem to get the x:

x = {xi}
n
i=1 where xi = felem(z

(0)
i ) (1)

However, assuming elementwise independence poses a

limit in modeling interactions between set elements. An

alternative direction is to process z
(0) with a permutation-

equivariant function fequiv to get the x:

x = {xi}
n
i=1 = fequiv({z

(0)
i }ni=1). (2)

We refer to this approach as the permutation-equivariant

generative framework. As the likelihood of x does not de-

pend on the order of its elements (because elements of z(0)

are i.i.d.), this approach achieves exchangeability.
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Figure 2: Illustration of Multihead Attention Block (MAB)

and Induced Set Attention Block (ISAB).

2.2. Permutation­Equivariant Set Encoding

To design permutation-equivariant operations over a set,

Set Transformer [17] provides attentive modules that model

pairwise interaction between set elements while preserving

invariance or equivariance. This section introduces two es-

sential modules in the Set Transformer.

First, Multihead Attention Block (MAB) takes the query

and value sets, Q ∈ R
nq×d and V ∈ R

nv×d, respectively,

and performs the following transformation (Figure 2a):

MAB(Q, V ) = LN(a+ FF(a)) ∈ R
nq×d, (3)

where a = LN(Q+ Multihead(Q, V, V )) ∈ R
nq×d, (4)

where FF denotes elementwise feedforward layer, Multi-

head denotes multi-head attention [29], and LN denotes

layer normalization [17]. Note that the output of Eq. (3)

is permutation equivariant to Q and permutation invariant

to V .

Based on MAB, Induced Set Attention Block (ISAB)

processes the input set x ∈ R
n×d using a smaller set of

inducing points I ∈ R
m×d (m < n) by (Figure 2b):

ISABm(x) = MAB(x,h) ∈ R
n×d, (5)

where h = MAB(I,x) ∈ R
m×d. (6)

The ISAB first transforms the input set x into h by attending

from I . The resulting h is a permutation invariant projection

of x to a lower cardinality m. Then, x again attends to h

to produce the output of n elements. As a result, ISAB is

permutation equivariant to x.

Property 1. In ISABm(x), h is permutation invariant to x.

Property 2. ISABm(x) is permutation equivariant to x.

3. Variational Autoencoders for Sets

The previous section suggests that there are two essen-

tial requirements for VAE for set-structured data: it should

be able to model the likelihood of sets (i) in arbitrary cardi-

nality and (ii) invariant to the permutation (i.e., exchange-

able). This section introduces our SetVAE objective that

satisfies the first requirement while achieving the second re-

quirement is discussed in Section 4.

The objective of VAE [15] is to learn a generative model

pθ(x, z) = pθ(z)pθ(x|z) for data x and latent variables

z. Since the true posterior is unknown, we approximate it

using the inference model qφ(z|x) and optimize the varia-

tional lower bound (ELBO) of the marginal likelihood p(x):

LVAE = Eqφ(z|x)[log pθ(x|z)]−KL (qφ(z|x)||pθ(z)) . (7)

Vanilla SetVAE When our data is a set x = {xi}
n
i=1,

Eq. (7) should be modified such that it can incorporate the

set of arbitrary cardinality n1. To this end, we propose to

decompose the latent variable z into the two independent

variables as z = {z(0), z(1)}. We define z
(0) = {z

(0)
i }ni=1

to be a set of initial elements, whose cardinality is always

the same as a data x. Then we model the generative process

as transforming z
(0) into a set x conditioned on the z

(1).

Given the independence assumption, the prior is fac-

torized by p(z) = p(z(0))p(z(1)). The prior on initial

set p(z(0)) is further decomposed into the cardinality and

element-wise distributions as:

p(z(0)) = p(n)

n
∏

i=1

p(z
(0)
i ). (8)

We model p(n) using the empirical distribution of the train-

ing data cardinality. We find that the choice of the prior

p(z
(0)
i ) is critical to the performance, and discuss its imple-

mentation in Section 4.2.

Similar to the prior, the approximate posterior is defined

as q(z|x) = q(z(0)|x)q(z(1)|x) and decomposed into:

q(z(0)|x) = q(n|x)
n
∏

i=1

q(z
(0)
i |x) (9)

We define q(n|x) = δ(n) as a delta function with n = |x|,

and set q(z
(0)
i |x) = p(z

(0)
i ) similar to [30, 16, 21]. The

resulting ELBO can be written as

LSVAE = Eq(z|x)[log p(x|z)]

− KL(q(z(0)|x)||p(z(0)))

− KL(q(z(1)|x)||p(z(1))). (10)

In the supplementary file, we show that the first KL diver-

gence in Eq. (10) is a constant and can be ignored in the op-

timization. During inference, we sample z
(0) by first sam-

pling the cardinality n ∼ p(n) then the n initial elements

independently from the prior p(z
(0)
i ).

1Without loss of generality, we use n to denote the cardinality of a set

but assume that the training data is composed of sets in various size.
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Hierarchical SetVAE To allow our model to learn a more

expressive latent structure of the data, we can extend the

vanilla SetVAE using hierarchical latent variables.

Specifically, we extend the plain latent variable z
(1) into

L disjoint groups {z(1), ..., z(L)}, and introduce a top-down

hierarchical dependency between z
(l) and {z(0), ..., z(l−1)}

for every l > 1. This leads to the modification in the prior

and approximate posterior to

p(z) = p(z(0))p(z(1))
∏

l>1

p(z(l)|z(<l)) (11)

q(z|x) = q(z(0)|x)q(z(1)|x)
∏

l>1

q(z(l)|z(<l),x). (12)

Applying Eq. (11) and (12) to Eq. (10), we can derive

the ELBO as

LHSVAE = Eq(z|x)[log p(x|z)]

− KL(q(z(0)|x)||p(z(0)))− KL(q(z(1)|x)||p(z(1)))

−
L
∑

l=2

Eq(z(<l)|x)KL(q(z(l)|z(<l),x)||p(z(l)|z(<l)). (13)

Hierarchical prior and posterior To model the prior and

approximate posterior in Eq. (11) and (12) with top-down

latent dependency, we employ the bidirectional inference in

[23]. We outline the formulations here and elaborate on the

computations in Section 4.

Each conditional p(z(l)|z(<l)) in the prior is modeled by

the factorized Gaussian, whose parameters are dependent

on the latent variables of the upper hierarchy z
(<l):

p(z(l)|z(<l)) = N
(

µl(z
(<l)), σl(z

(<l))
)

. (14)

Similarly, each conditional in the approximate posterior

q(z(l)|z(<l),x) is also modeled by the factorized Gaussian.

We use the residual parameterization in [26] which predicts

the parameters of the Gaussian using the displacement and

scaling factors (∆µ,∆σ) conditioned on z
(<l) and x:

q(z(l)|z(<l),x) = N (µl(z
(<l)) + ∆µl(z

(<l),x),

σl(z
(<l)) ·∆σl(z

(<l),x)). (15)

Invariance and equivariance We assume that the decod-

ing distribution p(x|z(0), z(1:L)) is equivariant to the per-

mutation of z(0) and invariant to the permutation of z(1:L)

since such model induces an exchangeable model:

p(π(x)) =

∫

p(π(x)|π(z(0)), z(1:L))p(π(z(0)))p(z(1:L))dz

=

∫

p(x|z(0), z(1:L))p(z(0))p(z(1:L))dz = p(x). (16)

We further assume that the approximate posterior distribu-

tions q(z(l)|z(<l),x) are invariant to the permutation of x.

In the following section, we describe how we implement the

encoder and decoder satisfying these criteria.

4. SetVAE Framework

We present the overall framework of the proposed Set-

VAE. Figure 3 illustrates an overview. SetVAE is based

on the bidirectional inference [23], which is composed of

the bottom-up encoder and top-down generator sharing the

same dependency structure. In this framework, the infer-

ence network forms the approximate posterior by merging

bottom-up information from data with the top-down infor-

mation from the generative prior. We construct the encoder

using a stack of ISABs in Section 2.2, and treat each of the

projected set h as a deterministic encoding of data.

Our generator is composed of a stack of special layers

called Attentive Bottleneck Layer (ABL), which extends the

ISAB in Section 2.2 with the stochastic interaction with the

latent variable. Specifically, ABL processes a set at each

layer of the generator as follows:

ABLm(x) = MAB(x, FF(z)) ∈ R
n×d (17)

with h = MAB(I,x) ∈ R
m×d, (18)

where FF denotes a feed-forward layer, and the latent vari-

able z is derived from the projection h. For generation (Fig-

ure 3a), we sample z from the prior in Eq. (14) by,

z ∼ N (µ, σ) where µ, σ = FF(h). (19)

For inference (Figure 3b), we sample z from the posterior

in Eq. (15) by,

z ∼ N (µ+∆µ, σ ·∆σ)

where ∆µ,∆σ = FF(h+ henc), (20)

where henc is obtained from the corresponding ISAB layer

of the bottom-up encoder. Following [23], we share the pa-

rameters between the generative and inference networks. A

detailed illustration of ABL is in the supplementary file.

To generate a set, we first sample the initial elements

z
(0) and the latent variable z

(1) from the prior p(z(0)) and

p(z(1)), respectively. Given these inputs, the generator iter-

atively samples the subsequent latent variables z(l) from the

prior p(z(l)|z(<l)) one by one at each layer of ABL, while

processing the set conditioned on the sampled latent vari-

able via Eq. (17). The data x is then decoded elementwise

from the final output.

4.1. Analysis

Modeling Exchangeable Likelihood The architecture of

SetVAE satisfies the invariance and equivariance criteria in

Section 3. This is, in part, achieved by producing latent vari-

ables from the projected sets of bottom-up ISAB and top-

down ABL. As the projected sets are permutation invariant

to input (Section 2), the latent variables z
(1:L) provide an

invariant representation of the data. Furthermore, due to
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Figure 3: The hierarchical SetVAE. Nprior denotes the prior

(Eq. (19)) and Npost denotes the posterior (Eq. (20)).

permutation equivariance of ISAB, the top-down stack of

ABLs produce an output equivariant to the initial set z(0).

This renders the decoding distribution p(x|z(0), z(1:L)) per-

mutation equivariant to z
(0). Consequently, the decoder of

SetVAE induces an exchangeable model.

Learning Coarse-to-Fine Dependency In SetVAE, both

the ISAB and ABL project the input set x of cardinality n

to the projected set h of cardinality m via multi-head atten-

tion (Eq. (6) and (18)). In the case of m < n, this projection

functions as a bottleneck to the cardinality. This allows the

model to encode some features of x into the h and discover

interesting subset dependencies across the set elements. De-

noting ml as the bottleneck cardinality at layer l (Figure 3),

we set ml < ml+1 to induce the model to discover coarse-

to-fine dependency of the set, such as object parts. Such

bottleneck also effectively reduces network size, allowing

our model to perform competitive or better than the prior

arts with less than 50% of their parameters. This coarse-to-

fine structure is a unique feature of SetVAE.

4.2. Implementation Details

This section discusses the implementation of SetVAE.

We leave comprehensive details on the supplementary file.

Multi-Modal Prior. Although a unimodal Gaussian is a

typical choice for the initial element distribution p(z
(0)
i )

[16, 30], we find that the model converges significantly

faster when we employ the multi-modal prior. We use a

mixture of Gaussians (MoG) with K components:

p(z
(0)
i ) =

K
∑

k=1

πkN (z
(0)
i ;µ

(0)
k , σ

(0)
k ). (21)

Likelihood. For the likelihood pθ(x|z), we may consider

a Gaussian distribution centered at the reconstruction. In

the case of point sets, we design the likelihood by

Lrecon(x) = − log pθ(x|z)

=
1

2
d(x, x̂) + const, (22)

where d(x, x̂) is the optimal matching distance defined as

d(x, x̂) = min
π

∑

i

‖xi − x̂π(i)‖
2
2. (23)

In other words, we measure the likelihood with the Gaus-

sian at optimally permuted x, and thus maximizing this

likelihood is equivalent to minimizing the optimal matching

distance between the data and the reconstruction. Unfortu-

nately, directly maximizing this likelihood requires O(n3)
computation due to the matching. Instead, we choose the

Chamfer Distance (CD) as a proxy reconstruction loss,

Lrecon(x) = CD(x, x̂)

=
∑

i

min
j

‖xi − x̂j‖
2
2 +

∑

j

min
i

‖xi − x̂j‖
2
2. (24)

The CD may not admit a direct interpretation as a nega-

tive log-likelihood of pθ(x|z), but shares the optimum with

the matching distance having a proper interpretation. By

employing the CD for the reconstruction loss, we learn the

VAE with a surrogate for the likelihood pθ(x|z). CD re-

quires O(n2) computation time, so is scalable to the mod-

erately large sets. Note also that the CD should be scaled

appropriately to match the likelihood induced by optimal

matching distance. We implicitly account for this by apply-

ing weights to KL divergence in our final objective function:

LHSVAE(x) = Lrecon(x) + βLKL(x), (25)

where LKL(x) is the KL divergence in Eq. (13).

5. Related Work

Set generative modeling. SetVAE is closely related to re-

cent works on permutation-equivariant set prediction [33,

16, 2, 21, 20]. Closest to our approach is the autoencoding

TSPN [16] that uses a stack of ISABs [17] to predict a set

from randomly initialized elements. However, TSPN does

not allow sampling, as it uses a pooling-based determinis-

tic set encoding (FSPool) [34] for reconstruction. SetVAE

instead discards FSPool and access projected sets in ISAB

directly, which allows an efficient variational inference and

a direct extension to hierarchical multi-scale latent.

Our approach differs from previous generative models

treating each element i.i.d. and processing a random ini-

tial set with an elementwise function [4, 30, 13]. Notably,

PointFlow [30] uses a continuous normalizing flow (CNF)

to process a 3D Gaussian point cloud into an object. How-

ever, assuming elementwise independence could pose a
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Table 2: Comparison against the state-of-the-art generative models. ↑: the higher the better. ↓: the lower the better. The best

scores are highlighted in bold. MMD-CD is scaled by 103, and MMD-EMD by 102.

# Parameters (M) MMD(↓) COV(%,↑) 1-NNA(%,↓)

Category Model Full Gen CD EMD CD EMD CD EMD

Airplane

l-GAN (CD)[30] 1.97 1.71 0.239 4.27 43.21 21.23 86.30 97.28

l-GAN (EMD)[30] 1.97 1.71 0.269 3.29 47.90 50.62 87.65 85.68

PC-GAN[30] 9.14 1.52 0.287 3.57 36.46 40.94 94.35 92.32

PointFlow[30] 1.61 1.06 0.217 3.24 46.91 48.40 75.68 75.06

SetVAE (Ours) 0.75 0.39 0.199 3.07 43.45 44.93 75.31 77.65

Training set - - 0.226 3.08 42.72 49.14 70.62 67.53

Chair

l-GAN (CD)[30] 1.97 1.71 2.46 8.91 41.39 25.68 64.43 85.27

l-GAN (EMD)[30] 1.97 1.71 2.61 7.85 40.79 41.69 64.73 65.56

PC-GAN[30] 9.14 1.52 2.75 8.20 36.50 38.98 76.03 78.37

PointFlow[30] 1.61 1.06 2.42 7.87 46.83 46.98 60.88 59.89

SetVAE (Ours) 0.75 0.39 2.55 7.82 46.98 45.01 58.76 61.48

Training set - - 1.92 7.38 57.25 55.44 59.67 58.46

Car

l-GAN (CD)[30] 1.97 1.71 1.55 6.25 38.64 18.47 63.07 88.07

l-GAN (EMD)[30] 1.97 1.71 1.48 5.43 39.20 39.77 69.74 68.32

PC-GAN[30] 9.14 1.52 1.12 5.83 23.56 30.29 92.19 90.87

PointFlow[30] 1.61 1.06 0.91 5.22 44.03 46.59 60.65 62.36

SetVAE (Ours) 0.75 0.39 0.88 5.05 48.58 44.60 59.66 63.35

Training set - - 1.03 5.33 48.30 51.42 57.39 53.27

limit in modeling complex element interactions. Also, CNF

requires the invertibility of the generative model, which

could further limit its expressiveness. SetVAE resolves

this problem by adopting permutation equivariant ISAB that

models inter-element interactions via attention, and a hier-

archical VAE framework with flexible latent dependency.

Contrary to previous works specifically designed for a

certain type of set-structured data (e.g., point cloud [1, 18,

30]), we emphasize that SetVAE can be trivially applied to

arbitrary set-structured data. We demonstrate this by apply-

ing SetVAE to the generation of a scene layout represented

by a set of object bounding boxes.

Hierarchical VAE. Our model is built upon the prior

works on hierarchical VAEs for images [11], such as

Ladder-VAE [23], IAF-VAE [14], and NVAE [26]. To

model long-range pixel correlations in images, these mod-

els organize latent variables at each hierarchy as images

while gradually increasing their resolution via upsampling.

However, the requirement for permutation equivariance has

prevented applying multi-scale approaches to sets. ABLs

in SetVAE solve this problem by defining latent variables

in the projected scales of each hierarchy.

Airplane

Chair

Car

PointFlowSetVAE (Ours)

Figure 4: Examples of randomly generated point sets from

SetVAE (ours) and PointFlow in ShapeNet.

6. Experiments

6.1. Experimental Setup

Dataset We examine SetVAE using ShapeNet [3], Set-

MNIST [33], and Set-MultiMNIST [5] datasets. For

ShapeNet, we follow the prior work using 2048 points sam-

pled uniformly from the mesh surface [30]. For Set-MNIST,

we binarized the images in MNIST and scaled the coordi-

nates to [0, 1] [16]. Similarly, we build Set-MultiMNIST

using 64 × 64 images of MultiMNIST [5] with two digits

randomly located without overlap.
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Airplane

Chair

100 500 2048 3000 10000

Car

MNIST

Multi-
MNIST

Figure 5: Samples from SetVAE for different cardinalities.

At each row, the hierarchical latent variables are fixed and

the initial set is re-sampled with different cardinality.

SetVAE
(Ours)

PointFlow

2048 100k

Figure 6: Samples from SetVAE and PointFlow in a high

cardinality setting. Only the initial sets are re-sampled.

Evaluation Metrics For evaluation in ShapeNet, we

compare the standard metrics including Minimum Match-

ing Distance (MMD), Coverage (COV), and 1-Nearest

Neighbor Accuracy (1-NNA), where the similarity between

point clouds are computed with Chamfer Distance (CD)

(Eq. (24)), and Earth Mover’s Distance (EMD) based on

optimal matching. The details are in the supplementary file.

6.2. Comparison to Other Methods

We compare SetVAE with the state-of-the-art genera-

tive models for point clouds including l-GAN [1], PC-

GAN [18], and PointFlow [30]. Following these works, we

train our model for each category of airplane, chair, and car.

Table 2 summarizes the evaluation result. SetVAE

achieves better or competitive performance to the prior arts

using a much smaller number of parameters (8% to 45%
of competitors). Notably, SetVAE often outperforms Point-

Flow with a substantial margin in terms of minimum match-

ing distance (MMD) and has better or comparable cover-

age (COV) and 1-NNA. Lower MMD indicates that SetVAE

generates high-fidelity samples, and high COV and low 1-

NNA indicate that SetVAE generates diverse samples cov-

ering various modes in data. Together, the results indicate

that SetVAE generates realistic, high-quality point sets. No-

tably, we find that SetVAE trained with CD (Eq. (24)) gen-

eralizes well to EMD-based metrics than l-GAN.

We also observe that SetVAE is significantly faster than

Multi-
MNIST

Airplane

Chair

Encoder Attention Generator Attention

Figure 7: Attention visualization at a selected layer. Each

point is color-coded by its assignment based on attention.

PointFlow in both training (56× speedup; 0.20s vs. 11.2s)

and testing (68× speedup; 0.052s vs. 3.52s)2. It is because

PointFlow requires a costly ODE solver for both training

and inference, and has much more parameters.

Figure 4 illustrates qualitative comparisons. Compared

to PointFlow, we observe that SetVAE generates sharper

details, especially in small object parts such as wings and

engines of an airplane or wheels of a car. We conjecture

that this is because our model generates samples consid-

ering inter-element dependency while capturing shapes in

various granularities via a hierarchical latent structure.

6.3. Internal Analysis

Cardinality disentanglement Ideally, a generative

model for sets should be able to disentangle the cardinality

of a set from the rest of the generative factors (e.g., struc-

ture, style). SetVAE partly achieves this by decomposing

the latent variables into the initial set z(0) and the hierar-

chical latent variables z(1:L). To validate this, we generate

samples by changing the initial set’s cardinality while

fixing the rest. Figure 5 illustrates the result. We observe

that SetVAE generates samples having consistent global

structure with a varying number of elements. Surprisingly,

it even generalizes well to the cardinalities not seen during

training. For instance, the model generalizes to any

cardinality between 100 and 10,000, although it is trained

with only 2048 points in ShapeNet and less than 250 points

in Set-MNIST. It shows that SetVAE disentangles the

cardinality from the factors characterizing an object.

We compare SetVAE to PointFlow in extremely high car-

dinality setting (100k points) in Figure 6. Although Point-

Flow innately disentangles cardinality by modeling each

element independently, we observe that it tends to gener-

ate noisy, blurry boundaries in large cardinality settings.

In contrast, SetVAE retains the sharpness of the structure

even for extreme cardinality, presumably because it consid-

ers inter-element dependency in the generation process.

2Measured on a single GTX 1080ti with a batch size of 16.
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Level 2
(4 IPs)

Level 3
(8 IPs)

Level 1
(2 IPs)

CarAirplane Chair

Figure 8: Visualization of encoder attention across multiple

layers. IP notes the number of inducing points at each level.

See the supplementary file for more results.

Figure 9: Layer-wise classification results using the hierar-

chical latent variables in Set-MultiMNIST dataset.

Discovering coarse-to-fine dependency SetVAE discov-

ers interesting subset structures via hierarchical bottlenecks

in ISAB and ABL. To demonstrate this, we visualize the en-

coder attention (Eq. (6)) and generator attention (Eq. (18))

in Figure 7, where each point is color-coded based on its

hard assignment to one of m inducing points3. We observe

that SetVAE attends to semantically interesting parts con-

sistently across samples, such as wings and engines of an

airplane, legs and backs of a chair, and even different in-

stances of multiple digits.

Figure 8 illustrates the point-wise attention across levels.

We observe that the top-level tends to capture the coarse and

symmetric structures, such as wings and wheels, which are

further decomposed into much finer granularity in the sub-

sequent levels. We conjecture that this coarse-to-fine subset

dependency helps the model to generate accurate structure

in various granularity from global structure to local details.

Interestingly, we find that the hierarchical structure of

SetVAE sometimes leads to the disentanglement of genera-

tive factors across layers. To demonstrate this, we train two

classifiers in Set-MultiMNIST, one for digit class and the

other for their positions. We train the classifiers using latent

variables at each generator layer as an input, and measure

the accuracy at each layer. In Figure 9, the latent variables

at the lower layers tend to contribute more in locating the

digits, while higher layers contribute to generating shape.
3For illustrative purposes, we present results from a selected head.

Table 3: Ablation study performed on Set-MultiMNIST

dataset using FID scores for 64× 64 rendered images.

Model FID(↓)

SetVAE (Ours) 1047

Non-hierarchical 1470

Unimodal prior 1252

Figure 10: Generation results from SetVAE trained on

SUN-RGBD dataset. Zoom-in for a better view.

Ablation study Table 3 summarizes the ablation study of

SetVAE (see the supplementary file for qualitative results

and evaluation detail). We consider two baselines: Vanilla

SetVAE using a global latent variable z
(1) (Section 3), and

hierarchical SetVAE with unimodal prior (Section 4.2).

The Vanilla SetVAE performs much worse than our full

model. We conjecture that a single latent variable is not

expressive enough to encode complex variations in Mul-

tiMNIST, such as identity and position of multiple digits.

We also find that multi-modal prior stabilizes the training

of attention and guides the model to better local optima.

Extension to categorical bounding boxes SetVAE pro-

vides a solid exchangeability guarantee over sets, thus ap-

plicable to any set-structured data. To demonstrate this,

we trained SetVAE on categorical bounding boxes in in-

door scenes of the SUN-RGBD dataset [24]. As shown in

Figure 10, SetVAE generates plausible layouts, modeling a

complicated distribution of discrete semantic categories and

continuous spatial instantiation of objects.

7. Conclusion

We introduced SetVAE, a novel hierarchical VAE for

sets of varying cardinality. Introducing a novel bottleneck

equivariant layer that learns subset representations, SetVAE

performs hierarchical subset reasoning to encode and gen-

erate sets in a coarse-to-fine manner. As a result, SetVAE

generates high-quality, diverse sets with reduced parame-

ters. We also showed that SetVAE achieves cardinality dis-

entanglement and generalization.
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