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Abstract

Often, labeling large amount of data is challenging due

to high labeling cost limiting the application domain of

deep learning techniques. Active learning (AL) tackles this

by querying the most informative samples to be annotated

among unlabeled pool. Two promising directions for AL that

have been recently explored are task-agnostic approach to

select data points that are far from the current labeled pool

and task-aware approach that relies on the perspective of

task model. Unfortunately, the former does not exploit struc-

tures from tasks and the latter does not seem to well-utilize

overall data distribution. Here, we propose task-aware varia-

tional adversarial AL (TA-VAAL) that modifies task-agnostic

VAAL, that considered data distribution of both label and

unlabeled pools, by relaxing task learning loss prediction

to ranking loss prediction and by using ranking conditional

generative adversarial network to embed normalized ranking

loss information on VAAL. Our proposed TA-VAAL outper-

forms state-of-the-arts on various benchmark datasets for

classifications with balanced / imbalanced labels as well as

semantic segmentation and its task-aware and task-agnostic

AL properties were confirmed with our in-depth analyses.

1. Introduction

Deep learning has achieved remarkable performance in

various computer vision tasks such as classification [18, 13],

object detection [27, 26], and semantic segmentation [19, 4]

due to massive datasets with annotations such as ImageNet

for image classification [7] and PASCAL VOC for classi-

fication, detection, segmentation [9]. Obtaining good an-

notations is challenging and has often been a large-scale

project. Moreover, there are often cases where labeling mas-

sive amount of data is even more challenging or infeasible

due to high labeling cost such as labeling by experts [8] or

long labeling time per large-scale sample such as videos [1]

or pathology images [3]. Labeling cost seems to be a factor

to limit the scope of applicability of deep learning to more
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research areas and more institutes with less labeling budget.

Active learning (AL) is one of the approaches to over-

coming limited labeling budget by selecting data to label

for the best possible performance [30, 11]. AL has been

widely investigated in relatively traditional machine learning

settings [5, 34, 2, 21, 23, 30, 14, 20, 36, 32, 25] and recently

in deep learning settings [11, 29, 38, 40, 35, 31, 16].

Existing AL approaches can be categorized into two

groups: Task-agnostic (or distribution-based) and task-aware

methods. Suppose that our goal is to learn a functional

model f that maps from the input domain X to the corre-

sponding output domain Y , each equipped with the corre-

sponding probability distributions P (x) and P (y). Task-

agnostic approaches select data instances to label by ex-

ploiting the input distribution P (x). These are especially

effective in identifying influential points, e.g. these lying in

high-density regions such that once labeled, large numbers of

neighboring samples can benefit from propagating these la-

bels [20, 39, 29, 31]. A major drawback of these approaches

is that they do not take account how outputs y depend on

inputs x: For example, for classifications, it would be more

effective to label data instances that lie in the vicinity of

decision boundaries than these lying in high-density regions

where most data points belong to the same class.

Task-aware approaches explicitly address this limitation

by modeling such dependence, e.g. via estimating the con-

ditional distribution P (y|x). These are effective in identify-

ing difficult data points (e.g. these close to decision bound-

aries) [36, 14, 11, 35, 40]. However, they do not directly

consider how the labeled samples make influence on the en-

tire dataset. Further, as P (y|x) is unknown a priori, the label

selection process has to rely on the learner f as a surrogate

to P (y|x) but such a learner might be inaccurate at the early

stage of AL, thereby providing a poor estimate of P (y|x).

Recently, there was an attempt (SRAAL) to combine the

task-aware and task-agnostic approaches with a uncertainty

indicator and with a unified representation for both labeled

and unlabeled data [42]. Even though SRAAL achieved

state-of-the-art performance, it did not use the information

about the loss that is directly related to the given task [40]
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Figure 1: Visual results of active learning methods (Learning loss [40], VAAL [31], our TA-VAAL) on imbalanced toy example

at the 5th stage. Red and blue dots indicate samples assigned to class 0 and 1, respectively. Ten samples at that stage (denoted

by black cross) were selected using each method. The oracle decision boundary of the model is shown as a black dash line.

Learning loss identified difficult samples near the decision boundary and VAAL found influential samples over the entire set.

Our TA-VAAL selected samples that are both difficult (near decision boundary) and influential (over the entire set).

and its task learner seems to be limited only to VAE-type

networks with a latent space for its unified representation.

Moreover, its implementation is not yet available online.

In this paper, we propose a novel alternative AL scheme

that combines the benefits of these two groups of approaches.

Specifically, our algorithm builds upon two recent state-of-

the-art approaches: Variational adversarial active learning

(VAAL) [31] models how adding labels to selected data

points make influence on the entire set. As a model-agnostic

approach, this method does not exploit the structure P (y|x)
of the problem at hand. We address this by combining it

with the recent learning loss approach [40]. This algorithm

learns to estimate the errors of the predictions (loss) made by

the learner and therefore helps identify difficult data points.

Here is the summary of our contributions:

• Proposing to relax the goal of loss prediction module [40]

from accurate loss prediction to loss ranking prediction,

which is still directly connected to the task. This relaxation

leads to altering the loss for learning prediction module to

remove margins for ranking and to add ranking loss in [28].

• Proposing Task-Aware Variational Adversarial Active

Learning (TA-VAAL) to embed the normalized ranking loss

information from any given task learner (with or without la-

tent space) on the latent space of VAAL [31] via ranking con-

ditional generative adversarial network (RankCGAN) [28]

to reshape the latent space of it. This approach is signifi-

cantly more robust than the original learning loss approach,

especially at the early stage. By combining these two algo-

rithms with our embedding strategy, our method offers the

capability of identifying difficult and influential data points

(see Figure 1; see Section 4 for details).

• Demonstrating the superior performance of our proposed

TA-VAAL over state-of-the-art works (Learning loss [40],

VAAL [31], Coreset [29], Monte-Carlo dropout [11]) by

evaluating on various classification benchmark datasets: CI-

FAR10, CIFAR100 that have the same number of images

per class (balanced) as well as Caltech101, modified CI-

FAR10 that has different numbers of images for classes

(imbalanced), and on Cityscapes semantic segmentation

benchmark dataset and by in-depth empirical analyses to

confirm our proposed approach. Our codes are available at

https://github.com/cubeyoung/TA-VAAL.

2. Related Works

There have been a number of AL works to select the

most informative samples and we categorized them into two

approaches: task-aware (or model uncertainty-based) and

task-agnostic approaches. The former is using unlabeled

data in a passive way while the latter is using unlabeled data

in an active way. In other words, the former has sample

selection rules that are not affected by unlabeled data, but

simply are applied to it, while the latter exploits both labeled

and unlabeled data to build up sample selection rules (or

train deep neural networks (DNNs) for them).

Task-aware approach defined and used metrics for sam-

ple selection with labeled data. For example, the minimum

distance from decision boundaries (or classification hyper-

planes) can be used to select samples with the most ambigu-

ous classification results [34, 2]. Empirical risk is used to

minimize an upper bound of true risk so that one can query

the most informative samples that are the most uncertain and

representative [36]. Bayesian active learning by disagree-

ment (BALD) maximizes the mutual information between

model predictions and model parameters [14]. Then, BALD

was extended to accommodate DNNs with Bayesian neural

network and Monte-Carlo dropout [11]. Bayesian generative

active deep learning was proposed to utilize both labeled data

and labeled fake data to train a classifier (or a task-learner)

as well as a discriminator for real / fake images [35]. Even

though [35] uses deep generative models or VAEs, it does

not use unlabeled data for training unlike our proposed TA-

VAAL. Yoo and Kweon [40] proposed an AL loss method

that attaches “loss prediction module” to a task-learner. The

loss prediction module was trained to estimate target losses

of unlabeled samples that were used as surrogates for model
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uncertainty based on feature information in mid-layers.

Task-agnostic approach exploits both labeled and unla-

beled data to form sample selection rules so that selected

samples are far from the distribution of labeled data and

have the most well-representative information of unlabeled

pool. Clustering unlabeled data could help to choose samples

from diverse clusters, not from one or small number of clus-

ters [23]. Expected error reduction using hierarchical cluster-

ing was developed for active sampling in a semi-supervised

framework [20]. An objective function with diversity con-

strain was proposed to impose diversity on the subset of

data pool for multi-class AL [39]. Recently, there have also

been works on task-agnostic AL with DNNs. Core-set ap-

proach was proposed that minimizes the distance between

labeled data and unlabeled data pool with intermediate fea-

ture information of trained convolutional DNN models [29].

Gudovskiy et al. [12] proposed to minimize distribution shift

between unlabeled training set and weakly-labeled validation

set for semi-supervised AL. Sinha et al. [31] proposed VAAL

to train VAE that captures the representing information of

both labeled and unlabeled data with adversarial learning to

discriminate unlabeled samples from labeled data using the

latent space information in the VAE.

An extended version of VAAL (SRAAL) [42] was pro-

posed to combine task-aware and task-agnostic approaches

with a uncertainty indicator and with a unified representation

for both labeled and unlabeled data. However, SRAAL did

not use the final information on task (e.g., loss [40]), but

used intermediate task information such as the latent space

information from the task learner. Moreover, its task learner

seems to be limited only to VAE-type networks with a la-

tent space for its unified representation. In the meanwhile,

our proposed TA-VAAL is a novel alternative to combine

both task-aware and task-agnostic approaches that is another

extension of task-agnostic VAAL to incorporate direct task

related information (ranking loss) into the VAE framework.

In addition, our TA-VAAL does not have any structural

restriction for the task learner. We demonstrated that our pro-

posed framework can accommodate both local task-related

information and global data distribution structure so that

high performance and reliability can be jointly achieved.

3. Method

Let us denote the pool of labeled data and annotations by

(XL, YL) and the pool of unlabeled data by XU . The goal of

AL is to select samples from XU with limited label budget, to

annotate them to yield pairs of sample / annotation (x∗, y∗),
and to add them to (XL, YL) for the best possible perfor-

mance of a given task learner T (DNN parametrized by θT ).

(XL, YL) will grow in size every stages. The task learner T
will be trained by minimizing the loss

∑
(xL,yL)∈(XL,YL) lL

at each stage where lL = LT (ŷL, yL) is a loss value at

(xL, yL) and ŷL = T (xL) is a predicted label.

3.1. Task loss prediction module as “Ranker”

Yoo and Kweon [40] proposed loss prediction mod-

ule (LPM), denoted by Θloss, to predict the loss value

l̂U = Θloss(xU ) for xU ∈ XU without ground truth labels.

LPM consists of global average pooling, fully connected

layer and ReLU to predict unknown lU = LT (T (xU ), yU )
where yU is unknown ground truth label (indicated as “?”

in Figure 2). Since the task loss is usually decreasing over

epochs, using the mean squared error (MSE) caused scaling

issue. To avoid that, [40] considered the difference between

two losses and thus (XL, YL) was re-grouped into a set of

pairs (xP , lP ) = {(xi, xj), (li, lj)}. Then, the loss for LPM

is−(2/B)
∑B/2

i=1 max(0,−Ii ·(l̂i− l̂j)+ǫ)) where Ii = +1
if li > lj and−1 otherwise, and ǫ is a positive scalar that was

set to 1. If there were B elements in the original (XL, YL),
this re-grouped set had B/2 elements of (xP , lP ). This

enabled LPM to be trained to yield accurate loss values.

In this work, we relax the goal of LPM from predicting

accurate loss values to estimating accurate ranking loss in-

formation. In other words, our proposed LPM will less care

loss value itself, but more care relative loss rankings. For this

purpose, we propose to exploit RankCGAN [28] to connect

between task-agnostic VAAL [31] and task-aware learning

loss [40]. While the LPM in [40] and the concept of “Ranker”

in RankCGAN [28] both utilized the difference between two

predicted loss values in training losses, the former aimed to

predict accurate losses and the latter focused on predicting

“ranking” of the loss values. Thus, our ranking loss is:

LR(l̂P , lP ) = −(2/B)
∑B/2

i=1 {Ii log[σ(l̂i − l̂j)]

+(1− Ii) log[1− σ(l̂i − l̂j)]} (1)

where Ii = +1 if li > lj and 0 otherwise, l̂i = R(xi) with

R being the Ranker (DNN parametrized by θR) that predicts

loss, and σ is the Sigmoid function. Rather than directly

predicting loss itself [40] (thus, the loss includes a margin

ǫ to trust more on loss value itself and to emphasize less on

preserving rankings), Ranker in our TA-VAAL is predicting

relative rankings of losses that can be embedded into the

latent space of VAAL with the conditional latent variable r
with normalization via the Sigmoid function (thus, the rank-

ings are strictly preserved with (1)). This choice has been

motivated by 1) the observation that the relative comparisons

of the target attributes are often easier to learn and predict

than the absolute attribute values [28], and 2) for AL, rank-

ing the data points to label is often sufficient [40]. Moreover,

while the learning loss in [40] is non-differentiable piece-

wise linear, our ranking loss (1) is a smooth differentiable

function that potentially has nice convergence properties for

gradient based optimizations (see supplemental).

Finally, the total loss function of task learner with our
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Figure 2: A schematic diagram of our TA-VAAL: VAAL is

effective at capturing the overall influence of labels propa-

gated to the entire distribution, but is agnostic to the nature

of task at hand, i.e., VAAL is independent of the task labels

predicted or provided as ground-truths. By injecting the ca-

pability of capturing fine-grained task label rank information,

TA-VAAL helps focus on both influential and informative

(or difficult) labels and adjust how they are propagated.

proposed Ranker R is expressed as

Ltotal = LT (ŷL, yL) + ηLR(R(xP ), lP ) (2)

where η is a scaling parameter. We empirically found that

training a task learner with this ranking loss (1) was more sta-

ble and yielded better performance than the original learning

loss [40] (see the ablation study in Section 5.1).

3.2. Proposed task­aware VAAL (TA­VAAL)

Figure 2 illustrates our proposed TA-VAAL that intro-

duces Ranker, modifies the latent space of the original VAAL

by incorporating a rank variable r from Ranker, and inputs

the normalized loss ranking information r to both the de-

coder of VAAL and the discriminator of VAAL to select

samples from unlabeled data pool. Our proposed framework

allows us to control the latent subspace with loss ranking

predictions so that the overall latent space can be reshaped.

TA-VAAL is obtained with the following optimization:

min
qθ

max
D

EzL∼pxL
[log(D(rL, qθ(zL|xL)))]

+EzU∼pxU
[log(1−D(rU , qθ(zU |xU )))] (3)

where qθ is an encoder of the VAE, and zL and zU belong to

the latent spaces for labeled and unlabeled data, respectively,

and rL and rU are the normalized outputs of the Ranker

from labeled and unlabeled data, respectively. zL ∼ pxL

implies zL = qθ(zL|xL) with xL ∼ pdata and zU ∼ pxU
is

similar to zL ∼ pxL
. By removing the rank information rL

and rU from (3), TA-VAAL boils down to VAAL that offers

the capability of modeling the global data distribution, but

does not exploit the information gained from the task. Using

the loss of the learner as a surrogate to such task information

Algorithm 1: Training pipeline of our TA-VAAL

Given: learning rates ζ1, ζ2, ζ3, # of epochs N ;

Input : labeled data (xL, yL), unlabeled data xU ;

Initialize: network parameters θT , θR, θ, θD;

for n = 1 to N do

if n = 1 then rL, rU ∼ U(0, 1);
else rL ← R(xL; θR) , rU ← R(xU ; θR);
Ltotal ← LT + ηLR

if n ≤ 0.8N then θT ← θT − ζ1∇θTLtotal,

θR ← θR − ζ1∇θRLtotal;

else θT ← θT − ζ1∇θTLtotal;

LV AE ← Ltrans
V AE +λLadv

V AE , θ ← θ−ζ2∇θLV AE

LD using (6), θD ← θD − ζ3∇θDLD

end

can help [40], but assessing the individual losses does not

explicitly model how data instances make influence to each

other and thus, they can be prone to noise and outliers.

Here, we conjecture that task-related information fur-

ther improves the overall performance of AL. Our TA-

VAAL bridges between model uncertainty-based and data

distribution-based approaches in a tight way by using con-

ditional GAN (RankCGAN) so that the information about

data distribution accounts for model uncertainty informa-

tion (predicted loss ranking). Our TA-VAAL will have an

advantage to use more data (unlabeled data) over typical

task-aware approach trained without unlabeled data and can

offer significant improvements (see Section 4).

3.3. Training details for TA­VAAL

The objective function Ltrans
V AE of the conditional VAE

with ranking for learning features of both labeled and unla-

beled pools can be formulated as

E[log pθ(xL|zL, rL)]− βKL(qθ(zL|xL)||pz)

+E[log pθ(xU |zU , rU )]− βKL(qθ(zU |xU )||pz) (4)

where qθ and pθ are the encoder and decoder of the VAE, pz
is Gaussian distribution, β is a hyper-parameter, and KL(·)
is Kullback-Leibler distance. Another function for training is

the conditional adversarial loss to represent both qθ(zL|xL)
and qθ(zU |xU ) with the same distribution from labeled and

unlabeled pools. The objective function Ladv
V AE is

− E[logD(rL, qθ(zL|xL)) + logD(rU , qθ(zU |xU ))] (5)

where zL, zU belong to the latent spaces for labeled, unla-

beled data. The final training loss is Ltrans
V AE + λLadv

V AE .

The discriminator D with ranking is learned to distinguish

if latent space variable belongs to labeled pool. The loss is

LD =− E[logD(rL, qθ(zL|xL))]

− E[log(1−D(rU , qθ(zU |xU )))]. (6)
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The smaller the output D is, the more likely unlabeled sam-

ple is selected. The overall training pipeline is in Algorithm 1

where ∇θ denotes the gradient with respect to θ.

After training TA-VAAL, the data points (x∗

1, ..., x
∗

b) to

be labeled at each stage are selected by

(x∗

1, ..., x
∗

b) = argmin
(x1,...,xb)⊂XU

D(R(xU ), qθ(zU |xU )). (7)

The detail of selecting samples is described in supplemental.

A subset method, replacing XU in (7) with a random subset

of XU , was used to reduce outliers as suggested in [40].

4. Experimental Results

4.1. An illustrative example: binary classification

Dataset. The dataset with 2-dimensional features for binary

classification was generated using scikit-learns makemoons

library [24] as illustrated in Figure 1: The noise option was

set to 0.2 and the dataset size was 500 samples for one class

and 50 samples for the other class, eventually constituting a

dataset of size 550 (imbalance ratio of class is ×10).

Implementation details. For the task learner, a 3-layer

multi-layer perceptron (MLP) was used and Adam optimizer

with learning rate 0.1 was used. For Ranker, a single layer

perceptron was attached to the mid-layer of the task learner.

For VAE, a 2-layer MLP with ReLU was used for encoder

and decoder, respectively, and the discriminator comprised

of a 2-layer MLP. For both the VAE and the discriminator,

the Adam optimizer with learning rate 0.01 was used. All

epochs were set to 100 and active sampling was performed

starting from 20 random samples with 10 sample increment.

Results. Task-aware learning loss method tends to select

difficult and informative samples that are all close to deci-

sion boundary, but are often clustered due to no information

about global distribution even after performing a random

subset method (left subfigure of Figure 1). In contrast, task-

agnostic VAAL tends to select influential samples that are

spread spatially, but that are often far from decision bound-

ary due to no task related information (middle of Figure 1).

Our proposed TA-VAAL tends to select difficult (close to

decision boundary) and influential (over the entire distribu-

tion) samples due to task-aware ranking information and data

distribution-based VAAL, respectively (right of Figure 1).

4.2. Image classification on balanced datasets

(Balanced) benchmark datasets. We evaluated our pro-

posed TA-VAAL method on various (balanced) benchmark

datasets: CIFAR10 [17], CIFAR100 [17] that consist of

50,000 / 10,000 32× 32 images, for training / testing with

10, 100 classes, respectively. Each class includes the same

number of images (5,000 / 1,000 images per class for CI-

FAR10, 500 / 100 images per class for CIFAR100). The

numbers of initial random samples were 1,000 / 2,000 with

the query sizes 1,000, 2,000 at each stage on CIFAR10 / CI-

FAR100, respectively. The results of the evaluations for our

TA-VAAL on SVHN [22] and Fashion-MNIST [37] datasets

are available in supplemental. The subset method was used

to avoid overlaps and to introduce diversity in samples: the

subset size was set to 10 times larger than the query size.

Implementation details. For training, 32×32 random crop

from 36× 36 zero-padded images, normalization with mean

and standard deviation of training set, and horizontal flip /

flop augmentation were used. ResNet18 [13] was used for

all task learners and stochastic gradient descent (SGD) was

used with momentum 0.9 and weight decay 0.005. Learn-

ing rate was 0.1 for the first 160 epochs and then 0.01 for

the last 40 epochs. For VAE, a modified Wasserstein auto-

encoder [33] for taking ranking information was used and

the discriminator was constructed as a 5-layer MLP. For both

the VAE and the discriminator, Adam optimizer [15] with

learning rate 5× 10−4 was used. Mini-batch size was 128

and the total epochs were 200 for all datasets.

Results. Six AL methods were evaluated: random sam-
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Figure 3: Mean accuracy improvements with standard devia-

tion (shaded) of AL methods from random sampling baseline

over the number of labeled samples. The absolute accuracy

values are provided in the supplemental material. Our TA-

VAAL outperformed others on (balanced) CIFAR10 in all

stages and on (balanced) CIFAR100 after a few stages.
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pling (baseline), Monte-Carlo dropout [11], Core-set [29],

Learning loss [40], VAAL [31] and our TA-VAAL. Figure 3

presents the number of labeled images (active samples) ver-

sus the mean (line) and standard deviation (shaded region)

for accuracy improvements from the baseline with 5 trials.

In Figure 3a for CIFAR10, learning loss method yielded

even lower accuracy than baseline at early stages possibly

due to insufficient labeled samples to capture the uncertainty

of model and yielded good performance at later stages once

sufficient labeled data was used to train learning loss. VAAL

achieved better performance than learning loss possibly due

to massive unlabeled data. Our proposed TA-VAAL outper-

formed other state-of-the-art methods at all stages.

In Figure 3b for CIFAR100, all active learning methods

outperformed baseline (random sampling) in most stages.

Learning loss method exhibited similar tendency (low perfor-

mance at early stages, then high performance at later stages)

on both CIFAR10 and CIFAR100. After 3k labeled samples,

our TA-VAAL outperformed all compared state-of-the-art

active learning methods substantially.

Discussions. 1) Core-set yielded comparable performance

to our TA-VAAL on CIFAR10. However, Core-set is com-

putationally demanding as compared to ours since core-set

required 7.5 times more selection time per sample than our

TA-VAAL. 2) We used much smaller initial data size / budget

(1,000/1,000) than the original VAAL setting (5,000/2,500)

on CIFAR10 [31] and VAAL yielded similar performance as

random sampling for all cases in our setting (see supplemen-

tal for detail). 3) The performances of learning loss and ours

yielded slightly higher or lower mean accuracies at the first

stage due to additional LPM attached to the task learner. We

performed additional study to show that this additional loss

is not the most important factor for the overall performance

improvements of our proposed method (see supplemental).

4.3. Image classification on imbalanced datasets

Datasets. We performed experiments on imbalanced

datasets whose sizes are different for classes. Modified

CIFAR10’s were constructed by randomly reducing the num-

ber of samples that were associated with the first 5 classes.

Imbalance ratio was defined as the ratio of the number of

samples for the first 5 classes to the number of samples for

the last 5 classes. Imbalance ratios of 10 and 100 were used.

Further evaluation was performed on Caltech101 [10]

that consists of 9,144 images with about 300 ×200 and 101

categories with imbalanced labels (40 - 800 images per class,

mostly 50). We set 8,125 images for training and 1,019

images for testing. Initially, 1,000 images were randomly

selected and AL budget was 500 images per stage.

Implementation detail. For modified CIFAR10, we used

the same implementation for CIFAR10. For Caltech101, we

performed random horizontal flips for data augmentation

and resized images to 224×224 for training. ResNet18 was
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(c) Caltech101

Figure 4: Mean accuracy improvements with standard devia-

tion (shaded) of AL methods from random sampling baseline

over the number of labeled samples on imbalanced datasets.

Our TA-VAAL outperformed others on modified CIFAR10

with different imbalance ratios and Caltech101 in all stages.

used as the task learner and SGD was used with learning

rate of 0.01. Modified Wasserstein autoencoder and 5-layer

MLP were used for conditional VAE and discriminator, re-

spectively. Adam optimizer with learning rate 1 ×10−4 was

used with minibatch size 16 and 200 epochs. The details on

hyper-parameters are described in supplement material.

Results. Figures 4a and 4b illustrate the mean and standard

deviation accuracy improvements from random sampling
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baseline (5 trials) over the number of labeled images on two

modified CIFAR10 with imbalance ratios of×10 (less imbal-

anced) and×100 (more imbalanced). Note that reduced data

size in imbalanced datasets limited the maximum number

of experiments up to 4k-5k labeled samples. Our proposed

TA-VAAL outperformed all other state-of-the-art methods

over all stages with more improvement margins for more

imbalanced dataset (×100 imbalance ratio). Note that even

though the final dataset sizes were 4k and 5k, there were

some classes with 50 total images per class for imbalance

ratio ×100. In this challenging case, our TA-VAAL still

yielded improvements over other methods including random

sampling baseline. See supplemental for absolute accuracy

over the number of labeled images for all methods.

Figure 4c presents the number of labeled images vs. the

mean and standard deviation for accuracy improvements

from random sampling (5 trials) on (naturally imbalanced)

Caltech101. Our TA-VAAL outperformed other state-of-the-

art methods over all stages substantially. These results show

the capability of our TA-VAAL in a more realistic setting

with more classes with label imbalance and larger images.

4.4. Semantic segmentation on Cityscapes

Dataset. AL was performed for semantic segmentation on

Cityscapes [6], a large-scale video dataset of street scenes,

including 3,475 frames with instance segmentation annota-

tions. Following [41], we converted labels into 19 classes.

Initial label pool size was 200 with budget size 200 per stage.

Implementation detail. For training, we performed random

horizontal flips for data augmentation similar to classifica-

tion tasks. We adopt DRN [41] as task learner for image

segmentation and SGD was used with learning rate 1×10−3.

Modified Wasserstein autoencoder and 5-layer MLP were

used for conditional VAE and discriminator, respectively.

Adam with learning rate 1 ×10−4 was used with mini-batch

size 4 and total epoch 100. See supplemental for details.

Results. Six AL methods were evaluated including ran-

dom sampling (baseline), Monte-Carlo dropout [11], Core-
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Figure 5: Relative accuracy improvements from random

selection for semantic segmentation on Cityscape dataset.

set [29], Learning loss [40], VAAL [31] and our TA-VAAL.

Figure 5 shows the number of labeled images versus the

mean IoU (Intersection Over Union) of 3 trials. We observed

that our TA-VAAL outperformed all compared methods at

all sampling stages. VAAL yielded better performance than

random sampling and learning loss at all stages, but our TA-

VAAL outperformed other methods with substantial margins

at all sampling stages. This demonstrated the benefits from

the ranking loss information of task learner to select the most

informative samples from unlabeled pool.

5. Empirical Analyses

5.1. Ablation studies

Figure 6 shows the performance results of our proposed

methods with and without proposed components / structures

along with other state-of-the-art methods. The means and

standard deviations of 5 trials were reported. Firstly, learning

loss method with proposed ranking loss (1), called learning

loss_v2, yielded substantially higher performances at later

AL stages and comparable performances at early stages to

the original learning loss. Thus, it seems that using our pro-

posed loss (1) for accurate loss ranking prediction seems

advantageous over using the original LPM loss for accurate

loss prediction. Another study is to incorporate ranking in-

formation into VAAL by using the original learning loss

architecture, rather than our proposed Ranker (1). This com-

bination of VAAL+learning loss still yielded substantially

better performances than VAAL over all stages. However,

that was not able to yield better performance than the original

learning loss method at later stages.

5.2. On selected samples of active learning

Figure 7a shows the bar graphs for the number of labeled

images (selected samples) versus the entropies of the num-
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Figure 6: The results of ablation study by selectively re-

moving core components (modified CIFAR10 with imbal-

anced ratio ×10): Learning loss_v2 is ours without VAAL.

VAAL+learning loss is ours with the original learning loss.
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Figure 7: For the modified CIFAR10 with imbalance ratio

×100, (a) Bar graphs of number of labeled images vs. data

class count entropy. (b) Likelihood of unlabeled data vs.

number of samples at the last stage.

ber of selected samples over 10 classes (class counts). The

higher the entropy is, the more uniform samples over classes

are selected. Figure 7a shows that our proposed method

selected samples with high data class count entropy on a

severely imbalanced dataset. These results can provide in-

sights to explain the performance results in Figure 4a. For

example, learning loss method yielded substantially low per-

formance at 2k stage in Figure 4a due to its data selection

with low data count entropy over classes at that stage as illus-

trated in Figure 7a. This is possibly due to limited number of

data for certain classes in the case of imbalance ratio ×100

so that task learner in learning loss method was not well-

trained. However, our TA-VAAL was able to select good

samples at the same stage due to the structure from VAAL

to exploit overall data distribution so that good performance

and high data class count entropy were able to be achieved.

Figure 7b shows the likelihood of unlabeled data from the

discriminator D to select data points at the last stage. VAAL

that takes latent space values as discriminator input yielded

concentrated count distribution of the likelihood (from the

output of D) at the last stage so that active learning selection

became almost random, while our proposed method that

takes latent space values along with ranking information

for D yielded a wide range of likelihood distribution so

that sample selection was more reliable and yielded good

performances as illustrated in Figures 7a and 4a, 4b.

Figure 8 shows the graphs for (true) real loss (represent-

ing task-aware model uncertainty) vs. likelihood of data

remaining unlabeled (representing task-agnostic data distri-

Figure 8: Relationships between real loss (task model un-

certainty) and likelihood of data remaining unlabeled (task-

agnostic data distribution) in (a) VAAL and (b) our TA-

VAAL. We use the model from the last AL stage on im-

balanced CIFAR-10. While task-agnostic VAAL selected

samples with a wide range of real loss values, our TA-VAAL

chose samples with relatively high real loss values.

bution) for VAAL and our proposed TA-VAAL. Note that

both VAAL and our TA-VAAL methods select data points

that have the highest estimated likelihood of unlabeled data.

While task-agnostic VAAL selected samples with a wide

range of real losses as illustrated in Figure 8(a), our pro-

posed TA-VAAL was able to choose samples with relatively

high real loss values thanks to the reshaped latent space by

ranking information on real losses as shown in Figure 8(b).

Thus, TA-VAAL seems to result in higher performances in

various tasks over VAAL as in Figure 3.

6. Conclusion

We proposed TA-VAAL, a novel AL framework that si-

multaneously takes advantage of both task-agnostic data

distribution-based AL and task-aware model uncertainty-

based approach that exploits any generic task learner (with

or without latent space). Our TA-VAAL exploits VAAL

that considered data distribution of both label and unlabeled

pools by incorporating LPM and RankCGAN concepts into

VAAL by relaxing loss prediction with a ranker for rank-

ing loss information. We demonstrate that our TA-VAAL

outperforms state-of-the-art AL methods on various classifi-

cation benchmark datasets such as CIFAR-10, CIFAR-100

and Caltech-101 for balanced and imbalanced cases and

on Cityscapes semantic segmentation dataset. Our in-depth

analyses also confirm that our TA-VAAL effectively takes ad-

vantage of both task-aware and task-agnostic AL approaches.
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