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Abstract

Estimating the 3D motion of points in a scene, known

as scene flow, is a core problem in computer vision. Tra-

ditional learning-based methods designed to learn end-to-

end 3D flow often suffer from poor generalization. Here

we present a recurrent architecture that learns a single step

of an unrolled iterative alignment procedure for refining

scene flow predictions. Inspired by classical algorithms, we

demonstrate iterative convergence toward the solution us-

ing strong regularization. The proposed method can han-

dle sizeable temporal deformations and suggests a slim-

mer architecture than competitive all-to-all correlation ap-

proaches. Trained on FlyingThings3D synthetic data only,

our network successfully generalizes to real scans, outper-

forming all existing methods by a large margin on the KITTI

self-supervised benchmark.1

1. Introduction

Understanding motion is fundamental to many applica-

tions in a variety of fields, such as human-computer inter-

action, robotics, and autonomous driving. The information

absorbed within a temporal window is not only a collection

of images or a representation of an outcome, but also a de-

scription of a process.

Decades ago, computer vision tackled the task of mo-

tion estimation, searching for a flow between two images

[3, 7, 14, 22, 41]. One significant leap forward in under-

standing the motion of a scene, defined as scene flow, is

the presence of 3D geometry. It liberates us from consid-

ering color as the main correspondence feature and allows

examining the structure itself to understand the motion. Ax-

iomatic concepts of rigidity [2, 6] provided fast and accu-

rate results, but once piece-wise movements [9, 10, 39] or

non-rigidity [1, 15, 23] was allowed, scene flow estimation

problem became ill-posed and unfortunately hard to solve.

The rise of artificial intelligence [19] gives hope that

solving the 3D flow estimation problem is possible using

1https://github.com/yairkit/flowstep3d

Figure 1. Model unrolling. Top: source (green) and target

(blue) input point clouds sampled from the KITTI [27] scene-flow

dataset. Middle: illustration of our FlowStep3D architecture un-

rolled for K iterations. Bottom: source warped over the predicted

flow at each iteration toward the static target at inference time.

a network architecture. Indeed, in the last few years, an im-

provement in different learning-based methods [12, 21, 31,

37, 43] has been seen, outperforming those that relied on

optimization. More importantly, these learned models are

fast and robust.

Scene flow estimation is an integral component in the

autonomous driving industry, where LiDAR data is used

for the perception of the environment. However, LiDAR

sensors suffer from sparseness, directly affecting deep-

learning flow algorithms that require knowledge of the ob-

jects’ spatio-temporal neighborhood. In other words, once

the structures do not heavily overlap, the process fails. In an

attempt to solve this limitation, we recently have seen all-

to-all mechanisms both for images [36] and geometry [31].

However, these methods consume large amounts of mem-

ory and tend to produce outliers, as now nearby points can

be aligned with inconsistent temporal positions.

In this work, we focus on the scene flow problem, where
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large deviations between the scenes can occur. A small set

of points is used to guide the alignment in an all-to-all ap-

proach, and a recurrent refinement block is then unrolled

to learn movement differentiators. We train our network to

predict a single step at a time and converge iteratively to-

ward the end flow solution, as illustrated in Fig.1. Although

unrolled for K iterations during training, our network can

be used for inference with a larger number of iterations to

handle more significant and complicated deformations.

Trained on synthetic data only, our method improves the

state-of-the-art results on the self-supervised KITTI bench-

mark by a considerable margin. Our architecture is further

tested in a fully-supervised framework and achieves slightly

better results compared to prior art while benefiting from

memory efficiency.

The key contributions of this work are as follows:

• We present the first recurrent architecture for non-rigid

scene flow.

• We provide a slim memory all-to-all correlation

pipeline by merging low-resolution correlation with an

unrolling iterative refinement process.

• Our proposed network achieves large improvements

over existing self-supervised methods on both Fly-

ingThings3D and KITTI benchmarks.

2. Related Work

Scene Flow Estimation on Point Clouds. Scene flow

estimation was first introduced in [38], who suggested to

compute a 3D scene flow from 2D optical flow using a lin-

ear algorithm. Later approaches used stereo sequences [16],

RGB-D [13], and LiDAR [6]. With the rise of new methods

for deep learning on point clouds [32, 33, 35, 42] and the

increasing popularity of range data at the autonomous driv-

ing domain, more recent approaches suggest learning the

3D scene flow directly from the raw data spatial positions.

Liu et al. [21] were the first to introduce a correlation

layer that aggregates features of different point clouds based

on PointNet[32]. However, the correlation layer was ap-

plied at a particular scale, only capturing the correlation

of that specific level of features between the point clouds

and a fixed neighborhood radius, allowing a small deforma-

tion between the point clouds. Gu et al. [12] tackled those

limitations by introducing multi-resolution correlation lay-

ers and suggested using a Bilateral Convolutional layer

[17, 18, 35]. Inspired by classical pyramid approaches, Wu

et al. [43] further improved multi resolution flows by apply-

ing it in a coarse to fine manner and showed superior results.

However, multi-resolution methods require many learnable

parameters and are limited to deformations smaller than the

correlation neighborhood. In [37], the authors suggested

splitting the movement into rigid ego-motion and non-rigid
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Figure 2. Memory consumption and accuracy trade-off. Aver-

age end-point-error (Sec.6) of the leading fully-supervised meth-

ods on the KITTI test vs. memory consumption on inference with

8192 points per scene.

refinement components, relying on the same architecture as

[12]. A different approach focusing on all-to-all correlation

suggested by [31], using optimal transport tools to estimate

the scene flow, showed excellent results. However, an all-

to-all correlation matrix for a large scale point cloud is in-

efficient.

We adopt the all-to-all correlation concept, but unlike

[31], we suggest to use it efficiently in a much deeper, lower

resolution space.

Self-supervised Learning. Learning to estimate scene

flow in a self-supervised manner is an active field of re-

search. Mittal et al. [29] showed that cycle-consistency and

nearest-neighbor losses could be used for self-supervision

of scene flow learning, using a backbone of FlowNet3D

[21], pre-trained in a fully supervised manner on synthetic

data. Tishchenko et al. [37] combined the same self-

supervised losses with a fully supervised loss into a ’Hy-

brid loss’, while [43] suggested a fully self-supervised pro-

cess, combining Chamfer, nearest-neighbors, and laplacian

losses.

We follow [43] and choose the Chamfer loss as the data-

term loss of our training. Still, inspired by classical non-

rigid alignment algorithms, we claim that this data term is

not sufficient for a one-shot, end-to-end solution. Hence we

suggest an iterative approach for the scene flow estimation

and emphasize the need for strong regularization loss term.

Algorithm Unrolling. While the vast majority of deep

learning approaches propose a purely data-driven, one-shot

solution, there is a rising trend of combining iterative algo-

rithms to neural network architectures to take advantage of

both learning and prior knowledge. Recent works showed

promising results for signal and image processing tasks

[8, 20, 25, 28, 30, 44, 45] by unrolling either an explicit

4115



Local Enc.

Global 
Correlation

Unit

Local
Update
Unit 

Source

Target

Local-Enc.

Local-Enc.

Global
Enc.

Global
Enc.

Local
Update
Unit 

Local-Enc. Local-Enc.

Local
Update
Unit 

Figure 3. FlowStep3D high-level overview. At the first iteration, the global correlation unit (Fig. 4) produces the initial flow F1 based on

source’s and target’s global features obtained by deep encoding. In each iteration, the source point cloud is warped toward the target by

adding the predicted flow from the previous iteration Fk−1. It is then locally encoded and fed into a local update unit (Fig. 5) to refine the

flow estimation. The weights of the local update unit and of the encoders are shared across all their appearances.

iterative solution for an energy minimization problem or a

model. A contemporary approach named RAFT [36] sug-

gested model unrolling for 2D optical flow estimation, per-

forming lookups on a 4D all-to-all correlation volume.

We suggest to unroll a single-step flow estimation model.

Inspired by [36], we also adopt the idea of using a gated

recurrent unit for iterative updates. An essential concept of

our method, which is different from [36], is the computation

of new features for the warped scene at every iteration. It

is necessary since all point cloud convolution methods are

not rotation invariant, so the features of the source change

as it is being rotated toward the target. We consider this

process as a critical component to learning differentiators

iteratively.

3. Problem Definition

Scene flow is the 3D motion field of points in a scene.

For a given two sets of points S = {pi ∈ R
3}n1

i=1 and

T = {qj ∈ R
3}n2

j=1, sampled from a dynamic scene at two

consecutive time frames, we denote by fi ∈ R
3 the transla-

tional motion vector of a point pi ∈ S from the first frame

toward its new location in the second frame. Our goal is to

estimate the scene flow F = {fi}
n1

i=1 that describes the best

non-rigid transformation, which aligns S toward T . Due to

both the sparsity of the 3D data and possible occlusions, a

point p′i may not be presented in T . Therefore, we do not

learn the correspondence between S and T , but a flow rep-

resentation for each point pi ∈ S.

In general, every point pi, qj , may have additional infor-

mation such as color or geometric features. The number of

points in the source may differ from the number of points in

the target, i.e., n1 and n2 are not necessarily equal.

4. Architecture

We suggest an iterative system (Fig. 3) that predicts a

flow sequence {F 1, ...,FK}, where FK = F
∗ is our fi-

nal flow estimation. First, we use a global correlation unit

(Sec. 4.2) to guide the alignment in an all-to-all approach.

Next, we unroll a local update unit (Sec. 4.3), to learn move-

ment refinements. Our local update unit implements a sin-

gle conceptual iteration of an Iterative-Closest-Point (ICP)

algorithm [4, 2], replacing the two phases (a. finding corre-

spondence and b. estimating the best smooth transformation

based on that correspondence) by learned components.

The number of iterations K is a hyper-parameter and can

be larger during inference than during training to handle

more complicated and large deformations, as discussed in

Sec. 6.3.

4.1. Local And Global Features Encoding

Local features of a point encode the geometric features

of its relatively small neighborhood and are useful for local

alignment refinements. On the other hand, global features

capture high-level information regarding the relative posi-

tion of the point in the scene, using a larger receptive field

and deeper encoding. A crucial part of our method is the

distinction between the local and the global features of a

point cloud.

We use the set conv layer suggested by FlowNet3D [21]

as our convolution mechanism and furthest point sampling

method for down-sampling. Our local encoder gθ :
R

n×3 7→ R
n′

×dlocal consists of only two set conv layers,

capturing a relatively small receptive field, so that its output

encodes an input point clouds shallow features of dimension

dlocal, at resolution n′. Local encoding is first applied on

4116



both source and target input point clouds to produce gθ(S),
gθ(T ), and then applied again at every iteration k on the

warped source point cloud Sk producing gθ(Sk).
In order to extract global features, the local features de-

scriptors gθ(S), gθ(T ) are injected into an additional en-

coder hθ : R
n′

×dlocal 7→ R
n′′

×dglobal , which produces

hθ(gθ(S)) and hθ(gθ(T )), a deeper representation of S and

T of dimension dglobal and resolution n′′ << n′, which we

denote as h̃θ(S), h̃θ(T ) to ease notations. Both gθ and hθ

encoders have shared weights across all their appearances.

4.2. Global Correlation Unit

We use a global correlation unit to estimate the initial

scene flow F1 based on a deep, coarse all-to-all mechanism,

illustrated in Fig. 4.

Coarse All-to-all Correlation Matrix. As the first step

of our global correlation unit, we use h̃θ(S), h̃θ(T ) to cal-

culate a coarse all-to-all correlation matrix M ∈ R
n′′

1
×n′′

2 .

Inspired by FLOT [31], we calculate cosine similarity be-

tween the features vectors:

sim(i, j) =
h̃θ(p)

T
i h̃θ(q)j

‖h̃θ(p)i‖2‖h̃θ(q)j‖2
, (1)

and then use an exponential function to derive from it a soft

correlation matrix:

Mi,j = exp

(

sim(i, j)− 1

ǫ

)

. (2)

Thus, every entry Mi,j , describes the correlation between

h̃θ(p)i and h̃θ(q)j , and the softmax temperature ǫ is a

hyper-parameter, set to 0.03.

Unlike [31], we calculate the all-to-all correlation matrix

M at a lower dimension, n′′
1 × n′′

2 << n1 × n2, thereby

significantly reduce the required memory.

Global Flow Estimation. In order to use the calculated

correlation matrix for global flow embedding in the eu-

clidean space, we apply a simple matrix multiplication:

f̃i =

∑n′′

2

j=1 Mi,j q̃j
∑n′′

2

j=1 Mi,j

− p̃i. (3)

Thus, f̃i is the average distance between p̃i ∈ S̃ to all points

{q̃j}
n′′

2

j=1 ∈ T̃ , weighted by their correlation magnitudes,

where S̃ ∈ R
n′′

1
×3 and T̃ ∈ R

n′′

2
×3 are the coarse ver-

sions of S and T coordinates after the the encoder’s down-

sampling. The first iteration flow F1 ∈ R
n1×3, is regressed

out of F̃1 = {f̃i}
n′′

1

i=1 by a set of set up conv layers [33].

4.3. Local Update Unit

We use an iterative update procedure, starting at the

global flow estimation F1, and estimating the rest of the

flow sequence {F 2, ...,FK} based on local information.

Coarse
All-to-All
Correlation 

Figure 4. Global Correlation Unit. The inner-product of h̃θ(S)
and h̃θ(T ), the global features of the source and target, is used to

create coarse all-to-all correlation matrix M. Matrix multiplication

followed by a set of set up conv layers are then used to predict the

global flow F1, as described in Sec. 4.2.

Warp and Encode. At each iteration k ∈ {2, ..,K}, we

use the estimated flow from the previous iteration for warp-

ing the points of the source, i.e Sk−1 = S + Fk−1. Next,

using the local encoder gθ, we extract a new local features

descriptor for the warped source gθ(Sk−1), which we will

later use for local correlation calculation (Fig. 3 top).

Local Correlation. To derive the correlation between

the local features of the warped source and the target, we

adopt the flow embedding correlation layer proposed by

FlowNet3D [21]. The proposed correlation layer aggregates

feature similarity and spatial relationships of points within

a local neighborhood, and therefore is suitable for local re-

finements. Specifically, at each iteration k, we calculate

flow embedding(gθ(Sk−1), gθ(T )) ∈ R
n′

1
×dcorr , which en-

codes flow embedding for every point in the warped source

Sk−1 toward the target T .

Gated Recurrent Unit (GRU). Inspired by RAFT [36],

we use a gated activation unit based on the design of a GRU

cell [5] as our updating mechanism. Given previous itera-

tion hidden state hk−1, together with current iteration infor-

mation xk, it produces an updated hidden state hk:

zk = σ(set convz([hk−1, xk])), (4)

rk = σ(set convr([hk−1, xk])), (5)

h̃k = tanh(set convh([rk ⊙ hk−1, xk])), (6)

hk = (1− zk)⊙ hk−1 + zk ⊙ h̃k, (7)

where ⊙ is the Hadamard product, [·, ·] is a concatenation

and σ(·) is the sigmoid activation function.

We define xk ∈ R
n′

1
×(dlocal+dcorr+3+dmotion) to be the

concatenation of the warped source’s local features, local

flow embedding, previous iteration flow, and previous iter-

ation flow’s features. The previous iteration flow’s features
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Figure 5. Local Update Unit. The previous iteration predicted

flow Fk−1 and its encoding features, together with local features

descriptors of the current state source gθ(Sk−1), and of the tar-

get gθ(T ), and their correlation (flow embedding(·, ·)), are con-

catenated into xk. Gated Recurrent Unit (GRU) followed by

set up conv layers produces flow refinement ∆Fk, as described

in Sec. 4.3.

are obtained by passing it through two set conv layers called

flow enc: Rn1×3 7→ R
n′

1
×dmotion , as shown in Fig. 5.

For the initialization of the first iteration’s hidden state,

we pass the local features of the source point cloud gθ(S),
through two set conv layers.

Scene flow prediction. Given the new hidden state hk pro-

duced by the GRU cell, we use a flow regressor consisting

of two set conv layers to estimate the flow refinement ∆Fk.

The updated flow is then calculated as Fk = Fk−1 +∆Fk.

Regression of flow refinements at totally different scales

by the same CNN component is challenging. Hence, to en-

courage our system to learn coarse displacements in first it-

erations, we multiply the magnitude of each predicted scene

flow by a factor 1
(C·(k−1)+1) , where C is a hyper-parameter.

5. Training Loss Functions

To train our iterative system, we unroll K iterations and

apply a loss function for each iteration prediction F k:

Lseq. =

K
∑

k=1

Lk. (8)

Each iteration loss Lk in the sequence can be chosen to be

a self-supervised (Sec. 5.1) or a fully-supervised (Sec. 5.2)

loss.

5.1. Self­supervised Loss

Due to the lack of labeled data for 3D scene flow, we de-

signed our solution to be trained in a self-supervised man-

ner, i.e. without the need of ground-truth flow.

Chamfer Loss. We follow previous works [11, 40, 43] and

choose the Chamfer distance, which enforces the source to

move toward the target according to mutual closest points,

as our self-supervised data loss:

Lch.
k = Dch.(Sk, T )

def
=

∑

p∈Sk

min
q∈T

‖p− q‖22 +
∑

q∈T

min
p∈Sk

‖q − p‖22 (9)

where Sk := S + Fk is the warped source according to the

predicted flow at iteration k.

Regularization Loss. Since Chamfer distance has mul-

tiple local minima, it is crucial to regularize it in order to

reach sufficient convergence. Another reason for which our

system requires strong regularization is that we warp the

source according to the predicted flow before encoding it

again. Hence, we need to carefully preserve the objects’

structures so that encoding the warped scene will produce

meaningful local geometric features (Fig.8).

Motivated by [1, 11, 34, 43], we propose a strong Lapla-

cian regularization, i.e we enforce the source to preserve its

Laplacian when warped according to the predicted flow:

L (S + Fk) ≃ L (S)

⇓

L (F k) −→ 0.

(10)

We approximate the Laplacian L (X) at a point xi ∈ X

as its distances from all points xj ∈ N (xi), where N (xi)
is a set of points, of size |N (xi)|, in a neighborhood around

xi defined in a sequel. We use L1 norm for regularization,

so that our regularization loss is:

Lreg.
k =

1

n1

∑

pi∈S

1

|N (pi)|

∑

pj∈N (pi)

‖Fk(pi)− Fk(pj)‖1,

(11)

where Fk(pi) is the value of the predicted scene flow at

point pi, and n1 is the number of points in the source.

To reduce the computational overhead of nearest neigh-

bors for a large K, we use N (pi) = Na(pi)∪Nb(pi), where

Na(pi) is the Ka nearest neighbours of pi, and Nb(pi) is

calculated by random sampling Kb points in an Euclidean

ball around pi, with radius rb.

The overall self-supervised loss is a weighted sum of

Chamfer and regularization losses, over all sequence iter-

ations:

L
self =

K
∑

k=1

Lself
k =

K
∑

k=1

αkL
ch.
k + βkL

reg.
k (12)

5.2. Fully­supervised Loss

In order to show our architecture efficiency, we further

train our system in a fully-supervised manner, using the L1
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Dataset Method Sup. EPE3D↓ Acc3DS↑ AccDR↑ Outliers3D↓

FlyingThings3D

ICP[2] Self 0.4062 0.1614 0.3038 0.8796

Ego-motion[37] Self 0.1696 0.2532 0.5501 0.8046

PointPWC-Net[43] Self 0.1246 0.3068 0.6552 0.7032

Ours Self 0.0852 0.5363 0.8262 0.4198

FlowNet3D[21] Full 0.1136 0.4125 0.7706 0.6016

HPLFlowNet[12] Full 0.0804 0.6144 0.8555 0.4287

PointPWC-Net[43] Full 0.0588 0.7379 0.9276 0.3424

FLOT[31] Full 0.0520 0.7320 0.9270 0.3570

Ours Full 0.0455 0.8162 0.9614 0.2165

KITTI

ICP[2] Self 0.5181 0.0669 0.1667 0.8712

Ego-motion[37] Self 0.4154 0.2209 0.3721 0.8096

PointPWC-Net[43] Self 0.2549 0.2379 0.4957 0.6863

Ours Self 0.1021 0.7080 0.8394 0.2456

FlowNet3D[21] Full 0.1767 0.3738 0.6677 0.5271

HPLFlowNet[12] Full 0.1169 0.4783 0.7776 0.4103

PointPWC-Net[43] Full 0.0694 0.7281 0.8884 0.2648

FLOT[31] Full 0.0560 0.7550 0.9080 0.2420

Ours Full 0.0546 0.8051 0.9254 0.1492

Table 1. Evaluation results on FlyingThings3D and KITTI datasets. All methods trained only on FlyingThings3D. Self / Full means

self-supervised / fully-supervised, where on KITTI Self / Full refers to the training type on FlyingThings3D of the respective model that

is evaluated on KITTI. Our method outperforms all baselines on all metrics in both fully-supervised and self-supervised training. Our

self-supervised version is the only self-supervised method with EPE3D below 10m on FlyingThings3D, and it shows its generalization

ability by more than 50% improvement over existing baselines on KITTI.

loss:

LL1

k =
1

n1

∑

pi∈S

‖Fk(pi)− FGT (pi)‖1, (13)

where FGT (pi) is the value of the ground-truth scene flow

at point pi.

Unlike previous methods, we add a laplacian regulariza-

tion loss to our fully-supervised training to encourage our

system to preserve objects’ structures and approach toward

the target in iterations. The regularization loss is the same

as in the self-supervised case, Eq. (11).

The overall fully-supervised loss is a weighted sum of

L1 and regularization losses, over all sequence iterations:

L
sv =

K
∑

k=1

Lsv
k =

K
∑

k=1

αkL
L1

k + βkL
reg.
k . (14)

6. Experiments

Following the experimental setup suggested in [12, 21,

31, 37, 43], we first train and evaluate our model on syn-

thetic dataset FlyingThings3D [24] (Sec. 6.1) using both

self-supervised and fully-supervised approaches. Then, we

test the models’ performance on the real-world KITTI scene

flow dataset [26, 27] without any fine-tuning (Sec. 6.2). Fi-

nally, in Seq. 6.3, we conduct ablation studies regarding the

inference iterations number, and the importance of the reg-

ularization loss.

Evaluation Metrics. We use the same scene flow evalua-

tion metrics proposed by [21] and adopted by [12, 31, 43]:

• EPE3D(m) average end-point-error ‖Fpred − FGT ‖2
over each point.

• Acc3DS(0.05) percentage of points whose EPE3D<

0.05m or relative error < 5%

• Acc3DR(0.1) percentage of points whose EPE3D<

0.1m or relative error < 10%

• Outliers3D percentage of points whose EPE3D>

0.3m or relative error > 10%

6.1. Evaluation on FlyingThings3D

Due to the difficulty of acquiring dense scene flow data,

we follow previous methods [12, 21, 31, 43] and train our

system only on the synthetic FlyingThings3D dataset, using

the same pre-processing methodology as [12].

First, we focus on a self-supervised approach, which

does not require any labeled data. Then, to demonstrate

our system efficiency, we also conduct experiments using a

fully-supervised loss.
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Figure 6. Inference iterations. Self-supervised model output example from the KITTI test set. Top-left: input source (green) and target

(blue) scans. Top-right: overlay of the warped source and the target. Bottom: a closer observation on warped source toward the target

during four iterations of flow estimation.
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Figure 7. EPE3D vs. inference K. For the fully-supervised (left)

and the self-supervised (right) trained models, the best K (red)

based on the FlyingThings3D validation set (orange), used for test

on KITTI (blue). Both models trained with K = 4 (dashed line).

Implementation Details. The FlyingThings3D dataset

contains 19,640 pairs of point clouds in the training set and

3,824 pairs in the validation set. We first train our system on

one quarter of the train data (4910 pairs) and then fine-tune

on the full training set, to speed-up training. We used Fly-

ingThings3D validation set for all hyperparameters tuning.

We use n = 8192 points for each point cloud, batch size

of 16, and unroll K = 4 iterations at all training proce-

dures, using 8 GTX-2080Ti GPUs. Pre-training is done for

90 epochs, with a learning rate of 0.002 and reduced by half

at epochs [50, 70]. Self-supervised model is fine-tuned for

30 epochs, with a learning rate of 0.002 and reduced by half

at epochs [5, 15, 25]. Fully-supervised model is fine-tuned

for 40 epochs, with a learning rate of 0.001 and reduced by

half at epochs [10, 22, 30].

To reduce outliers, we limit the distance of correspon-

dence points to a reasonable displacement range, by zeroing

our coarse all-to-all correlation matrix at every entry (i, j)
of which ‖pi − qj‖2 > 10m.

Lastly, we used FlyingThings3D validation set to deter-

mine the best number of iterations for our model at infer-

ence time. As discussed in Sec. 6.3, we set K = 5 for all

tests.

All loss weights {αk}
K
k=1, {βk}

K
k=1 of all training pro-

cedures, and a detailed scheme of our architecture can be

found in the supplementary materials.

Results. We compare our self-supervised method’s

results with Iterative-Closest-Point (ICP) [2], PointPWC-

Net [43], and the recent self-supervised method intro-

duced by Tishchenko et al. [37], and our fully-supervised

method’s results with FlowNet3D [21], HPLFlowNet [12],

PointPWC-Net [43], and FLOT [31].

As shown in Table 1, our method outperforms all

existing methods on all evaluation metrics on the Fly-

ingThings3D dataset, for both self-supervised and fully-

supervised frameworks. Moreover, our self-supervised

method is the only self-supervised method with EPE3D be-

low 10m on the FlyingThings3D dataset.

6.2. Generalization on KITTI

To examine the generalization ability of our method to

real-world data, we evaluate a model trained using Fly-

ingThings3D, on real-scans KITTI Scene Flow 2015 [26,

27] dataset, without any fine-tuning. Following [12, 43],

we evaluate our model on all 142 scenes with available 3D
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Figure 8. Regularization inference example. An Inference of our self-supervised model pre-trained with three different regularization

schemes. From left to right: input source (green) and target (blue) scans, under-regularization, over-regularization, and our chosen-

regularization. Interesting artifacts are circled and zoomed-in at the bottom. All variations evaluated with K = 4.

Regularization ({αk}, {βk})
∗ EPE3D↓ Outliers3D↓

Under-regularization 0.3183 0.7698

Over-regularization 0.2706 0.8941

Chosen-regularization 0.1443 0.3736

Table 2. Regularization. EPE3D and outliers rate of our self-

supervised model pre-trained with different regularization loss

weights {αk}, {βk}. All evaluated with K = 4. It can be seen

that both over-regularization and under-regularization increase er-

rors. ∗Exact values of all βk, αk are in our supplementary.

data in the training set, and remove the ground points from

the point clouds by height (< 0.3m).

Our self-supervised method demonstrates a great gener-

alization ability, outperforming all existing self-supervised

methods by more than 50%.

Our fully-supervised model achieves EPE3D on par with

state of the art method [31], highest accuracy, lowest out-

liers and benefits from memory efficiency (Fig. 2).

6.3. Ablation Studies

Number of iterations. Although we unrolled four itera-

tions for training, we tested inference with different K val-

ues (Fig. 7). Interestingly, both our models keep slightly

improving for a few more iterations on the KITTI test set.

On the FlyingThings3D validation set, the models are op-

timized to one iteration more than the number of training

iterations. To decrease run time, one can choose to opti-

mize the system to a smaller number of iterations and get

quite good results for 2 or 3 iterations as well. However,

a model trained with K=4 not only produces the best re-

sults but also benefits from the best generalization ability,

especially under large deformations. Fig. 6 shows a qual-

itative example of our self-supervised method during four

inference iterations.

Update unit design choices. Using a GRU showed better

performance than a simple fully-connected layer, increasing

the system’s generalization ability by 40%. Regarding its

inputs, we found that using the flow embedding alone as the

GRU input increases the validation error by 30%.

Regularization. Since our method re-encodes the warped

source at every iteration, it is crucial to train it using a reg-

ularization loss. While training with under-regularization

may distort the objects’ structure, over-regularization may

lead to semi-rigid motion predictions, which results in

imperfect alignment. To demonstrate the importance of

wisely choosing the regularization loss weights, we pre-

train our self-supervised model in three different regular-

ization schemes, changing only the loss weights {βk}
K
k=1,

{αk}
K
k=1, and then evaluate each one of them on the KITTI

test set. We show the quantitative results in Table 2, and a

qualitative example in Fig. 8.

7. Conclusions

In this work, we proposed and studied a novel approach

for scene flow estimation by unrolling an iterative scheme

using a recurrent architecture that learns the optimal steps

toward the solution, called FlowStep3D. We showed the

benefit of approaching the solution in a few steps by enforc-

ing strong regularization and re-encoding the warped scene,

which is contrary to all previous learning-based solutions.

Experiments performed on synthetic and real LiDAR scans

data showed great generalization capability, especially for

self-supervised training, improving previous methods by a

large margin.
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