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Abstract

Monocular 3D reconstruction of articulated object cat-

egories is challenging due to the lack of training data and

the inherent ill-posedness of the problem. In this work we

use video self-supervision, forcing the consistency of con-

secutive 3D reconstructions by a motion-based cycle loss.

This largely improves both optimization-based and learning-

based 3D mesh reconstruction. We further introduce an in-

terpretable model of 3D template deformations that controls

a 3D surface through the displacement of a small number

of local, learnable handles. We formulate this operation as

a structured layer relying on mesh-laplacian regularization

and show that it can be trained in an end-to-end manner.

We finally introduce a per-sample numerical optimisation

approach that jointly optimises over mesh displacements and

cameras within a video, boosting accuracy both for training

and also as test time post-processing.

While relying exclusively on a small set of videos col-

lected per category for supervision, we obtain state-of-the-

art reconstructions with diverse shapes, viewpoints and

textures for multiple articulated object categories. Sup-

plementary materials, code, and videos are provided on

the project page: https://fkokkinos.github.io/

video_3d_reconstruction/.

1. Introduction

Monocular 3D reconstruction of general articulated cate-

gories is a task that humans perform routinely, but remains

challenging for current computer vision systems. The break-

throughs achieved for humans [3, 17, 10, 47, 29, 21, 30, 16,

4] have relied on expressive articulated shape priors [26] and

mocap recordings to provide strong supervision in the form

of 3D joint locations. Still, for general articulated categories,

such as horses or cows, the problem remains in its infancy

due to both the lack of strong supervision [55] and the in-

herent challenge of representing and learning articulated

deformations for general categories.

Recent works have started tackling this problem by re-

Figure 1: We tackle the problem of monocular 3D recon-

struction for articulated object categories by guiding the

deformation of a mesh template (top) through a sparse set of

3D control points regressed by a network (middle). Despite

using only weak supervision in the form of keypoints, masks

and video-based correspondence our approach is able to cap-

ture broad articulations, such as opening wings, as well as

motion of the lower limbs and neck (bottom).

lying on minimal, 2D-based supervision such as manual

keypoint annotations or masks [43] and learning morphable

model priors [43, 19, 18, 9] or hand-crafted mesh segmen-

tations [23]. In this work we leverage the rich information

available in videos, and use networks trained for the 2D tasks

of object detection, semantic segmentation, and optical flow

to complement (optional) 2D keypoint-level supervision.

We make three contributions towards pushing the en-

velope of monocular 3D object category reconstruction, by

injecting ideas from structure-from-motion (SFM), geometry

processing and bundle adjustment in the task of monocular

3D articulated reconstruction.

Firstly, we draw inspiration from 3D vision which has

traditionally relied on motion information for SFM [38, 11],

SLAM [20, 28] or Non-Rigid SFM [39, 8, 7]. These

category-agnostic techniques interpret 2D point trajectories

in terms of an underlying 3D scene and a moving camera. In

this work we use the same principle to supervise monocular
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Figure 2: Training overview: Two consecutive frames are separately processed by a network that estimates the camera pose,

deformation and UV texture parameters. The network regresses per frame a mesh V∗ by estimating offsets to the handles H

of the template shape and consequently solving the respective Laplacian optimization problem. The predictions are supervised

by per-frame losses on masks, appearance, and optionally keypoints as well as a novel, intra-frame, motion-based loss that

compares the predictions of an optical flow network to the mesh-based prediction of pixel displacements (‘mesh flow’).

3D category reconstruction, effectively allowing us to lever-

age video as a source of self-supervision. In particular we

establish dense correspondences between consecutive video

frames through optical flow and force the back projections

of the respective 3D reconstructions to be consistent with

the optical flow results. This loss can be back-propagated

through the 3D lifting pipeline, allowing us to supervise

both the camera pose estimation and mesh reconstruction

modules through video. Beyond coming for free, this su-

pervision also ensures that the resulting models will exhibit

a smaller amount of jitter and be more flexible when pro-

cessing videos, since the motion-based loss can penalize

inconsistencies across consecutive frames and failure to co-

vary with moving object parts.

Secondly, we introduce a model for regularised mesh

deformations that allows for learnable, part-level mesh con-

trol and is back-propagateable, providing us with a drop-in

replacement to the common morphable model paradigm

adopted in [18]. For this we rely on the Laplacian surface

deformation algorithm [34], commonly used in geometry

processing to deform a template mesh through a set of con-

trol points (‘handles’) while preserving the surface structure

and details. We observe that the result of this optimization-

based algorithm is differentiable in its inputs, i.e. can be used

as a structured layer, while incurring no additional cost at

test time since the expression for the optimum can be folded

within a linear layer. We incorporate this operation as the top

layer of a deep network tasked with regressing the position

of the control points given an RGB image. Our results show

that we can learn meaningful control points that allow us

to capture limb articulations while also providing a human-

interpretable interface that enables manual post-processing

and refinement using any available 3D software.

Thirdly, we adopt an optimization-based approach to 3D

reconstruction that is inspired from bundle adjustment [40]:

given a video, we use the ‘bottom-up’ reconstructions of con-

secutive frames delivered by our CNN in terms of cameras

and handle positions as the initialisation for a numerical op-

timisation algorithm. We then jointly optimise the per-frame

mask and/or keypoint reprojection losses, and video-level

motion consistency losses with respect to the cameras and

handle variables, giving a ‘top-down’ refinement of our so-

lution that better matches the image evidence. We show

that this improves the results at test-time based on whatever

image evidence can be obtained without manual annotation.

We evaluate our approach on 3D shape, pose and texture

reconstruction on a range of object categories that exhibit

challenging articulations. Our ablation highlights the im-

portance of the employed self-supervised losses and the

tolerance of our method to the number of learnable handles,

while both our qualitative and quantitative results indicate

that our method largely outperforms recent approaches.

2. Related Work

Pose, Texture and Articulation Prediction Our work

addresses the task of inferring the camera pose, articulation

and texture corresponding to an input image. Recent works

have addressed several aspects of this problem [18, 23, 22]

with varying forms of supervision. Earlier approaches like

CMR [18] treat the problem of 3D reconstruction from single

images using known masks and manually labelled keypoints
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from single viewpoint image collections. Closer to our work

is Canonical Surface Mapping (CSM) et al. [23, 22] which

produces a 3D representation in the form of a rigid or ar-

ticulated template using a 2D-to-3D cycle-consistency loss.

The articulated variant of CSM [22] achieves non-rigid de-

formation by explicitly segmenting 3D parts of the template

shape manually set prior to training the method. Finally, a

line of recent research works [32, 35, 46] focus on the dis-

entanglement of images into 3D surfaces with simultaneous

camera, lighting and texture prediction without any ground-

truth supervision, but are limited to categories of moderate

shape variability, such as faces, cats or symmetric objects in

general. By contrast to the works above, our method success-

fully learns models of highly articulated deformable objects

without requiring any special preprocessing, such as manual

part segmentation, or strong assumptions, such as symmetry.

Surface Deformation Recent works on monocular 3D

reconstruction [18, 9] treat deformation as offsets added

to mesh vertices, regressed by image-driven CNNs. How-

ever regressing vertices can result in surface distortions

or corrupt features, while being opaque to a human mod-

eller. By contrast we rely on geometry processing methods

[34, 33, 15, 14], and in particular focus on the Laplacian De-

formation method [34, 33] which uses a sparse set of control

points to achieve a detail-preserving mesh deformation. We

realise that the associated optimization problem can be used

as a differentiable, structured layer and use it to both learn

the control points and efficiently regress their 3D position.

Video-based supervision Video has been commonly

used as a source of weak supervision in the context of dense

labelling tasks such as semantic segmentation [37] or Dense-

pose estimation [27]. Drawing on the classical use of motion

for 3D reconstruction, e.g. [38, 11, 20, 28, 39, 8, 7] many

recent works [41, 1, 44] have also incorporated optical flow

information to supervise 3D reconstruction networks. Both

in the category-specific [41, 1] and agnostic [52, 42, 44]

setting, optical flow provides detailed point correspondences

inside the object silhouette which can aid the prediction of

object articulations and the reconstruction of the underlying

3D geometry. More recent works have leveraged videos

for monocular 3D human reconstruction [30] or sparsely-

supervised hand-object interactions [12] based on photomet-

ric losses. In this work we show that motion is a particularly

effective source of supervision for our case, where we jointly

learn the category-specific shape prior and the 3D reconstruc-

tions. We also rely on robust, occlusion-sensitive optical flow

networks [51] which provide a stronger source of supervi-

sion than photometric consistency, since they are trained to

both handle the aperture effect in the interior of objects to

recover large displacement vectors when appropriate.

Cycle Consistency Our approach is reminiscent of the

principle of cycle consistency [48, 53, 54], where the compo-

sition of two maps is meant to result in the identity mapping.

Figure 3: Learnable Deformation Layer: The deformed

mesh V∗ is the result of an optimization scheme forcing V∗

to retain the surface details of the template mesh while also

minimizing constraints imposed by learnable handles. The

optimization solution comes in a closed form, and can be

backpropagated through, providing us with a new layer.

Our motion-based approach is in a sense the dual of [53],

where 3D synthetic data were used to learn dense correspon-

dences between categories; here we use correspondences

from a pre-trained optical flow network to learn about 3D

object categories.

3. Method Description

Given an image our target is to infer the 3D shape, camera

pose, and texture of the depicted object. During training we

only have at our disposal a single representative mesh for the

category (’template’), a set of videos, and 2D-level super-

vision from pre-trained models for semantic segmentation;

we can optionally also use ground truth for 2D joints and/or

segmentation.

In our approach we use single-frame networks and exploit

temporal information only for supervision. At test time

we can deploy the learned networks on a per-frame level,

but can also exploit temporal information to improve the

accuracy of our results through a bundle adjustment-type

joint optimization.

In this section we detail our method. We start by intro-

ducing our novel representation of an articulated object’s

3D shape in terms of a differentiable deformation model in

Section 3.1. We then turn to the use of motion as a source

of supervision, introducing our motion-consistency loss in

Section 3.2. In Section 3.3 we introduce a fine-tuning ap-

proach to refine our bottom-up network predictions with a

more careful, sample-based optimization and also present

other forms of weak supervision used in training.
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3.1. Articulated Mesh Prediction

Our aim is to synthesise the shape of an articulated object

category by a neural network. While in broad terms we

adopt the deformable template paradigm adopted by most

recent works [18, 9, 25], we deviate from the morphable

model-based [2] modeling of shape adopted in [18, 9, 25].

In those works a shape estimate V is obtained in terms of

offsets ∆V to a template shape T, yielding V = ∆V +T,

where ∆V is delivered by the last, linear, layer of a shape

decoder branch, effectively modeling shape variability as an

expansion on a linear basis. Such global basis models are

well-suited to categories such as faces or cars, but for objects

with part-based articulation such as quadrupeds we argue

that a part-level model of deformation is more appropriate -

which is also the approach routinely taken in rigged modeling

in graphics. Furthermore, the linear synthesis model is non-

interpretable or controllable by humans and requires careful

regularization during training to recover plausible meshes.

We propose instead a deformation model where a set

of learnable, network-driven control points (or ‘handles’)

deform a given template while preserving its shape, as cap-

tured by its curvature. For this we build on Laplacian surface

editing [34]. This model is controllable, interpretable, and

regularized by design, while our experiments show that it

yields systematically more accurate mesh reconstructions.

In particular we represent the 3D shape of a category as

a triangular mesh M = (V, F ) with vertices V ∈ R
N×3

and fixed edges F ∈ Z
Nf×3. Our deformation approach

relies on the cotangent-based discretization L ∈ R
N×N of

the continuous Laplace-Beltrami operator used to calculate

the curvature at each vertex of a mesh [36].

Instead of manually determining a set of handles, we pro-

pose to obtain K 3D handles through a learnable dependency

matrix A ∈ R
K×N
+ that is right-stochastic:

H = AV, where
∑

v

Ak,v = 1, (1)

forcing each handle to lie in the convex hull of the mesh

vertices. For a given image we obtain the target handle

positions H̃ by adding a network-driven update ∆H to the

template handles AT: H̃ = AT + ∆H . Based on H̃,

we obtain the deformed mesh V∗ as the minimum of the

following quadratic loss:

V∗ = argmin
V

1

2
‖LV − LT‖2 +

1

2

∥

∥

∥
AV − H̃

∥

∥

∥

2

, (2)

where as in [34] the first term forces the solution to respect

the curvature of the template mesh, LT, ensuring that salient,

high-curvature details of the template shape are preserved,

while the second term forces the location of the handles

according to V to be close to the target location, H̃.

The stationary point of (2) can be found by solving the

following linear system:

(LTL+ATA)V∗ = LTLT+ATH̃ (3)

Given that (LTL +ATA) is symmetric, positive semi-

definite and sparse, the solution V∗ can be efficiently com-

puted with conjugate gradients or sparse Cholesky factoriza-

tion. We rely on efficient solvers that cannot be currently

handled by automatic differentiation for backpropagating

through the linear system solution, and therefore provide the

explicit gradient expression in the supplemental material.

Backpropagating gradients through the Laplacian solver

allows us to both learn the association of the vertices to the

handles via the matrix A and also provide gradients back

to the handle position H̃ regressor. As such our method is

end-to-end differentiable and no manual annotation, segmen-

tation or rigging of the template mesh is required to achieve

part-based articulations.

In practice we initialize the dependency matrix A based

on Farthest Point Sampling (FPS) [6] of the mesh, shortlist-

ing a set of vertices {vk}, k = 1 . . .K that are approximately

equidistant. For each vertex vk we initialize the k− th row

of A based on the geodesic distance of the vertices to vk:

A[i, k] =
exp(1/di,vk)

∑

j exp(1/dj,vk
)

(4)

We note that at test time we have a constant affinity matrix,

A. Combined with the fixed values of L and T, we can fold

the solution of the linear system in Eq. 3 into a linear layer:

V∗ = C+DH̃, (5)

with C and D being constant matrices obtained by multiply-

ing both sides of Eq. 3 by the inverse of LTL+ATA.

We can thus interpret our method as using at training time

template-driven regularization to solve the ill-posed problem

of monocular 3D reconstruction, but being as simple and

fast as a linear layer at test-time.

3.2. Motion­based 3D supervision

Having described our deformation model, we turn to the

use of video information for network training. We rely on

optical flow [51] to deliver pixel-level correspondences be-

tween consecutive object-centered crops. Unlike traditional

3D vision which relies on category-agnostic point trajecto-

ries for 3D lifting, e.g. through factorization [38], we use

the flow-based correspondences to constrain the mesh-level

predictions of our network in consecutive frames.

In particular, our network takes as input a frame at time

t and estimates a mesh Vt and a weak perspective camera

Ct. A mesh vertex i that is visible in both frames t and

t + 1 will project to two image points pi,t = π(Vi,t,Ct)
and pi,t+1 = π(Vi,t+1,Ct+1) where π amounts to weak
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perspective projection. As such the displacement of point

pi,t according to our network will be ũi = pi,t+1 − pi,t.

This prediction is compared to the optical flow value

ui delivered at pi,t by a pretrained network [51] that we

treat as ground-truth. We limit our supervision to image

positions in the interior to the object masks and vertices

visible in both frames; vertex visibility is recovered by z-

buffering, available in any differentiable renderer. We denote

the vertices that are eligible for supervision in terms of a

binary visibility mask γ : {1, . . . ,Γ} → {0, 1}.

We combine these terms in a ‘motion re-projection’ loss

expressed as follows:

Lmotion =
1

∑Γ
i=1 γi

Γ
∑

i=1

γi ‖ui − ũi‖1 (6)

where we use the ℓ1 distance between the flow vectors

for robustness and average over the number of visible

vertices to avoid pose-specific value fluctuations. Since

ũi = π(Vi,t+1,Ct+1)− π(Vi,t,Ct) continuously depends

on the camera and mesh predictions of our network, we see

that this loss can be used to supervise both the camera and

mesh regression tasks.

This loss penalizes the cases where limb articulation ob-

served in the image domain is not reflected in the 3D re-

constructions, effectively forcing the 3D reconstructions

to become more ‘agile’ by deforming the mesh more ac-

tively. Interestingly, we observed that beyond this expected

behaviour this loss has an equally important effect on the

camera prediction, by forcing the backprojected mesh to

‘stand still’ in the object interior: even though different cam-

era poses could potentially backproject to the same object

in a single image, a change in the camera across frames will

cause large 2D displacements for the corresponding 3D ver-

tices. These are picked up when compared to the predictions

of an optical flow system that regresses small displacements

in the object interior.

3.3. Optimization­based learning and refinement

The objective function for our 3D reconstruction task

combines motion supervision with other common losses in a

joint objective function:

Ltotal = Lmotion +Lkp +Lpixel +Lrigid +Lmask +Lboundary ,
(7)

capturing keypoint, pixel-level appearance, rigidity priors, as

well as mask- and boundary- level supervision for the shape;

the forms of the losses are provided in Sec 3.3.1, while we

omit the empirically-determined loss scaling for simplicity.

In principle a neural network could successfully minimize

the sum of these losses and learn the correct 3D reconstruc-

tion of the scene. In practice we are asking the network to

both recover and learn the solution to an ill-posed problem

for multiple training samples, which has many local min-

ima. This has been observed even in strongly-supervised

human pose estimation, where careful per-sample numerical

optimization [3] was shown to yield substantial performance

improvements in [10, 21, 16, 24]. In our weakly-supervised

case the local minima problem is even more pronounced.

We use focused, per-sample numerical optimization to

refine the network’s ‘bottom-up’ predictions so as to better

match the image evidence by minimizing Ltotal with respect

to the per-frame handles and camera poses; if the object

were rigid this would amount to bundle adjustment, but in

our case we also allow the handles to deform per frame.

Our approach also applies to both videos and individual

frames, where in the latter case we omit the motion-based

loss. At test-time, as in the ‘synergistic refinement’ approach

of [10], once the network has delivered its prediction for a

test sample (frame/video), we start a numerical ‘top-down’

refinement of its estimate by minimizing Ltotal using only

masks delivered by an instance segmentation network and

flow computed from the video if applicable. The approach

comes with a computational overhead due to the need for

forward-backward passes over the differentiable renderer for

every gradient computation.

Further attesting to the importance of per-sample opti-

mization, we note that we have also found a careful initial-

ization of the camera predictions to be critical to the success

of our system: as detailed in the supplemental material we

train our system by building on the camera multiplex tech-

nique [9], that we extend further with the handle deforma-

tions.

3.3.1 Loss terms

Keypoint reprojection loss, as in [23], penalizes the ℓ1
distance between surface-based predictions and ground truth

keypoints, when available:

Lkp =
∑

i

‖ki − π (KiV,C)‖1 ,

where Ki is a fixed vector that regresses the i−th semantic

keypoint in 3D from the 3D mesh.

Texture Loss compares the mesh-based texture and the

image appearance in terms of the perceptual similarity metric

of [50] after masking by the silhoutette S:

Lpixel = dist
(

Ĩ ⊙ S, I ⊙ S
)

.

As in [18] we enforce symmetric texture predictions by

using a bilateral symmetric viewpoint.

Local Rigidity Loss, as in [19] aims at preserving the

Euclidean distances between vertices in the extended neigh-

borhood N (u) of a point u:

Lrigid = E
u∈V

E
u′∈N (u)

∣

∣‖V (u)− V (u′)‖ −
∥

∥V̄ (u)− V̄ (u′)
∥

∥

∣

∣
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Method mIoU PCK

CMR [18] 0.703 81.2

CSM [23] 0.622 68.5

A-CSM [22] 0.705 72.4

Ours

8 0.64 84.6

16 0.676 89.8

32 0.688 89.7

64 0.711 91.5

Table 1: Ablation of deformation layer on CUB: Even

with only 8 points, our handle-based approach outperforms

all competing methods in terms of PCK, while with more

handles both the mIoU and PCK scores improve further.

Region similarity loss compares the object support com-

puted from the mesh by a differentiable renderer [31] to

instance segmentations S provided either by manual annota-

tions or pretrained CNNs using their absolute distance:

Lmask =
∑

i

‖Si − frender(Vi, πi)‖

Chamfer-based loss penalizes smaller areas that are hard

to align, like hooves or tails:

Lboundary = E
u∈V

Cfg(π(u)) + E
b∈Bfg

min
u∈V

‖π(u)− b‖22,

where as in [7, 19] the first term penalizes points of the

predicted shape that project outside of the foreground mask

using the Chamfer distance to it while the second term pe-

nalizes mask under-coverage by ensuring every point on the

silhouette boundary has a mesh vertex projecting close to it.

4. Experiments

4.1. Model architecture

We use a similar architecture to CMR [18], using a

Resnet18 encoder and three decoders -one each for predict-

ing articulations, camera pose and texture. The articulation

prediction module is a set of 2 fully connected layers with

R
K×3 outputs. In particular for texture prediction, we di-

rectly predict the RGB pixel values of the UV image through

a residual decoder [9]. The texture head is a set of residual

upsampling convolution layers that take as input the encoded

features of ResNet18 and provide the color-valued UV im-

age; we use Pytorch3D [31] as differentiable renderer. A

more thorough description of the individual blocks can be

found in the supplemental material.

4.2. Data

We report quantitative reconstruction results for objects

with keypoint-annotated datasets, i.e birds, horses, tigers and

cows. We have collected a dataset for a wide set of objects,

mainly building on available video datasets [5, 49]. All of

the videos in our datasets have been filtered manually for

occluded or heavily truncated clips that are removed from

the dataset. Indicative video samples are provided in the

supplemental material; we will make our datasets publicly

available to further foster research in this direction.

Birds We use the CUB [45] dataset for training and test-

ing on birds which contains 6000 images. The train/val/test

split we use for training and report is that of [18]. While this

dataset is single-frame, we use it to compare our deformation

module with prior works on similar grounds.

Quadrupeds (Horses, Tigers) We use the TigDog

Dataset [5] which contains keypoint-annotated videos of

horses and tigers. The segmentation masks are approximate

since they are extracted using MaskRCNN [13]. We also

drop the neck keypoint for both categories since there is a

left-right ambiguity in all annotations. For every class we

keep 14 videos purely for evaluation purposes and train with

the rest, i.e 53 videos for horses and 44 for tigers. For these

classes, the number of handles is set to K = 16.

Quadrupeds (cows, giraffes, zebras and 3 others)

We use Youtube Video Instance Segmentation dataset

(YVIS) [49] to reconstruct more animal classes in 3D. The

cow category is used for evaluation since it is the only one

for which keypoing ground-truth is available; for the re-

maining 5 classes we only provide qualitative results in the

supplementary material.

For all categories we downloaded template shapes from

the internet and downsampled to a fixed number of N = 642
vertices. For evaluation we use identical template shape and

keypoint annotations to those of [22] for all classes.

4.3. Results

4.3.1 Handle-based deformation evaluation

We start with the CUB [45] dataset where we use the exact

supervision of A-CSM [23]. We outperform the state-of-the-

art system on reconstruction [18] by a significant margin

in both mean Intersection over Union (mIoU) and keypoint

reprojection accuracy (PCK), while following their evalua-

tion conventions. We ablate in particular the effect of the

number of handles on the achieved 3D reconstruction in Ta-

ble 1. We observe that our results are outperforming previous

methods even with a very small number of handles, however

increasing the number of handles allows for improved perfor-

mance. We also provide qualitative results in Figure 6 where

we show that our method is capable of correctly deforming

the template mesh to produce highly flexible wings, while

the alternative methods barely capture open wing variation.

These results clearly indicate the merit of our handle-based

deformation layer.
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Method Supervision
Training

Dataset
Horse Tiger

KP Mask Motion TigDog Pascal TigDog

CSM X X P + I 59.0 46.4 -

ACSM X X P + I 57.8 57.3 -

ACSM X X TD 68.7 44.4 36.2

Ours, inference X X X TD 74.7 57.2 51.9

Ours, refinement X X X TD 83.1 69.5 55.7

CSM X P + I 44.7 49.7 -

ACSM X P + I 58.1 54.2 -

ACSM X TD + YV 26.7 33.3 15.1

Ours, inference X X TD + YV 42.5 31.6 28.4

Ours, refinement X X TD + YV 61.3 54.9 32.5

Datasets: Pascal (P), ImageNet (I), TigDog (TD), YVIS (YV)

Method Supervision
Training

Dataset
Cow

Mask Motion Pascal

CSM X P + I 37.4

ACSM X P + I 43.8

Ours, inference X X TD + YV 44.6

Ours, refinement X X TD + YV 53.9

Table 2: Keypoint Reprojection Accuracy We report PCK accuracy (higher is better) achieved by recent methods [23, 22]

for articulate object categories. We indicate datasets used to train each method alongside with supervision method; the

CSM/ACSM models trained on P+I do not contain tiger models, while for cows we cannot provide keypoint-supervised results

due to the lack of keypoints on videos. Both when training with keypoints and without keypoints we observe substantial

improvements over models that were trained without exploiting motion.

Horses w/ LMotion w/o LMotion

mIoU PCK mIoU PCK

Inference 0.536 74.7 0.519 71.5

Mask refinement 0.691 79.5 0.691 79.5

Mask and motion refinement 0.631 83.1 0.675 72.5

Table 3: Ablation of horse reconstruction using motion-

based supervision (left vs. right) and optimization-based

reconstruction based on masks and motion (rows 1-3).

4.3.2 Motion- and Optimization- based evaluation

In Table 3 we ablate the impact of our motion-based supervi-

sion and optimization-based reconstruction for the category

of horses. We consider firstly the impact that motion-based

supervision has as a source of training (left versus right

columns). We observe that motion supervision systemati-

cally improves accuracy across all configurations and evalu-

ation measures.

When optimizing at test time as post-processing we ob-

serve how the terms that drive the optimization influence the

final results: when using only masks we have a marked in-

crease in mIoU, and a smaller increase in PCK, while when

taking motion-based terms into account as well the increase

in mIoU is not as big but we attain the highest improvement

in PCK. We visualize in Figure 4 the mean shape of the horse

along with the first 3 common deformation modes.

4.3.3 Comparisons on more categories

In Table 2 we report results on more categories where we

have been able to compare to the currently leading ap-

proaches to monocular 3D reconstruction [18, 23, 22]. We

use a small number of videos (53 for horses, 44 for tigers,

24 for cows) compared to the thousands of images available

in Imagenet and Pascal used by the existing approaches.

Starting with the comparison on horses for the case where

keypoints are available, we observe that our inference-only

Figure 4: Learned Deformations Visualization of the pre-

dicted deformations by depicting the mean shape in the cen-

ter and the first 3 modes obtained by PCA on the handle

estimates obtained across the dataset.

method has a clear lead when testing on the TigDog dataset

(the other methods have not been trained on TigDog), while

optimization results in a further boost. When tested on Pas-

cal, our inference-only results are comparable to the best,

while optimization gives us a clear edge. For cows we did

not have videos with cow keypoints, as such we did not

train our approach on it. Furthermore, we trained ACSM for

horses and tigers on the TigDog dataset in order to have fair

comparison to our method. The TigDog-trained ACSM got

a significant boost on TigDog test set but the performance

was still not on par with our result.

Turning to results where we do not use keypoints, we

observe that when used in tandem with post-processing op-

timization our method outperforms both CSM and ACSM,

while when compared to ACSM trained on the same data we

have a substantial boost on TigDog-Horse and TigDog-Tiger.

Overall we observe a larger drop in accuracy compared to the

results obtained when keypoint supervision is available. As

we show in the supplemental material, this may be due to the
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Figure 5: Quadruped reconstructions of our method. We provide renderings of the 3D reconstruction using the estimated

camera pose, a different viewpoint and the texture reconstruction. We observe that our method successfully captures large

articulated deformations as well as viewpoint variability. For videos of side-by-side comparisons to [22] please visit

https://fkokkinos.github.io/video_3d_reconstruction/.

ACSM CMR Ours ACSM CMR Ours

Figure 6: Bird reconstructions For each input image we provide the results of CMR [18] and ACSM [22] alongside with our

method. We observe that we better capture wing and beak deformation.

large flexibility of our deformable model, which manages to

“overfit” to the mask rather than performing the appropriate

global, rigid transforms. For the case of cows we observe

that even though our model was never trained on Pascal data,

it outperforms the mask-supervised variants of ACSM.

A pattern that is common for both sets of results is that

post-processing optimization yields a substantial improve-

ment in accuracy. As our qualitative results indicate in Fig-

ure 5 and the Supplemental, this is reflected also in the large

amount of limb articulation achievable by our model. Failure

cases, provided in the supplementary material are predomi-

nantly due to wrong global camera parameters such as scale,

which we attribute to the small diversity of appearance in our

limited set of videos. We anticipate further improvements

in the future by combining diverse images from static and

strong, motion-based supervision from dynamic datasets. Fi-

nally, in some cases our model fails to predict good textures

commonly for moving parts of quadrupeds like the legs.

5. Conclusion

We have presented a motion- and geometry-based deep

learning framework for monocular reconstruction that com-

bines ideas from deep learning and geometry for the un-

supervised reconstruction of highly articulated objects; we

anticipate that the interpretable and controllable nature of our

approach will help handle multiple animate object classes in

augmented reality and graphics.
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