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Abstract

We aim at accelerating super-resolution (SR) networks

on large images (2K-8K). The large images are usually de-

composed into small sub-images in practical usages. Based

on this processing, we found that different image regions

have different restoration difficulties and can be processed

by networks with different capacities. Intuitively, smooth

areas are easier to super-solve than complex textures. To

utilize this property, we can adopt appropriate SR networks

to process different sub-images after the decomposition. On

this basis, we propose a new solution pipeline – ClassSR

that combines classification and SR in a unified framework.

In particular, it first uses a Class-Module to classify the sub-

images into different classes according to restoration diffi-

culties, then applies an SR-Module to perform SR for differ-

ent classes. The Class-Module is a conventional classifica-

tion network, while the SR-Module is a network container

that consists of the to-be-accelerated SR network and its

simplified versions. We further introduce a new classifica-

tion method with two losses – Class-Loss and Average-Loss

to produce the classification results. After joint training, a

majority of sub-images will pass through smaller networks,

thus the computational cost can be significantly reduced.

Experiments show that our ClassSR can help most existing

methods (e.g., FSRCNN, CARN, SRResNet, RCAN) save up

to 50% FLOPs on DIV8K datasets. This general framework

can also be applied in other low-level vision tasks.

1. Introduction

Image super-resolution (SR) is a long-studied topic,

which aims to generate a high-resolution visual-pleasing
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ClassSR-FSRCNN: 36.97dB / 256M
(FSRCNN: 36.81dB / 468M)

Figure 1. The SR result (x4) of ClassSR-FSRCNN. The Class-

Module classifies the image “0896” (DIV2K) into 56% simple,

20% medium and 24% hard sub-images. Compared with FSR-

CNN, ClassSR-FSRCNN uses only 55% FLOPs to achieve the

same performance.

image from a low-resolution input. In this paper, we

study how to accelerate SR algorithms on “large” input im-

ages, which will be upsampled to at least 2K resolution

(2048×1080). While in real-world usages, the image/video

resolution for smartphones and TV monitors has already

reached 4K (4096 × 2160), or even 8K (7680 × 4320). As

most recent SR algorithms are built on CNNs, the mem-

ory and computational cost will grow quadratically with the

input size. Thus it is necessary to decompose input into sub-

images and continuously accelerate SR algorithms to meet

the requirement of real-time implementation on real images.

Recent works on SR acceleration focus on proposing

light-weight network structures, e.g., from the early FSR-

CNN [6] to the latest CARN [2], which are detailed in the

Sec. 2. We tackle this problem from a different perspec-

tive. Instead of designing a faster model, we propose a new

processing pipeline that could accelerate most SR methods.

Above all, we draw the observation that different image re-

gions require different network complexities (see Sec. 3.1).

For example, the flat area (e.g., sky, land) is naturally easier

to process than textures (e.g., hair, feathers). This indicates
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Figure 2. PSNR and FLOPs comparison between ClassSR and

original networks on Test8K with × 4.

that if we can use smaller networks to treat less complex

image regions, the computational cost will be significantly

reduced. According to this observation, we can adopt dif-

ferent networks for different contents after decomposition.

Sub-image decomposition is especially beneficial for

large images. First, more regions are relatively simple to

restore. According to our statistics, about 60% LR sub-

images (32 × 32) belong to smooth regions for DIV8K [7]

dataset, while the percentage drops to 30% for DIV2K [1]

dataset. Thus the acceleration ratio will be higher for large

images. Second, sub-image decomposition can help save

memory space in real applications, and is essential for low-

memory processing chips. It is also plausible to distribute

sub-images to parallel processors for further acceleration.

To address the above issue and accelerate existing SR

methods, we propose a new solution pipeline, namely

ClassSR, to perform classification and super-resolution si-

multaneously. The framework consists of two modules –

Class-Module and SR-Module. The Class-Module is a sim-

ple classification network that classifies the input into a spe-

cific class according to the restoration difficulty, while the

SR-Module is a network container that processes the classi-

fied input with the SR network of the corresponding class.

They are connected together and need to be trained jointly.

The novelty lies in the classification method and training

strategy. Specifically, we introduce two new losses to con-

strain the classification results. The first one is a Class-Loss

that encourages a higher probability of the selected class

for individual sub-images. The other one is an Average-

Loss that ensures the overall classification results not bias

to a single class. These two losses work cooperatively

to make the classification meaningful and well-distributed.

The Image-Loss (L1 loss) is also added to guarantee the

reconstruction performance. For the training strategy, we

first pre-train the SR-Module with Image-Loss. Then we

fix the SR-Module and optimize the Class-Module with all

three losses. Finally, we optimize the two modules simul-

taneously until convergence. This pipeline is general and

effective for different SR networks.

Experiments are conducted on representative SR net-

works with different scales – FSRCNN (tiny) [6],

CARN (small) [2], SRResNet (middle) [13] and RCAN

(large) [25]. As shown in Fig. 2, the ClassSR method could

help these SR networks save 50%, 47%, 48%, 50% compu-

tational cost on the DIV8K dataset, respectively. An exam-

ple is shown in Fig. 1, where the flat areas (color in light

green) are processed with the simple network and the tex-

tures (color in red) are processed with the complex one. We

have also provided a detailed ablation study on the choice

of different network settings.

Overall, our contributions are three-fold: (1) We pro-

pose ClassSR. It is the first SR pipeline that incorpo-

rates classification and super-resolution together on the sub-

image level. (2) We tackle acceleration by the character-

istic of data. It makes ClassSR orthogonal to other accel-

eration networks. A network compressed to the limit can

still be accelerated by ClassSR. (3) We propose a clas-

sification method with two novel losses. It divides sub-

images according to their restoration difficulties that are

processed by a specific branch instead of predetermined la-

bels, so it can also be directly applied to other low-level

vision tasks. The code will be made available: https:

//github.com/Xiangtaokong/ClassSR

2. Related work

2.1. CNNs for Image Super­Resolution

Since SRCNN [5] first introduced convolutional neural

networks (CNNs) to the SR task, many deep neural net-

works have been developed to improve the reconstruction

results. For example, VDSR [10] uses a very deep network

to learn the image residual. SRResNet [13] introduces Res-

Block [8] to further expand the network size. EDSR [14] re-

moves some redundant layers from SRResNet and advances

results. RDN [26] and RRDB [20] adopt dense connections

to utilize the information from preceding layers. Further-

more, RCAN [25], SAN [4] and RFA [15] explore the atten-

tion mechanism to design deeper networks and constantly

refresh the state-of-the-art. However, the expensive compu-

tational cost has limited their practical usages.

2.2. Light­weight SR Networks

To reduce computational cost, many acceleration meth-

ods have been proposed. FSRCNN [6] and ESPCN [18]

use the LR image as input and upscale the feature maps at

the end of the networks. LapSRN [12] introduces a deep

laplacian pyramid network that gradually upscales the fea-

ture maps. CARN [2] uses the group convolution to design

a cascading residual network for fast processing. IMDN [9]

extracts hierarchical features by splitting operations and

then aggregates them to save computation. PAN [27] adopts

pixel attention to obtain an effective network.

All of those methods aim to design a relatively light-
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Figure 3. The ranked PSNR curve of sub-images from DIV2K val-

idation set and the visualization of three classes.

Model FLOPs Simple Medium Hard

FSRCNN (16) 141M 42.71dB – –

FSRCNN (36) 304M – 29.62dB –

FSRCNN (56) 468M – – 22.73dB

FSRCNN-O (56) 468M 42.70dB 29.69dB 22.71dB

Table 1. PSNR values obtained by three SR branches of ClassSR-

FSRCNN with ×4. They are separately trained with “simple,

medium, hard” training data and tested on corresponding valida-

tion data. -O: the original networks trained with all data.

weight network with an acceptable reconstruction perfor-

mance. In contrast, our ClassSR is a general framework that

could accelerate most existing SR methods, even if ranging

from tiny networks to large networks.

2.3. Region­aware Image Restoration

Recently, investigators start to treat different image re-

gions with different processing strategies. RAISR [17] di-

vides the image patches into clusters, and constructs an ap-

propriate filter for each cluster. It also uses an efficient

hashing approach to reduce the complexity of the cluster-

ing algorithm. SFTGAN [19] introduces a novel spatial

feature transform layer to incorporate the high-level seman-

tic prior which is an implicit way to process different re-

gions with different parameters. RL-Restore [23] and Path-

Restore [24] decompose the image into sub-images and esti-

mate an appropriate processing path by reinforcement learn-

ing. Different from them, we propose a new classification

method to determine the processing of each region.

3. Methods

3.1. Observation

We first illustrate our observation on different kinds of

sub-images. Specifically, we investigate the statistical char-

acteristics of 32 × 32 LR sub-images in DIV2K validation

dataset [1] 1. To evaluate their restoration difficulty, we pass

all sub-images through the MSRResNet [20], and rank these

1We use 100 validation images (0801-0900), and crop the sub-images

with stride 32 and collect 17,808 sub-images in total.

sub-images according to their PSNR values. As depicted

in Fig. 3, we show these values in a blue curve and sepa-

rate them into three classes with the same numbers of sub-

images – “simple, medium, hard”. It is observed that the

sub-images with high PSNR values are generally smooth,

while the sub-images with low PSNR values contain com-

plex textures.

Then we adopt different networks to deal with different

kinds of sub-images. As shown in Table 1, we use three FS-

RCNN models with the same network structure but different

channel numbers in the first conv. layer and the last deconv.

layer (i.e., 16, 36, 56). They are separately trained with

“simple, medium, hard” sub-images from training dataset2.

From Table 1, we can find that there is almost no difference

for FSRCNN(16) and FSRCNN-O(56) on “simple” sub-

images, and FSRCNN(36) can achieve roughly the same

performance as FSRCNN-O(56) on “medium” sub-images.

This indicates that we can use a light-weight network to deal

with simple sub-images to save computational cost. That

is why we propose the following ClassSR method, which

could treat different image regions differently and acceler-

ate existing SR methods.

3.2. Overview of ClassSR

ClassSR is a new solution pipeline for single image SR.

It consists of two modules – Class-Module and SR-Module,

as shown in Fig. 4. The Class-Module classifies the input

images into M classes, while the SR-Module contains M

branches (SR networks) {f j
SR}

M
j=1 to deal with different in-

puts. To be specific, the large input LR image X is first de-

composed into overlapping sub-images {xi}
N
i=1. The Class-

Module accepts each sub-image xi and generates a proba-

bility vector [P1(xi), ..., PM (xi)]. After that, we determine

which SR network to be used by selecting the index of the

maximum probability value J = argmaxj Pj(xi). Then

xi will be processed by the J th branch of the SR-Module:

yi = fJ
SR(xi). Finally, we combine all output sub-images

{yi}
N
i=1 to get the final large SR image Y (2K-8K).

3.3. Class­Module

The goal of Class-Module is to tell “whether the input

sub-image is easy or hard to reconstruct” by low-level fea-

tures. As shown in Fig. 4, we design the Class-Module as a

simple classification network, which contains five convolu-

tion layers, an average pooling layer and a fully-connected

layer. The convolution layers are responsible for feature ex-

traction, while the pooling and fully-connected layers out-

put the probability vector. This network is pretty light-

weight, and brings little additional computational cost. Ex-

periments show that such a simple structure can already

2We use 800 training images (0001-0800) in DIV2K, reduce them to

0.6, 0.7, 0.8, 0.9 times, and crop the sub-images with stride 16 and collect

1,594,077 sub-images in total.
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Figure 4. The overview of the proposed ClassSR, when the number of classes M = 3. Class-Module: aims to generate the probability

vector, SR-Module: aims to deal with the corresponding sub-images.

achieve satisfactory classification results.

3.4. SR­Module

The SR-Module is designed as a container that consists

of several independent branches {f j
SR}

M
j=1. In general,

each branch can be any learning-based SR network. As our

goal is to accelerate an existing SR method (e.g., FSRCNN,

CARN), we adopt this SR network as the base network, and

set it as the most complex branch fM
SR. The other branches

are obtained by reducing the network complexity of fM
SR.

For simplicity, we use the number of channels in each con-

volution layer to control the network complexity. Then how

many channels are required for each SR branch? The prin-

ciple is that the branch network should achieve comparable

results as the base network trained with all data in the cor-

responding class. For instance (see Table 1 and Fig. 4), the

number of channels for f1
SR, f

2
SR, f

3
SR can be 16, 36, 56,

where 56 is the channel number of the base network. Note

that we can also decrease the network complexity in other

ways, such as reducing layers (see Sec. 4.3.4), as long as

the network performance meets the above principle.

3.5. Classification Method

During training, the Class-Module classifies sub-images

according to their restoration difficulties of a specific branch

instead of predetermined labels. Therefore, different from

testing, the input sub-image x should pass through all M SR

branches. Besides, in order to ensure that the Class-Module

can accept the gradient propagation from the reconstruction

results, we multiply the reconstructed sub-images f i
SR(x)

and the corresponding classification probability Pi(x) to

generate the final SR output y as:

y =

M∑

i=1

Pi(x)× f i
SR(x). (1)

We just use Image-Loss (L1 loss) to constrain y, then

we can obtain classification probabilities automatically. But

during testing, the input only pass the SR branch with the

maximum probability. Thus, we propose Lc (Class-Loss,

see Sec. 3.6.1) to make the maximum probability to ap-

proach 1, and y will be equal to the sub-image with prob-

ability 1. Note that if we only adopt the Image-Loss and

Class-Loss, the training will easily converge to an extreme

point, where all images are classified into the most complex

branch. To avoid such a biased result, we design the La

(Average-Loss, see Sec. 3.6.2) to constrain the classification

results. This is our proposed new classification method.

3.6. Loss Functions

The loss function consists of three losses – a commonly

used L1 loss (Image-Loss) and our proposed two losses

Lc (Class-Loss) and La (Average-Loss). Specifically, L1

is used to ensure the image reconstruction quality, Lc im-

proves the effectiveness of classification, and La ensures

that each SR branch can be chosen equally. The loss func-

tion is shown as:

L = w1 × L1 + w2 × Lc + w3 × La, (2)

where w1, w2 and w3 are the weights to balance different

loss terms. L1 is the 1-norm distance between the output

image and ground truth, just as in previous works [10, 13].

The two new losses Lc and La are detailed below.

3.6.1 Class-Loss

As mentioned in Sec. 3.5, the Class-Loss constrains the out-

put probability distribution of the Class-Module. We pre-

fer that the Class-Module has much higher confidence in

class with the maximum probability than others. For exam-

ple, the classification result [0.90, 0.05, 0.05] is better than

[0.34,0.33,0.33], as the latter seems like a random selection.

The Class-Loss is formulated as:

Lc = −

M−1∑

i=1

M∑

j=i+1

|Pi(x)− Pj(x)|, s.t.

M∑

i=1

Pi(x) = 1.

(3)
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where M is the number of classes. The Lc is the negative

number of distance sum between each class probability for

a same sub-image. This loss can greatly enlarge the proba-

bility gap between different classification results so that the

maximum probability value will be close to 1.

3.6.2 Average-Loss

As mentioned in Sec. 3.5, if we only adopt the Image-Loss

and Class-Loss, the sub-images are prone to be assigned to

the most complex branch. This is because that the most

complex SR network can easily get better results. Then the

Class-Module will lose its functionality and the SR-Module

degenerates to the base network. To avoid this, we should

ensure that each SR branch has an equal opportunity to be

selected. Therefore, we design the Average-Loss to con-

strain the classification results. It is formulated as:

La =
M∑

i=1

|
B∑

j=1

Pi(xj)−
B

M
|, (4)

where B is the batch size. The La is the sum of the dis-

tance between the average number ( B
M

) and the sub-images

number of each class within a batch. We use the probability

sum
∑B

j=1
Pi(xj) to calculate the sub-images number be-

cause statistic number do not propagate gradients. With this

loss, the number of sub-images that pass through each SR

branch during training would be approximately the same.

3.7. Training Strategy

We propose to train the ClassSR by three steps: First,

pre-train SR-Module, then train Class-Module with fixing

SR-Module using the proposed three losses, finally fine-

tune all networks jointly. This is because that if we train

both Class-Module and SR-Module from scratch, the per-

formance will be very unstable, and the classification will

easily fall into a bad local minimum.

To pre-train the SR-Module, we use the data classified

by the PSNR values. Specifically, all sub-images are passed

through a well-trained MSRResNet. Then these sub-images

are ranked according to their PSNR values. Next, the first

1/3 sub-images are assigned to the hard class, while the last

1/3 belong to the simple class, just as in Sec. 3.1. Then we

train the simple/medium/complex SR branch on the corre-

sponding simple/medium/hard data. Although using PSNR

obtained by MSRResNet to estimate the restoration difficul-

ties is not perfect for different SR branches, it could provide

SR branches a good starting point.

After that, we add the Class-Module and fix the parame-

ters of the SR-Module. The overall model is trained with the

three losses on all data. As shown in Fig. 6(a) and Fig. 6(b),

this procedure could give the Class-Module a primary clas-

sification ability.

Afterwards, we relax all parameters and finetune the

whole model. During joint training, the Class-Module re-

fines its output probability vectors by the final SR results,

and the SR-Module updates according to the new classifi-

cation results. In experiments (see Fig. 6), we can find that

the sub-images are assigned to different SR branches, while

the performance and efficiency improve simultaneously.

3.8. Discussion

We further clarify the unique features of ClassSR as fol-

lows. 1) The classification+SR strategy adopted by ClassSR

has significant practical values. This is based on the obser-

vation that large images SR (2K-8K) have different charac-

teristics with small images SR (e.g., the same content cover

more pixels), thus are more suitable for sub-image decom-

position and special treatment. 2) While the idea of divide-

and-conquer is straightforward, the novelty of our method

lies in the joint optimization of classification and super-

resolution. With a unified framework, we can simultane-

ously constrain the classification and reconstruction results

by a dedicated loss combination. 3) ClassSR can be used

together with previous methods for double acceleration.

4. Experiments

4.1. Setting

4.1.1 Training Data

We use the DIV2K [1] dataset for training. To prepare the

training data, we first downsample3 the original images with

scaling factors 0.6, 0.7, 0.8, 0.9 to generate the HR images.

These images are further downsampled 4 times to obtain

the LR images. Then we densely crop 1.59M sub-images

with size 32 × 32 from LR images. These sub-images are

equally divided into three classes (0.53M for each) accord-

ing to their PSNR values through MSRResNet [20]. All

sub-images are further augmented by flipping and rotation.

Finally, we obtain “simple, medium, hard” datasets for SR-

Module pre-training. Besides, we also select ten images

(index 0801-0810) from the DIV2K validation set for vali-

dation during training.

4.1.2 Testing Data

Instead of commonly used SR test sets, such as Set5 [3]

and Set14 [22], as their images are too small to be de-

composed, we select 300 images (index 1201-1500) from

the DIV8K [7] dataset. Specifically, the first two hundred

images are downsampled to 2K and 4K resolution, respec-

tively, which are used as HR images of Test2K and Test4K

datasets. The last hundred images form the Test8K dataset.

The LR images are also obtained by ×4 downsampling

3We use bicubic downsampling for all experiments.
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Figure 5. Visual results of ClassSR and the original networks on 4K images with ×4 super-resolution. The right images are 200×200

which contain decomposition borders.(The size of super-resolved sub-images is 128×128.) -O: the original networks.

Model Parameters Test2K FLOPs Test4K FLOPs Test8K FLOPs

FSRCNN-O 25K 25.61dB 468M(100%) 26.90dB 468M(100%) 32.66dB 468M(100%)

ClassSR-FSRCNN 113K 25.61dB 311M(66%) 26.91dB 286M(61%) 32.73dB 238M(51%)

CARN-O 295K 25.95dB 1.15G(100%) 27.34dB 1.15G(100%) 33.18dB 1.15G(100%)

ClassSR-CARN 645K 26.01dB 814M(71%) 27.42dB 742M(64%) 33.24dB 608M(53%)

SRResNet-O 1.5M 26.19dB 5.20G(100%) 27.65dB 5.20G(100%) 33.50dB 5.20G(100%)

ClassSR-SRResNet 3.1M 26.20dB 3.62G(70%) 27.66dB 3.30G(63%) 33.50dB 2.70G(52%)

RCAN-O 15.6M 26.39dB 32.60G(100%) 27.89dB 32.60G(100%) 33.76dB 32.60G(100%)

ClassSR-RCAN 30.1M 26.39dB 21.22G(65%) 27.88dB 19.49G(60%) 33.73dB 16.36G(50%)

Table 2. PSNR values on Test2K, Test4K and Test8K. -O: the original networks. Red/Blue text: best performance/lowest FLOPs.

based on HR images. During testing, the LR images are

cropped into 32× 32 sub-images with stride 28. The super-

resolved sub-images are combined to SR images by aver-

aging overlapping areas. We use PSNR values between SR

and HR images to evaluate the reconstruction performance

and calculate the average FLOPs of all 32× 32 sub-images

within a test set to evaluate the computational cost.

4.1.3 Training Details

First, we pre-train the SR-Module. The f1
SR, f2

SR and f3
SR

are separately trained on different training data (“simple,

medium, hard”). The mini-batch size is set to 16. L1 loss

function [21] is adopted with Adam optimizer [11] (β1 =

0.9, β2 = 0.999). The cosine annealing learning strategy is

applied to adjust the learning rate. The initial learning rate

is set to 10−3 and the minimum is set to 10−7. The period of

cosine is 500k iterations. Then we train the Class-Module

with three losses (the weights w1, w2, w3 are set to 2000,

1, 6) on all data. Note that we use a larger batch size(96),

since the Average-loss needs to balance the number of sub-

images within each batch. The other settings are the same as

pre-training. The Class-Module is trained within 200k itera-

tions. Finally, we train two modules jointly with all settings

unchanged. Besides, we also train the original network with

all data in a larger number of iterations than ClassSR for a

fair comparison. All models are built on the PyTorch frame-

work [16] and trained with NVIDIA 2080Ti GPUs.

4.2. ClassSR with Existing SR networks

ClassSR is a general framework that can incorporate

most deep learning based SR methods, regardless of the

network structure. Thus, we do not compare ClassSR with

other network accelerating strategies because they can also

be further accelerated by ClassSR. Therefore, to demon-

strate its effectiveness, we use the ClassSR to accelerate

FSRCNN (tiny) [6], CARN (small) [2], SRResNet (mid-

dle) [13] and RCAN (large) [25], which are representative

networks of different network scales. Their SR-Modules all

contain three branches. The most complex branch f3
SR is

the original network, while the other branches are obtained

by reducing the channels in each convolution layer. Specif-

ically, the channel configurations of the three branches are

(16, 36, 56) for FSRCNN4, (36, 52, 64) for CARN, (36, 52,

4As FSRCNN has different numbers of channels in each layer, we only

change the first conv. layer and the last deconv. layer.
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64) for SRResNet, and (36, 50, 64) for RCAN. Training and

testing follow the same procedure as described above.

Results are summarized in Table 2. Obviously, most

ClassSR methods can obtain better performance than the

original networks with lower computational cost, ranging

from 70% to 50%. The reduction of FLOPs is highly cor-

related with the image resolution of test data. The accelera-

tion on Test8K is the most significant, nearly 2 times (50%

FLOPs) for all methods. This is because a larger input im-

age can be decomposed into more sub-images, which have

a higher probability to be processed by simple branches.
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Figure 6. The training curves of Class-Module (Class) and joint

training (Joint) of ClassSR-FSRCNN.

To further understand how ClassSR works, we use

ClassSR-FSRCNN to illustrate the behaviors and interme-

diate results of different training stages. First, let us see

the performance of SR-Module pre-training. As shown in

Table 1, the results of SR branches in the corresponding

validation sets are roughly the same as the original network.

This is in accordance with our observation in Sec. 3.1. Then

we show the validation curves of training Class-Module and

joint training in Fig. 6. We can see that the PSNR values in-

crease with the decrease of FLOPs even during the training

of Class-Module. This indicates that the increase in perfor-

mance is not at the cost of the computation burden. In other

words, the input images are classified into more appropriate

branches during the training process, demonstrating the ef-

fectiveness of both two training procedures. After training,

we test ClassSR-FSRCNN on Test8K. Statistically, 61%,

23%, 16% sub-images are assigned to FSRCNN (16), FSR-

CNN (36), FSRCNN (56), respectively. The overall FLOPs

drop from 468M to 236M. This further reflects the effec-

tiveness of classification.

Fig. 5 shows a visual example, where we observe that

ClassSR methods can obtain the same visual effects as the

original networks. Furthermore, the transitions among dif-

ferent regions are smooth and natural. In other words, treat-

ing different regions differently will bring no incoherence

between adjacent sub-images.

Complexity Analysis During testing, first, we use the

average FLOPs of all 32 × 32 sub-images within a test set

to evaluate the running time because the FLOPs is device-

independent and well-known by most researchers and en-

gineers. The FLOPs already includes the cost of Class-

Module, which is only 8M, almost negligible for the whole

model. Second, we need to clarify that the aim of ClassSR

is to save FLOPs instead of parameters. The former one can

represent the real running time, while the latter one mainly

influences the memory. Note that the memory cost brought

by model parameters is much less than saving intermediate

features, thus the increased parameters brought by ClassSR

are acceptable.

4.3. Ablation Study

4.3.1 Effect of Class-Loss

In the ablation study, we test the effect of different com-

ponents and settings with ClassSR-FSRCNN. First, we test

the effect of the proposed Class-Loss by removing it from

the loss function (w2 = 0). Fig. 7 shows the curves of

PSNR and FLOPs during training. Without the Class-Loss,

both two curves cannot converge. This is because that the

output probability vectors of the Class-Module all become

[0.333, 0.333, 0.333] under the influence of the Average-

Loss. In other words, the input images are randomly as-

signed to an SR branch, leading to unstable performance.

This demonstrates the importance of Class-Loss.
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Figure 7. Training curves comparison of Class-Module

with/without Class-Loss for ClassSR-FSRCNN.

4.3.2 Effect of Average-Loss

Then we evaluate the effect of the Average-Loss by remov-

ing it from the loss function (w3 = 0). From Fig. 8, we can

see that both PSNR and FLOPs stop changing from a very

early stage. The reason is that all input images are assigned

to the most complex branch, which is a bad local minimum

for optimization. The Average-Loss is proposed to avoid

such biased classification results.

4.3.3 Effect of the number of classes

We also investigate the effect of the number of classes,

which is also the number of SR branches. We conduct ex-
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Model Test2K FLOPs Test4K FLOPs Test8K FLOPs

ClassSR-FSRCNN(2) (16, 56) 25.61dB 310M(66%) 26.91dB 280M(60%) 32.72dB 228M(49%)

ClassSR-FSRCNN(3) (16, 36, 56) 25.61dB 311M(66%) 26.91dB 286M(61%) 32.73dB 238M(51%)

ClassSR-FSRCNN(4) (16, 29, 43, 56) 25.61dB 298M(64%) 26.92dB 290M(62%) 32.73dB 238M(51%)

ClassSR-FSRCNN(5) (16, 26, 36, 46, 56) 25.63dB 306M(65%) 26.93dB 286M(61%) 32.74dB 248M(53%)

Table 3. PSNR obtained by ClassSR. ClassSR-FSRCNN(2) (16, 56): ClassSR has 2 branches. f1

SR has 16 channels, f2

SR has 56 channels.

Model Test2K FLOPs Test4K FLOPs Test8K FLOPs

ClassSR-SRResNet(38 12, 54 14, 64 16) 26.20dB 3.60G(69%) 27.65dB 3.28G(63%) 33.50dB 2.68G(52%)

ClassSR-SRResNet(42 8, 56 12, 64 16) 26.20dB 3.60G(69%) 27.65dB 3.28G(63%) 33.50dB 2.68G(52%)

Table 4. PSNR values obtained by ClassSR with different layers and channels on Test2K, Test4K and Test8K. ClassSR-SRResNet (38 12,

54 14, 64 16): f1

SR has 42 channels and 12 layers, f2

SR has 54 channels and 14 layers, f3

SR has 64 channels and 16 layers.
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Figure 8. Training curves comparison of Class-Module

with/without Average-Loss for ClassSR-FSRCNN.

periments with 2, 3, 4, 5 classes. To pre-train SR branches,

we also divide the training data into different numbers

of classes, using the same equal-division strategy as in

Sec. 4.1.1. Correspondingly, we set different channels num-

bers for different settings, as shown in Table 3. From the re-

sults, we can observe that more classes will bring better per-

formance. However, the differences are insignificant. Even

the case with two classes achieves satisfactory results. This

shows that the ClassSR is robust to the number of classes.

4.3.4 Controling network complexity in other ways

As mentioned in Sec. 3.4, we obtain branch networks with

different network complexities by changing the number of

channels and layers at the same time. As shown in Ta-

ble 4, we could obtain a comparable performance as reduc-

ing channels in Table 2. The reason why we do not only

reduce the layers is that the FLOPs brought by middle lay-

ers account for a small proportion of the total FLOPs in

light-weight networks (3% for FSRCNN, 58% for CARN

and 47% for SRResNet). In other words, even removing all

the middle layers can only reduce little FLOPs. Therefore,

it is essential to select proper ways to reduce the network

complexity for different base networks.

4.4. ClassSR in other low­level tasks

To demonstrate that our proposed ClassSR is flexible and

can be easily applied to deal with other low-vision tasks,

where different regions have different restoration difficul-

ties, we conduct experiments on image denoising. We use

DnCNN with different channels (38, 52, 64) as the Denoise-

Module to replace SR-Module. Then we train the network

on DIV2K5 following the above training settings.

Model Test2K/FLOPs Test4K/FLOPs

DnCNN-O 31.20dB/1.14G(100%) 32.26dB/ 1.14G(100%)

DnCNN-C 31.23dB/0.83G(73%) 32.28dB/0.76G(67%)

Table 5. PSNR values on Test2K and Test4K. -O: the original net-

work. -C: Denoise with ClassSR framework.

As shown in Table 5, we evaluate the network on Test2K

and Test4K with the same noise level. DnCNN with

ClassSR framework can obtain higher PSNR than the orig-

inal DnCNN but with lower computational cost. Compared

with SR tasks, there are no enough “simple” sub-images

in a noisy image in denoising. Therefore, the computa-

tional cost saved by ClassSR is not as much as that in SR

task. Nevertheless, this result has illustrated ClassSR can

be adapted to other low-level vision tasks.

5. Conclusion

In this work, we propose ClassSR with a new classifi-

cation method and two novel loss functions, which could

accelerate almost all learning-based SR methods on large

images (2K-8K). The key idea is using a Class-Module to

classify the sub-images into different classes (e.g., “simple,

medium, hard”), each class corresponds to different pro-

cessing branches with different network capacity. Extensive

experiments well demonstrate that ClassSR can accelerate

most existing methods on different datasets. Processing im-

ages with more “simple” regions (e.g, DIV8K) will save

more FLOPs. Besides, ClassSR can also be applied in other

low-level vision tasks.
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