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Figure 1: Robust consistent video depth estimation of dynamic scenes. Our method estimates a smooth camera

trajectory and detailed and stable dense depth map on challenging hand-held cellphone videos. Our method supports both

still (static) and dynamic camera motion.

Abstract

We present an algorithm for estimating consistent dense

depth maps and camera poses from a monocular video.

We integrate a learning-based depth prior, in the form of

a convolutional neural network trained for single-image

depth estimation, with geometric optimization, to estimate

a smooth camera trajectory as well as detailed and sta-

ble depth reconstruction. Our algorithm combines two

complementary techniques: (1) flexible deformation-splines

for low-frequency large-scale alignment and (2) geometry-

aware depth filtering for high-frequency alignment of fine

depth details. In contrast to prior approaches, our method

does not require camera poses as input and achieves ro-

bust reconstruction for challenging hand-held cell phone

captures containing a significant amount of noise, shake,

motion blur, and rolling shutter deformations. Our method

quantitatively outperforms state-of-the-arts on the Sintel

benchmark for both depth and pose estimations and attains

favorable qualitative results across diverse wild datasets.

1. Introduction

Dense per-frame depth is an important intermediate rep-

resentation that is useful for many video-based applications,

such as 3D video stabilization [37], augmented reality (AR)

and special video effects [59, 39], and for converting videos

for virtual reality (VR) viewing [22]. However, estimating

accurate and consistent depth maps for casually captured

videos still remains very challenging. Cell phones contain

small image sensors that may produce noisy images, espe-

cially in low lighting situations. They use a rolling shut-

ter that may result in wobbly image deformations. Hand-

held captured casual videos often contain camera shake and

motion blur, and dynamic objects, such as people, animals,

and vehicles. In addition to all these degradations, there ex-

ist well-known problems for 3D reconstruction that are not

specific to video, including poorly textured image regions,

repetitive patterns, and occlusions.

Traditional algorithms for dense reconstruction that

combine Structure from Motion (SFM) and Multi-view

Stereo (MVS) have difficulties dealing with these chal-

lenges. The SFM step suffers from the limitations of ac-

curacy and availability of correspondence and often fails
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entirely, as explained below, preventing further processing.

Even when SFM succeeds, the MVS reconstructions typi-

cally contain a significant amount of holes and noises.

Learning-based algorithms [35, 34, 48] are better

equipped to handle with this situation. Instead of match-

ing points across frames and geometric triangulation they

employ priors learned from diverse training datasets. This

enables them to handle many of the challenging situations

aforementioned. However, the estimated depth is only de-

fined up to scale, and, while plausible, is not necessarily

accurate, i.e., it lacks geometric consistency.

Hybrid algorithms [39, 36, 70, 56] achieve desirable

characteristics of both approaches by combining learnt pri-

ors with geometric reasoning. These methods often as-

sume precise per-frame camera poses as auxiliary inputs,

which are typically estimated with SFM. However, SFM al-

gorithms are not robust to the issues described above. In

such situations, SFM might fail to register all frames or

produce outlier poses with large errors. As a consequence,

hybrid algorithms work well when the pose estimation suc-

ceeds and fail catastrophically when it does not. This prob-

lem of robustness makes these algorithms unsuitable for

many real-world applications, as they might fail in unpre-

dictable ways. Recently, a hybrid approach proposed in the

DeepV2D work [56] attempts to interleave pose and depth

estimations in inference for an ideal convergence, which

performs reasonably well on static scenes but still does not

prove the capability of tackling dynamic scenes.

We present a new algorithm that is more robust and does

not require poses as input. Similar to Luo et al. [39], we

leverage a convolutional neural network trained for single-

image depth estimation as a depth prior and optimize the

alignment of the depth maps. However, their test-time fine-

tuning formulation requires a pre-established geometric re-

lationship between matched pixels across frames, which, in

turn, requires precisely calibrated camera poses and per-

frame depth scale factors. In contrast, we jointly optimize

extrinsic and intrinsic camera pose parameters as well as

3D alignment of the estimated depth maps using continu-

ous optimization. Naı̈ve alignment using rigid-scale trans-

formations does not result in accurate poses because the in-

dependently estimated per-frame depth maps usually con-

tain random inaccuracies. These further lead to misalign-

ment, which inevitably imposes noisy errors onto the esti-

mated camera trajectory. We resolve it by turning to a more

flexible deformation model, using spatially-varying splines.

They provide a more exact alignment, which, in succession,

results in smoother and more accurate trajectories.

The spline-based deformation achieves accurate low-

frequency alignment. To further improve high-frequency

details and remove residual jitter, we use a geometry-aware

depth filter. This filter is capable of bringing out fine depth

details, rather than blurring them because of the precise

alignment from the previous stage.

As shown in previous work, the learning-based prior is

resilient to moderate amounts of dynamic motion. We make

our method even more robust to large dynamic motion by

incorporating automatic segmentation-based masks to relax

the geometric alignment requirements in regions containing

people, vehicles, and animals.

We evaluate our method qualitatively (visually) by pro-

cessing all 90 sequences from the DAVIS dataset (originally

designed for dynamic video object segmentation) [46] and

comparing against previous methods (of which many fail).

We further, evaluate quantitatively on the 23 sequences

from the Sintel dataset [4], for which ground truth pose and

depth are available.

2. Related Work

Multi-view stereo. Multi-view stereo (MVS) algo-

rithms estimate depth from a collection of images cap-

tured from different viewpoints [53, 17]. Geometry-based

MVS systems (e.g., COLMAP [52]) follow the incremen-

tal Structure-from-Motion (SFM) pipeline (correspondence

estimation, pose estimation, triangulation, and bundle ad-

justment). Several learning-based methods further improve

the reconstruction quality by fusing classic MVS techniques

(e.g., cost aggregation and plane-sweep volume) and data-

driven priors [58, 24, 68, 25, 28]. In contrast to MVS algo-

rithms that assume a static scene, our work aims to recon-

struct fully dense depth from a dynamic scene video.

Single-image depth estimation. In recent years we

have witnessed rapid progresses on supervised learning-

based single-image depth estimation [13, 12, 30, 38, 16].

As diverse training images with the corresponding ground

truth depth maps are difficult to obtain, existing work ex-

plores training models using synthetic datasets [40], crowd-

sourced human annotations of relative depth [7] or 3D sur-

faces [9], pseudo ground truth depth maps from internet im-

ages/videos [35, 34, 8], or 3D movies [48, 61]. Another re-

search line focuses on self-supervised approaches for learn-

ing single-image depth estimation models. Specific exam-

ples include learning from stereo pairs [18, 21, 20, 64] or

monocular videos [73, 60, 11, 75, 69, 47, 50]. Most self-

supervised learning methods minimize photometric repro-

jection errors (computed from the estimated depth and pose)

and do not account for dynamic objects in videos. Several

methods alleviate this problem by masking out dynamic ob-

jects [75], modeling the motion of individual objects [5]

or estimating dense 3D translation field [32]. We use the

state-of-the-art single-image depth estimation method [48]

to obtain an initial dense depth map for each video frame.

While these depth maps are plausible when viewed individ-

ually, they are not geometrically consistent across different

frames. Our work aims to produce geometrically consistent

camera poses and dense depth for a video.
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Video-based depth estimation. Several methods integrate

camera motion estimation and multi-view reconstruction

from a pair of frames [58] or multiple frames [72, 2, 59].

However, these methods work well only on a static scene.

To account for moving objects, a line of work use motion

segmentation [26, 49] or semantic instance segmentation [5]

to help constrain the depth of moving objects. State-of-

the-art learning-based video depth estimation approaches

can be grouped into two tracks: (1) MVS-based methods

and (2) hybrid methods. MVS-based methods improve the

conventional SFM and MVS workflow using differentiable

pose/depth modules [56] or explicit modeling depth esti-

mation uncertainty [36]. Both methods [36, 56] estimate

depth based on the cost volume constructed by warping

nearby frames to a reference viewpoint. These methods

may produce erroneous depth estimation and fail to gen-

erate accurate camera trajectories for dynamic scenes. Hy-

brid methods integrate single-view depth estimation mod-

els and multi-view stereo for achieving geometrically con-

sistent video depth, either through fusing depth predictions

from single-view and multi-view [70] or fine-tuning single-

view depth estimation model to satisfy geometric consis-

tency [39]. While impressive results have been shown,

the methods [70, 39] assume that precise camera poses are

available as input and thus are not applicable for challeng-

ing sequences where existing SFM/MVS systems fail. Our

method also leverages a pretrained single-view depth esti-

mation model. Unlike [70, 39], we jointly optimize camera

poses and 3D deformable alignment of the depth maps and

thus can handle a broader range of challenging videos of

highly dynamic scenes.

Visual odometry. Visual Odometry (VO) or Simultane-

ously Localization And Mapping (SLAM) aim to estimate

the relative camera poses from image sequences [43, 51].

Conventional geometry-based methods [15, 14, 41, 49, 42]

can be grouped into the four categories depending on us-

ing direct (feature-less) vs. indirect (feature-based) meth-

ods and dense or sparse reconstruction. While signifi-

cant progress has been made, applying VO and SLAM for

generic scenes remains challenging [67]. Recent years, nu-

merous learning-based approaches have been proposed to

tackle these challenges either via supervised [58, 62, 72, 27]

or self-supervised learning [73, 33, 71, 19, 54, 65, 74, 66].

Similar to the existing VO/SLAM methods, our work also

estimates both camera poses from a monocular video. Un-

like prior work, our primary focus lies in estimating ge-

ometrically consistent dense depth reconstruction for dy-

namic scenes.

Temporal consistency. Per-frame processing often leads

to temporal flickering results. Enforcing temporal consis-

tency of a output video has been explored in many differ-

ent applications, including style transfer [6], video com-

pletion [23], video synthesis [63], or as post-processing

Figure 2: Overview. Our algorithm only takes a monocular

color video as input. We first estimate per-frame depth

maps using an existing single-frame CNN. We jointly

optimize camera poses as well as flexible deformations to

align the depth maps in 3D and resolve any large-scale

misalignments. Finally, we resolve fine-scale details using

a geometry-aware depth filter. Green frames: inputs;

yellow frames: outputs.

step [31, 3, 29]. For video depth estimation, temporal

consistency can either be explicitly constrained by optical

flow [26] or implicitly applied using recurrent neural net-

works [44]. Our 3D depth filter is similar to that of [31]

because we also filter the depth maps across time along the

flow trajectory. Our approach differs in that our method is

geometry-aware.

3. Overview

Our approach builds on the formulation established in

the Consistent Video Depth Estimation (CVD) paper by

Luo et al. [39], so let us start by recapping it, first. They

iteratively fine-tune the weights of a CNN trained for single-

image depth estimation until it learns to satisfy the geome-

try of a particular scene in question. To assess the progress

against this goal, they relate pairs of images geometrically

using known camera parameters (extrinsic and intrinsic, as

well as per-frame depth scale factors). More precisely, their

algorithm compares the 3D reprojection of pixels from one

image to the other with the corresponding image-space mo-

tion, computed by an optical flow method. The reprojec-

tion error is back-propagated to the network weights, so that

it reduces over the course of the fine-tuning (see details in

Section 4.2). This results in a very detailed and temporally

consistent, i.e., flicker-free, depth video.

However, one key limitation of their approach is that pre-

cise camera parameters are needed as input, which are com-

puted with SFM in their case. Unfortunately, SFM for video

is a challenging problem in itself, and it frequently fails; for

example, when a video does not contain sufficient camera

motion, or in the presence of dynamic object motion, or in

numerous other situations, as we explained earlier. In such

cases, it might either fail entirely to produce an output, or

fail to register a subset of the frames, or it might produce

erroneous (outlier) camera poses. Inaccurate poses have a
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strong degrading effect on the CVD optimization, as shown

in their paper [39]. The key contribution of our paper is

to remove this limitation, by replacing the test-time fine-

tuning with joint optimization of the camera parameters and

depth alignment.

We show in Section 4.3 that the same formulation can

optimize the camera poses as in CVD. However, one com-

plication is that the pose optimization only works well when

we have precise depth, similarly to how depth fine-tuning

only works when the poses are accurate (Section 4.4). If the

depth is not accurate, which is the case in our setting, mis-

alignments in the depth impose themselves as noisy errors

onto the resulting camera pose trajectory.

We resolve this problem by improving the ability of

the camera optimization to align the depth estimates, de-

spite their initial inaccuracy (Section 4.5). Specifically, we

achieve this by replacing the per-frame camera scale with a

more flexible spatially-varying transformation, i.e., a bilin-

ear spline. The improved alignment of the depth estimates

enables computing smoother and more accurate pose trajec-

tories.

The joint pose estimation and deformation resolves low-

frequency inconsistencies in the depth maps. We further

improve high-frequency alignment using a geometry-aware

depth filter (Section 4.6). This filter low-pass filters the re-

projected depth along flow trajectories. Because the input

to the filter is well-aligned, due to the deformation, the filter

resolves fine details, rather than blurring them.

4. Method

4.1. Pre­processing

We share some of the preprocessing steps with

CVD [39]. However, importantly, we do not need to com-

pute COLMAP [52], which considerably improves the ro-

bustness of our method.

In order to lower the

overall amount of compu-

tation in the pairwise opti-

mization below, we subsample a set of frame pairs spanning

temporally near and distant frames:

P =
{

(i, j)
∣
∣
∣ |i− j|= k, i mod k = 0, k = 1,2,4, . . .

}

. (1)

For each frame pair (i, j) ∈ P we compute a dense opti-

cal flow field fi→ j (mapping a pixel in frame i to its corre-

sponding location in frame j) using RAFT [57]), as well as a

binary mask m
flow
i→ j that indicates forward-backward consis-

tent flow pixels. Please refer to [39] for details about these

preprocessing steps. We also compute a binary segmenta-

tion mask m
dyn
i using Mask R-CNN that indicates likely-

dynamic pixels (belonging to the categories “person”, “ani-

mal”, or “vehicle”).

4.2. Depth Estimation

In this section, we establish CVD [39] from a technical

point of view and some notation, and in the subsequent sec-

tions, we will then present our method.

Let p be a 2D pixel coordinate. We can lift it into a 3D

coordinate ci(p) in frame i’s 3D camera coordinate system:

ci(p) = si di(p) p̃. (2)

Here, si is the per-frame scale coefficient, and di is the

CNN-estimated depth map, and p̃ is the homogeneous-

augmented pixel coordinate, i.e., [px, py, 1]⊤.

We can also project this 3D point into the camera coor-

dinate system of another frame j:

ci→ j(p) = K j R⊤
j

(

Ri K−1
i ci(p)+ ti − t j

)

(3)

Here, Ri,R j and ti, t j and Ki,K j are the rotation, translation,

and intrinsics of frames i and j, respectively.

The objective that CVD optimizes is a reprojection loss

for every pixel (with valid flow) in every frame pair:

argmin
θdepth

∑
(i, j)∈P

∑
p∈m

flow
i→ j

Lrepro
i→ j (p), s.t. fixed θcam (4)

The optimization variables, θdepth, are the network weights

of the depth CNN, and the fixed camera parameters are

θcam = {Ri, ti,Ki,si}.

The reprojection loss is defined as follows:

Lrepro
i→ j (p) = Lsim

j

(

ci→ j(p)
︸ ︷︷ ︸

3D-reprojection

, c j

(
fi→ j(p)
︸ ︷︷ ︸

Flow-reprojection

))

, (5)

i.e., it reprojects the pixel into the other frame’s 3D camera

coordinate system using (1) 3D geometry and (2) optical

flow and measures the similarity of the two resulting 3D

points. The exact form of the reprojection similarity loss

Lsim is not critical for the overall understanding of the algo-

rithm, so we will defer its definition to below.

4.3. Pose Optimization

As mentioned before, the camera parameters θcam are

needed for the geometric reprojection mechanics, and it is

critically important that they are precise. Otherwise, the

depth optimization converges to poor results (Figure 3d). It

would be desirable to have a more reliable way to obtain

poses for our application than with SFM.

When examining Eq. 4 we notice that we can actually

use this equation to compute the camera parameters if we

reverse the role of θdepth and θcam, i.e., fixing θdepth (assum-

ing that we know them) and optimizing θcam. This modi-

fied equation resembles the triangulation in bundle adjust-

ment, but it can be more robustly solved since the depth of
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Depth: Ground truth Ground truth Estimated [48] Estimated [48] Estimated [48] Estimated [48]

Pose optimization: Ground truth Single scale (si) Single scale (si) Single scale (si) Flexible (ϕi) Flexible (ϕi)

Depth refinement: N/A N/A N/A Fine-tuning N/A Depth filter

(a) (b) (c) (d) (e) (f)

Figure 3: Joint depth and pose optimization. Various configurations of our algorithm: (a-b) Ground truth depth with

ground truth and estimated poses, respectively. (c) Misalignments in estimated depth impose jittery errors on the optimized

camera trajectories. (d) CVD-style fine-tuning fails in the absence of precise poses. (e) Our flexible deformations resolve

depth misalignments, which results in smoother camera trajectories. (f) Using geometry-aware depth filtering we resolve

fine depth details (our final result).

matched image points does not need to be estimated since

it is known (up to scale). However, this time it is the depth

that needs to be known precisely for this to work well. In

the depth maps do not agree with each other, these misalign-

ment errors will manifest as noisy errors in the estimated

camera parameters (Figure 3c).

4.4. Pose and Depth Optimization with Fine­tuning

What about optimizing both quantities, θcam and θdepth,

jointly? One problem is that these two quantities are best

optimized with different kinds of machinery. θdepth is best

optimized using standard training algorithms for CNNs, i.e.,

SGD. For θcam, however, that is not a good fit, since changes

to one parameters have far-reaching influence, as the poses

are chained in a trajectory. Global continuous optimization

is a better solution for θcam and converges faster and more

stably. We can optimize both quantities by alternating be-

tween optimizing depth and pose, each with their respective

best optimization algorithm while keeping the other quan-

tity fixed.

However, another significant problem is the sensitivity to

the accuracy of the particular fixed parameters, as explained

before. Starting with the initially inaccurate depth estimate

will result in noisy poses (Figure 3c), because the misalign-

ment errors will “push” the camera pose variables in erratic

ways. The jittery poess will, in the next step, degrade the

depth estimate further. The algorithm does not converge to

a good solution (Figure 3d).

4.5. Pose and Depth with Flexible Deformation

Our solution to this apparent dilemma is to improve the

depth alignment in the pose estimation. We achieve this by

injecting a smooth and flexible spatially-varying depth de-

formation model into the alignment. More precisely, we re-

place the depth scale coefficients si in Eq. 4 with a spatially-

varying bilinear spline:

ϕi(p) = ∑
k

bk(p)sk
i . (6)

Here, the sk
i are scale factors that are defined on a regular

grid of “handles” across the image. bk(p) are bilinear co-

efficients, such that within a grid cell the four surrounding

handles of a pixel p are bilinearly interpolated.

After this change the depth maps align better and will not

impose jittery errors onto the estimated camera trajectory

anymore (Figure 3e). In addition, this algorithm is consid-

erably faster since we do not need to iterate between pose

optimization and fine-tuning.

4.6. Geometry­aware Depth Filtering

The flexible deformation ϕi achieves a low-frequency

alignment of the depth map, i.e., removing any large-scale
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Figure 4: Geometry-aware depth filter. Top: frames from

the input video. Middle: initial per-frame depth estimates

(after flexible alignment). Bottom: the geometry-aware

depth filter resolves fine-scale details in the depth maps.

misalignments. But what about fine depth details? We tried

using alternating pose-depth optimization, as described in

Section 4.4, with flexible deformation. This works and im-

proves both the depth and poses slightly, but it does not

reach the same level of quality that CVD achieves when us-

ing precise SFM pose as input. Instead, it converges quickly

to a configuration where both depth and pose alignment are

well-satisfied, but depth details smooth out considerably.

We solve this problem instead with a spatio-temporal

depth filter that follows flow trajectories. Importantly, the

filter is geometry-aware in the sense that it transforms the

depths from other frames using the reprojection mechanics

in Equations 2-3:

d
final
i (p) = ∑

q∈N(p)

i+τ

∑
j=i−τ

z j→i

(

f̃i→ j(q)
)

wi→ j(q). (7)

Here, N(p) refers to a 3× 3 neighborhood centered around

the pixel p, τ = 4, z j→i is the scalar z-component of c j→i

(i.e., the reprojected depth), and f̃ is the flow between far

frames obtained by chaining flow maps between consec-

utive frames. The weights wi→ j(q) make the filter edge-

preserving by reducing the influence os samples across

depth edges:

wi→ j(q) = exp

(

−λ fL
ratio

(

ci(p), c j→i

(

f̃i→ j(q)
))
)

. (8)

λ f = 3 adjusts the strength of the filter, and Lratio measures

the similarity of the reference and the reprojected pixel in

camera coordinates (the definition is given in the implemen-

tation details below).

The improved provided by the depth filter can be seen in

Figure 3f, and more results in Figure 4.

4.7. Implementation Details

Precomputation. For MiDaS we downscale the image to

384 pixels on the long side (the default resolution in their

code). For RAFT we downscale the image to 1024 pixels

on the long side, to lower memory requirements. In both

cases we adjust the short image side according to image

aspect ratio, while rounding to the nearest multiple of 16

pixels which is the alignment requirement of the respec-

tive CNNs. We use the pretrained raft-things.pth

from the RAFT project page [57], which was trained on

FlyingChairs and FlyingThings.

Pose optimization. We use the SPARSE NORMAL CHO-

LESKY solver from the Ceres library [1] to solve the camera

pose estimation problem. In order to reduce the computa-

tional complexity, we do not include every pixel in the op-

timization but instead, subsample a set of pairwise matches

from the flow fields (so that there is a minimum distance

of at least 10 pixels between any pair of matches). Since

Eq. 4 assumes a static scene, we exclude any points matches

within the mdyn mask.

Since the objective is non-convex optimization, it is

somewhat sensitive to local minima in the objective. We al-

leviate that problem by first optimizing a 1×1 grid (similar

to the original si scalar coefficients), and then subdividing it

in four steps until a grid resolution of 17×10 is reached (al-

ways using 17 for the long image dimension, and adjusting

the short image dimension according to the aspect ratio).

After every step, we optimize until convergence and use the

result as initialization for the next step.

Since the scale of the depth maps estimated by the CNN

is arbitrary, we initialize the scale of the first frame so that

the median depth is 1, and use the same scale for all other

frames.

Pose regularization. To encourage smoothness in the de-

formation field, we add a loss that penalizes large differ-

ences in neighboring grid values:

Ldeform = ∑
i

∑
(k,r)∈N

∥
∥
∥sk

i − sr
i

∥
∥
∥

2

2
max(wk

i,w
r
i ), (9)

where N refers to the set of all vertically and horizontally

neighboring vertices. The weights are set to encourage

more smoothness in parts of the image that are masked by

mdyn, since there are no point matches in these regions and

they are unconstrained otherwise.

wk
i = λ1 +λ2 ∑

p

m
dyn
i (p)bk(p) (10)
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λ1 = 0.1, λ2 = 10 are balancing coefficients. The λ2 term

computes the fraction of dynamic pixels in the handle’s in-

fluence region.

We use the following form for the intrinsic matrices:

Ki =





ui

ui

1



, (11)

i.e., the only degree of freedom is the focal length ui.

We, further, add a small bias,

Lfocal = ∑
i

(ui − û)2
, (12)

where û = 0.35 (corresponds to ∼40◦ field of view).

Reprojection loss. In Section 4.2 we omitted the definition

of the reprojection similarity loss Lsim. A naı̈ve way would

be to simple measure the Euclidean distance

Leuclidean(a,b) =
∥
∥a−b

∥
∥2

2
. (13)

However, this biases the solution toward small depths.

Shrinking the whole scene to a point would achieve a mini-

mum.

To prevent this, Luo et al. [39] use a split loss where they

measure the spatial component Lspatial in image space

Lspatial(a,b) =
∥
∥
∥

axy

az
−

bxy

bz

∥
∥
∥

2

2
, (14)

and the depth Ldepth component in disparity space.

Ldisparity(a,b) =
∣
∣
∣

1
az
− 1

bz

∣
∣
∣

2

2
. (15)

The disparity loss actually has the opposite bias of Eu-

clidean loss: it is minimized when scene scale grows very

large (so that the disparities vanish). This is not a problem

for Luo et al., since they use fixed poses. However, it affects

our results negatively.

To alleviate this, we propose a new loss that measures

the ratio of depth values:

Lratio(a,b) =
max(az, bz)

min(az, bz)
−1. (16)

This loss does not suffer from any depth bias; it does nei-

ther encourage growing nor shrinking the scene scale. The

measure Lratio is also used to compute the depth-similarity

of samples in the depth filter in Eq. 8.

In summary, we define the reprojection similarity loss as

follows:

Lsim(a,b) = Lspatial(a,b)+Lratio(a,b) (17)

5. Experimental Results

5.1. Experimental setup

Datasets. We validate the effectiveness of the proposed

method on three main video datasets, covering a wide range

of challenging indoor and outdoor scenes. Here we focus

on reporting results on the Sintel [4] dataset. The MPI

Sintel dataset consists of 23 synthetic sequences of highly

dynamic scenes. Each sequence comes with ground truth

depth measured in meters as well as ground truth camera

poses. We use both the clean and final versions of the

dataset. The ground truth annotations allow us to conduct

a quantitative comparison on both the estimated depth and

pose. We refer the readers to our qualitative results on

DAVIS [45] and Cellphone videos in the project page.

Note that we do not choose datasets focusing on closed-

domain applications such as driving scenes (e.g., KITTI

depth/odometry dataset or office (e.g., TUM RGB-D [55])

or fully static scenes (e.g., ScanNet [10]).

Compared methods. We compare our results with several

state-of-the-art depth estimation algorithms.

• COLMAP [52]: Traditional SFM/MVS algorithm for 3D

reconstruction. As COLMAP reconstruction is very sen-

sitive to dynamic objects in the scene, we use the same

mdyn dynamic masks using by our algorithm (computed

automatically Mask R-CNN) to exclude feature extrac-

tion/matching from those areas.

• DeepV2D [56]: Video depth estimation algorithm using

differentable motion estimation and depth estimation.

• CVD [39]: A hybrid method that combine multi-view and

single-view depth estimation methods for producing con-

sistent video depth.

• MiDaS-v2 [48]: State-of-the-art single-view depth esti-

mation model.

5.2. Evaluation on MPI Sintel dataset [4]

Depth evaluation. As depth estimation from all the meth-

ods is up to an unknown scene scale, we follow the stan-

dard depth evaluation protocol to align the predicted depth

and the ground truth depth using median scaling. We ex-

clude depth values that are larger than 80 meters. Table 1

shows the quantitative comparisons with the state-of-the-art

on various metrics.

Note that COLMAP [52] fails to estimate the cam-

era pose for 11 in 23 sequences. CVD [39], which uses

COLMAP poses as input, thus, also does not produce depth

estimation results for these scenes. Furthermore, COLMAP

discards single-pixel depth estimates deemed unreliable. As

a result, we cannot evaluate these methods using standard

averaged metrics. Instead, we store all the pixel-wise er-

ror metrics across all pixels, frames, and videos. We then
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Table 1: Quantitative evaluations of depth and pose on the MPI Sintel benchmark (Top: Sintel Clean, Bottom: Sintel

Final). For depth evaluation, we present per-frame evaluations on standard error and accuracy metrics. For pose evaluation,

we present per-sequence evaluations on translational and rotational error metrics.

Depth - Error metric ↓ Depth - Accuracy metric ↑ Pose - Error metric ↓

Method Abs Rel Sq Rel RMSE log RMSE δ < 1.25 δ < 1.252 δ < 1.253 ATE (m)↓ RPE Trans (m)↓ RPE Rot (deg)↓

DeepV2D [56] 0.526 3.629 6.493 0.683 0.487 0.671 0.761 0.9526 0.3819 0.1869

Ours - Single-scale pose (aligned MiDaS) 0.380 2.617 5.773 0.533 0.562 0.736 0.832 0.1883 0.0806 0.0262

Ours - Single-scale pose + depth fine-tuning 0.472 3.444 6.340 0.635 0.534 0.694 0.790 0.1686 0.0724 0.0139

Ours - Single-scale pose + depth filter 0.375 2.546 5.763 0.530 0.569 0.738 0.835 0.1882 0.0806 0.0262

Ours - Flexible pose 0.379 2.702 5.795 0.533 0.565 0.744 0.836 0.1843 0.0723 0.0095

Ours - Flexible pose + depth fine-tuning 0.439 3.100 6.213 0.614 0.524 0.698 0.796 0.1656 0.0651 0.0070

Ours - Flexible pose + depth filter 0.377 2.657 5.786 0.531 0.568 0.745 0.837 0.1843 0.0723 0.0095

DeepV2D 0.526 3.620 6.470 0.670 0.486 0.674 0.760 0.9192 0.5834 0.2506

Ours - Single-scale pose (aligned MiDaS) 0.425 2.640 5.858 0.559 0.529 0.726 0.828 0.2210 0.0827 0.0258

Ours - Single-scale pose + depth fine-tuning 0.473 3.215 6.298 0.639 0.527 0.684 0.782 0.1620 0.0727 0.0116

Ours - Single-scale pose + depth filter 0.421 2.616 5.850 0.556 0.533 0.728 0.830 0.1803 0.0827 0.0258

Ours - Flexible pose 0.421 2.660 5.906 0.559 0.523 0.730 0.832 0.1831 0.0713 0.0088

Ours - Flexible pose + depth fine-tuning 0.438 3.053 6.300 0.605 0.525 0.705 0.807 0.1594 0.0652 0.0073

Ours - Flexible pose + depth filter 0.419 2.628 5.896 0.558 0.526 0.730 0.833 0.1831 0.0714 0.0088

sort these errors and plot the curves. Please refer to the sup-

plemental material.The plots capture both the accuracy and

completeness of each method.

Pose evaluation. We follow the standard evaluation proto-

col of visual odometry for pose evaluation and compare our

methods against state-of-the-arts in terms of absolute trajec-

tory error (ATE) and relative pose error (RPE). ATE mea-

sures the root-mean-square error between predicted cam-

era poses [x,y,z] and ground truth. RPE measures frame-

to-frame relative pose error between frame pairs, includ-

ing translation error (RPE-T) and rotational error (RPE-R).

Still, since the scene scale is unknown, we scale and align

the predictions to the ground truth associated poses during

evaluation by minimizing ATE for fair comparisons.

We conduct pose evaluations on Sintel with ground truth

pose annotations, and the quantitative results are presented

in Table 1 and Figure 5. As demonstrated in Table 1,

our proposed method outperforms MiDaS-v2 on all met-

rics (mean of ATE, RPE-T, and RPE-R) with a noticeable

margin and significantly outperforms DeepV2D, on both

the Clean and Final categories of Sintel. Note that since

COLMAP and CVD fail on a significant portion of the dy-

namic scenes of Sintel, it is not directly comparable in terms

of mean errors as in Table 1. For a fair comparison, we

store RPE-T and RPE-R errors from all plausible pose pre-

dictions between frame pairs from all Sintel sequences, then

sort them and plot the curves in Figure 5. The results show

our proposed method consistently achieves more accurate

pose predictions than completing methods.

5.3. Limitations

The main limitation that we observe is a kind of residual

wobble of the aligned depth maps. It is apparent in most re-

sults we provide on the project page. We think that it can be

addressed by better deformation models, in particular, re-

placing the spline-based deformation with a pixel-based de-
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Figure 5: Evaluation of translational and rotational Relative

Pose Error (RPE) on Sintel. All the frame pair-wise errors are

stored and sorted for plotting the distributions. Note that

COLMAP and CVD (which relies on COLMAP) fail on many

Sintel sequences, resulting in partial data points.

formation field with appropriate regularization. However,

this would require denser pairwise constraints, which our

current formulation using continuous global optimization

does not support, i.e., when we densify the constraints the

Ceres Solver memory usage blows up and the performance

goes down drastically. This is due to the global nature of

the optimization problem. Finding a better formulation to

resolve this problem is a great avenue for future work.

6. Conclusions

We presented a general optimization algorithm for con-

sistent depth estimation on monocular videos, requiring

neither input poses nor inference-time fine-tuning. Our

method attains robust reconstruction for challenging dy-

namic videos casually captured by hand-held devices, and

achieves better performances on diverse test beds.
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