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Abstract

There have been many successful implementations of

neural style transfer in recent years. In most of these works,

the stylization process is confined to the pixel domain. How-

ever, we argue that this representation is unnatural because

paintings usually consist of brushstrokes rather than pixels.

We propose a method to stylize images by optimizing param-

eterized brushstrokes instead of pixels and further introduce

a simple differentiable rendering mechanism.

Our approach significantly improves visual quality and en-

ables additional control over the stylization process such as

controlling the flow of brushstrokes through user input.

We provide qualitative and quantitative evaluations that

show the efficacy of the proposed parameterized repre-

sentation. Code is available at https://github.

com/CompVis/brushstroke-parameterized-

style-transfer.

1. Introduction

Style and texture transfer have been research topics for

decades [17, 9]. More recently, the seminal work by Gatys

et al. [11] reformulated style transfer as the synthesis of

an image combining content of one image with style of

another image. Since then, a plethora of approaches have

explored different aspects of the original problem. There

are papers on feed-forward architectures [23, 48], universal

feed-forward models [18, 32, 33, 31], disentanglement of

style and content [44, 28, 29], ultra-resolution models [50],

meta-learning techniques [45, 56], and video style transfer

[4]. Yet, the initial approach suggested by Gatys et al. [11]

remains one of the best in terms of image quality, especially

in the artistic style transfer scenario, with one style image

and one content image.

Recent works have advanced the field of style trans-

fer and produced impressive results by introducing novel

losses [34, 43, 44], adopting more suitable architectures

[23, 48, 18, 32], imposing regularizations on the final im-

age and intermediate latent representation [44, 28, 29, 47],

*Both authors contributed equally to this work.

Figure 1: Stylization results. Top artwork: “Girl on a Di-

van” by Ernst Ludwig Kirchner. Bottom artwork: “Red

Cabbages and Onions” by Vincent van Gogh.

and even using different training paradigms [45, 56]. How-

ever, they share a key commonality: the stylization pro-
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cess is confined to the pixel domain, almost as if style

transfer is a special case of image-to-image translation

[21, 58, 51, 36, 19, 37, 6, 7, 25]. We argue that the pixel rep-

resentation is unnatural for the task of artistic style transfer:

artists compose their paintings with brushstrokes, not with

individual pixels. While position, color, shape, placement

and interaction of brushstrokes play an important role in the

creation of an artwork, small irregularities appearing on the

pixel level like bristle marks, canvas texture or pigments are

to some extent arbitrary and random.

With this in mind, we take a step back and rethink the

original approach by suggesting a representation that inher-

ently aligns with these characteristics by design.

Just like learning to walk in the reinforcement learning set-

ting starts with defining the set of constraints and degrees of

freedom for individual joints, we restrict our representation

to a collection of brushstrokes instead of pixels. Specifi-

cally, we parameterize a brushstroke with a Bézier curve

and additional parameters for color, width, and location.

To map these parameterized brushstrokes into the pixel do-

main we propose a lightweight, explicit, differentiable ren-

derer which serves as a mapping between brushstroke pa-

rameters and pixels. Thus, this reparameterization can be

seamlessly combined with other style transfer approaches.

One crucial property that this rendering mechanism offers

is a spatial relocation ability of groups of pixels. Standard

optimization on the pixel level cannot directly move pix-

els across the image - instead it dims pixels in one area

and highlights them in another area. Our model, however,

parameterizes brushstrokes with location and shape, thus

moving brushstrokes becomes a more natural transforma-

tion.

We validate the effectiveness of this reparameterization

by coupling the renderer with the model Gatys et al. [11]

have suggested, see Fig. 4. We show that this simple shift

of representation along with our rendering mechanism can

outperform modern style transfer approaches in terms of

stylization quality. This is measured using 1) the decep-

tion rate - how similar is the stylized image to the style of

an artist 2) human deception rate - whether a human sub-

ject can distinguish cropouts of real artworks from cropouts

of our stylization. In addition, we illustrate that the brush-

stroke representation offers more control. A user can con-

trol brushstrokes, change the flow of strokes in a neighbour-

hood.

We further conduct experiments on reconstructions of

an image using our rendering mechanism. Huang et al.

[20] train a neural network that successively fits colored

quadratic Bézier curves (brushstrokes) that approximate a

target image. Our renderer can be applied to this task as

well. It achieves almost 2 times smaller mean squared er-

ror (MSE) in the pixel space for a large number of strokes

(1000 strokes) and 20% smaller MSE using 200 strokes.

2. Related Work

Style Transfer. Initially, Efros and Freeman [9] per-

formed texture synthesis and transfer using image quilting

and Hertzmann et al. [17] used a pair of images - one being

a filtered version of the other - to learn a filter, which can

then be applied to a new image. Wang et al. [49] introduced

a method for synthesizing directional textures. Besides that,

there are works studying shape and morphology of images

[54, 40, 39].

More recently, Gatys et al. [11] proposed an iterative

method for combining the content of one image with the

style of another by jointly minimizing content and style

losses, where the content loss compares the features of a

pretrained VGG network [46] and the style loss compares

the feature correlations as given by the Gram matrices.

Several works [23, 48] have proposed feed-forward net-

works to approximate the optimization problem posed by

Gatys et al. [11] for a fixed style image.

Li et al. [34] showed that matching the Gram matrices

of feature maps corresponds to minimizing the Maximum

Mean Discrepancy with the second order polynomial ker-

nel and also proposed alternative style representations to

the Gram matrix such as mean and variance. Dumoulin et

al. [8] introduced conditional instance normalization, which

enables the model to learn multiple styles. Huang and Be-

longie [18] performed arbitrary real-time style transfer by

training a feed-forward network to align the channel-wise

mean and standard deviation of the VGG features of a con-

tent image to match those of a given style image. Li et al.

[32] extend this approach by replacing the moment match-

ing between the encoder and decoder with whitening and

colouring transformations.

Li et al. [33] propose a closed-form solution for pho-

torealistic image stylization and Li et al. [31] learn linear

transformations for fast arbitrary style transfer. Sanakoyeu

et al. [44] and Kotovenko et al. [28] propose a style-aware

content loss, which also has been used for disentanglement

of style and content [29].

Another line of work draws on meta learning to handle

the trade-off between speed, flexibility, and quality [45, 56].

Wang et al. [50] incorporate model compression to enable

ultra-resolution style transfer [50], Xia et al. perform pho-

torealistic style transfer using local affine transforms [53],

Chang et al. [3] employ domain-specific mappings for style

transfer, Chiu and Gurari [5] propose an iterative and ana-

lytical solution to the style transfer problem, and Kim et al.

[26] suggest a method for deformable style transfer that is

not restricted to a particular domain. Yim et al. [55] intro-

duce filter style transfer, Wang et al. [52] propose deep fea-

ture perturbation, Svoboda et al. [47] perform style transfer

with a custom graph convolutional layer, and Chen et al. [4]

employ optical flow to stylize videos.

Stroke Based Rendering. Stroke based rendering
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(a) Content (b) 2000 Brushstrokes (c) 5000 Brushstrokes

(d) Content with User Input (e) 2000 Brushstrokes and User Input (f) 5000 Brushstrokes and User Input

Figure 2: A user can draw curves on the content image and thus control the flow of the brushstrokes in the stylized image.

Note that for the stylizations with user input we also used (a) as content image. The control is imposed on the brushstroke

parameters, not the pixels. Images in the middle column are synthesized using 2000 brushstrokes and images in the right

column are synthesized with 5000 brushstrokes. See supplementary for more experiments.

(SBR) aims to represent an image as a collection of param-

eterized strokes or other shapes that can be explicitly de-

fined by a finite set of parameters. In accordance with other

non-photorealistic rendering techniques, the goal is not to

reconstruct but rather to render the image into an artistic

style. Early works include an interactive method by Hae-

berli [14], where the program follows the cursor across the

canvas, obtains a color by point sampling the source im-

age, and then paints a brush of that color. Hertzmann [15]

extended this line of research by proposing an automated

algorithm that takes a source image and a list of brush sizes,

and then paints a series of layers, one for each brush size, on

a canvas in order to recreate the source image with a hand-

painted appearance. Similar approaches employ segmen-

tation [12] or relaxation [16]. SBR methods are not con-

strained to static images and have also been used to trans-

form ordinary video segments into animations that possess

a hand-painted appearance [35].

Brush Stroke Extraction. Conversely to SBR methods,

there have been attempts to detect and extract brush strokes

from a given painting. These methods generally utilize edge

detection and clustering-based segmentation [30] or other

classical computer vision techniques [1, 42] and have been

used to analyze paintings.

Drawing Networks. Recent work relies on neural net-

works to predict brush stroke parameters that approximate

a given image, using a variety of architectures and training

paradigms. These range from supervised training of feed-

forward and recurrent architectures [13, 57, 41] to deep re-

inforcement learning, using recurrent [10, 22, 38] and feed-

forward models [20]. Note that our work is orthogonal to

this line of research because we focus on performing style

transfer on the level of parameterized brushstrokes.

3. Background

In the original style transfer formulation, Gatys et al.

[11] propose an iterative method for combining the content

of one image with the style of another by jointly minimizing

content and style losses. The content loss is the Euclidean

distance between the rendered image Ir and the content im-

age Ic in the VGG feature space:

Lcontent = ||φl(Ir)− φl(Ic)||2, (1)

where φl(·) denotes the l-th layer of the VGG-19 net-

work. The style loss is defined as:

Lstyle =

L
∑

l=0

wlEl (2)
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Gatys et al. Ours

Figure 3: For Gatys et al. [11], the pixels are adjusted to

match the brushstroke pattern. In our approach, the brush-

stroke pattern is occurring by design. Style image: “Starry

Night” by Vincent van Gogh. Content image: original im-

age of Tuebingen from the paper [11]. Same region of the

sky is cropped.

with

El =
1

N2
l M

2
l

||Gl
r −Gl

s||F (3)

where Gl
r and Gl

s are the Gram matrices of Ir and Ic

respectively, computed from the l-th layer of the VGG-19

network.

4. Approach

The method by Gatys et al. [11] adjusts each pixel indi-

vidually to minimize the content and style losses. However,

artworks generally consist of brushstrokes, not pixels. In-

stead of optimizing on pixels, we therefore optimize directly

on parameterized brushstrokes, using the same content and

style losses defined in Eq. 1 and Eq. 2, respectively. See

Fig. 4 for an overview of our method and Fig. 3 for a com-

parison of the synthesized brushstroke patterns.

Our brushstrokes are parameterized by location, color,

width, and shape. The shape of a brushstroke is modelled

as a quadratic Bézier curve [41, 10, 20], which can be pa-

rameterized by:

B(t) = (1− t)2P0+2(1− t)tP1+ t2P2 , 0 ≤ t ≤ 1. (4)

A key difficulty here is to find an efficient and differen-

tiable mapping from the brushstroke parameter space into

the pixel domain. To this end, we propose a mechanism to

construct this mapping explicitly. See Sec. 4.2 for details.

Using our rendering mechanism we can backpropagate gra-

dients from the style and content losses through the ren-

dered pixels directly to the brushstroke parameters.

After the optimization is finished, we render the optimized

brushstroke parameters to obtain an image I and then apply

the standard Gatys et al. [11] approach on the pixel level

using Is as style image and I as content image. This final

step blends the brushstrokes together and adds some texture.

Fig. 7 shows the effect of this pixel optimization.

4.1. Implementation Details

Similar to Gatys et al. [11], we use layers “conv4 2”

and “conv5 2” for the content loss and layers “conv1 1”,

“conv2 1”, “conv3 1”, “conv4 1”, and “conv5 1” for the

style loss.

We use Adam [27] with learning rate 0.1 for optimization.

Similar to Johnson et al. [23], we employ a total variation

regularization.

4.2. Differentiable Renderer

Nowadays, generative models have reached unmatched

image quality on a variety of datasets [24, 2]. Thus, our

first attempt to generate brushstrokes followed this line of

work. We generated a dataset of brushstrokes simulated

in the FluidPaint environment 1 and trained a network in-

spired by StyleGAN [24] to generate images conditioned

on brushstroke parameters. Despite achieving satisfactory

visual quality, the main limitation of this approach is that

it is memory-intensive and can not be efficiently scaled to

process a large number of brushstrokes in parallel. This is

critical for us since our method relies on an iterative opti-

mization procedure.

Therefore, instead of training a neural network to gen-

erate brushstrokes, we explicitly construct a differentiable

function which transforms a collection of brushstrokes pa-

rameterized by location, shape, width and color into pixel

values on a canvas. Formally, the renderer is a function:

R : RN×F → R
H×W×3, (5)

where N denotes the number of brushstrokes, F the num-

ber of brushstroke parameters (12 in our case), and H and

W are the height and width of the image to render. This

renderer requires less memory and is also not constrained

by the limitations of a brushstroke dataset.

4.2.1 Motivation and Idea

Before explaining how our render works, let us start with a

simple example. Assume we have a flat disk parameterized

with color, radius, and location (1, 1, and 2 scalars respec-

tively) and we want to draw it on a canvas. For the sake of

brevity, we assume our images are grayscale but the algo-

rithm trivially generalizes to the RGB space. A grayscale

image is a 2D matrix of pixel values. First, we need to de-

cide for every pixel whether or not it belongs to the disk. For

this, we simply subtract the disk location from each pixel

coordinate and compute the L2 norm to obtain distances D

from each pixel to the disk center. Now we have to check

if the distance D is smaller then the radius to get a binary

mask M . To incorporate color, it suffices to multiply the

mask by a color value.

1https://david.li/paint/
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Figure 4: Comparison of our method (bottom row) with Gatys et al. [11] (top row). Gatys et al. [11] optimize pixels

to minimize style and content loss. We directly optimize parameters of the brushstrokes. To do that we have designed a

differentiable rendering mechanism that maps brushstrokes onto the canvas. Each brushstroke is parameterized by color,

location, width and shape. Brushstroke parameters are updated by gradient backpropagation (red, dashed arrows).

If we have two disks, we simply repeat the procedure

above for each disk separately and obtain two separate im-

ages with disks, namely I1, I2 ∈ R
H×W×3. Now, how do

we blend I1, I2 together? If they do not overlap we can

sum the pixel values across disks I1 + I2. However, if

the disks overlap, adding them together will produce arti-

facts. Therefore, in the overlapping regions, we will as-

sign each pixel to the nearest disk. This can be done by

computing the distances D1, D2 ∈ R
H×W from each

pixel to each disk center and determine for every pixel

the closer disk. We call this object an assignment matrix

A := {1 if D1 ≤ D2, 0 otherwise} ∈ R
H×W . Now the

final image I can be computed using the matrices I1, I2 and

A: I := I1 ∗ A + I2 ∗ (1 − A). The assignment matrix A

naturally generalizes to N objects:

A(i, j, n) :=

{

1 if Dn(i, j) < Dk(i, j) ∀k 6= n,

0 otherwise.
(6)

It indicates which object is the nearest to the coordinate

(i, j). The final image computation for N images of disks

I1, .., IN then corresponds to:

I(i, j) :=

N
∑

n=1

In(i, j) ∗A(i, j, n) (7)

Hence, the final image is computed by the weighted

sum of renderings weighted according to the assignment

matrix A. Both the assignment matrix and the individual

renderings I1, ..., IN originate from the distance matrices

D1, .., DN from each pixel location to the object. Indeed,

to render a single object we take its distance matrix, thresh-

old with radius/width and multiply by a color value. The

assignment matrix is an indicator function of the smallest

distance across distances D1, .., DN . Thus, the matrix of

distances is a cornerstone of our approach. We can effec-

tively render any object for which we can compute the dis-

tances from each pixel to the object.

Our initial goal was to render brushstrokes. To render a

disk we take a distance matrix D, get a mask of points that

are closer than the radius and multiply this mask by a color

value. The same holds for a Bézier curve.

First, we compute a matrix of distances to the curve DB

(matrix of distances from every point in a 2D image to the

nearest point on the Bézier curve).

Then, we mask points that are closer than the brushstroke

width and multiply them by a color value. We approximate

the distance from a point p to a Bézier curve by sampling

S equidistant points p′1, .., p
′
S along the curve and comput-

ing the minimum pairwise distance between p and p′1, .., p
′
S .

Note that there exists an analytical solution of this distance

for a quadratic Bézier curve, however, the approximated

distance allows the use of arbitrary parametric curves.

In the final step, we can compute the individual renderings

of brushstrokes and the assignment matrix as in Eq. 6 and

blend them together into the final rendering with Eq. 7.

For the sake of clarity, we have left out two important

details in the above explanation.

First, the renderer should be differentiable, yet, the compu-
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tation of the assignment matrix and the masking operation

are both discontinuous. To alleviate this problem, we im-

plement a masking operation with a sigmoid function. To

make the assignment matrix computation differentiable we

replace it with a softmax operation with high temperature.

Second, the computation of distances between every brush-

stroke and every pixel on the canvas is computationally

expensive, memory-intensive and also redundant because

a brushstroke only affects the nearby area of the canvas.

Therefore, we limit the computation of distances from a

pixel to all the brushstrokes to only the K nearest brush-

strokes, see Sec. 3.2 of the supplementary.

Algorithm 1: Renderer

Input: Brushtroke parameters

B = {B1, B2, ..., BN}, temperature

parameter t, number samples per curve S

Output: Image I ∈ R
H×W×3

init C ∈ R
H×W×2 ; // coordinates tensor,

C(x, y) = (x, y)

init tensor of brushtrokes colors cstrokes from B
parameters ; // shape=[N, 3]

init tensor of brushtrokes widths wstrokes from B
parameters ; // shape=[N]

sample S points t ∈ [0; 1] sample points t at each

brushtroke

Bsampled := {compute Bi(tj) with Eq.4 |∀i, j} ;

// shape=[N,S,2]

D(x, y, n, s) := ||C(x, y)− Bsampled(n, s)||2 ;

// Distances from each sampled point on a

stroke to each coordinate, shape=[H,W,N,S]

Dstrokes := min(D, axis = 4) ; // distance

from a coordinate x, y to the nearest point

on a curve. shape=[H, W, N]

Mstrokes :=
sigm(max(t · ||wstrokes −Dstrokes||2, axis = 4) ;

// mask of each stroke, shape=[H, W, N]

Istrokes := Mstrokes · cstrokes ; // rendering of

each stroke, shape=[H, W, N, 3]

A := softmax(t ·Dstrokes, axis = 3) ;

// assignment, shape=[H, W, N]

I := einsum(′xyn, xync− > xyc′, A, I) ;

// final rendering, see Eq.7

See Alg.1. The supplementary contains additional tech-

nical details of the implementation.

5. Experiments

5.1. Deception Rate

To evaluate the quality of the stylization we use a decep-

tion rate proposed by Sanakoyeu et al. [44]. The method is

based on a network trained to classify paintings into artists.

Table 1: (Left) Deception score. Wikiart test gives the ac-

curacy on real artworks from the test set. Photos correspond

to the content images used by each of the methods for style

transfer. (Right) Human deception rate. The probability of

labeling randomly sampled crop out of a specified class as

real. Both scores are averaged over 8 styles.

Method Mean deception score ↑ Mean human deception rate ↑

AdaIN [18] 0.08 0.035

WCT [32] 0.11 0.091

Gatys et al. [11] 0.389 0.139

AST [44] 0.451 0.146

Ours 0.588 0.268

Wikiart test 0.687 -

Photos 0.002 -

The deception rate is the fraction of stylized images that the

network has assigned to the artist, whose artwork has been

used for stylization. However, a high deception score in-

dicates high similarity to the target image. But this metric

does not indicate how plausible a stylized image is. To mea-

sure this quality we conduct the following experiment: we

show to a human subject four crop outs. Each one can be

either taken from a real artwork or from a generated image.

The task is to detect all real crop outs. The experiment is

conducted with 10 human subjects, each participant evalu-

ates 200+ tuples. Fake images are randomly sampled from

one of three methods: ours, Gatys et al. [11], and AST [44].

For each method we report the proportion of ranking this

image as real, see Tab. 1.

5.2. Differentiable Renderer

We compare our simple explicitly constructed renderer

to the rendering mechanism proposed by Huang et al. [20].

Our approach is slower, but it requires no pretraining on

specific datasets as opposed to Huang et al. [20]. We

achieve 20% lower mean squared error (MSE) using 200

strokes, and 49% lower MSE on 1000 strokes. The compar-

ison has been conducted on the CelebA dataset. See Fig. 6

for a visual comparison.

5.3. Fitting Brushstrokes to Artwork

We can fit brushstrokes not only to a photograph but also

to an artwork. This procedure is useful if we want to study

the distribution of brushstrokes in an artwork. It has been

shown by Li et al. [30] that this information may be helpful

to detect forgeries and analyze the style of an artist. In Fig.

5 we show reconstructions of “Self-Portrait” by Vincent van

Gogh obtained using our renderer.

We additionally trained a neural network that receives

brushstroke parameters as input and generates the corre-

sponding brushstrokes. The network employs an architec-

ture inspired by StyleGAN [24] and was trained on a dataset

obtained using the FluidPaint environment. The brushstroke
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Trained Renderer Original Our Renderer

Figure 5: Reconstructions of “Self-Portrait” by Vincent van

Gogh using our brushstroke renderer and a trained renderer.

In either case we use 10.000 brushstrokes.

Figure 6: Comparison to the Learning to Paint (LTP) by

Huang et al. [20] on the image reconstruction task. Our

method directly minimizes l2 distance between the input

target image and image rendered as a collection of brush-

strokes. Using our renderer we achieve 20% lower Mean

Squared Error (MSE) for 200 strokes and 49% lower MSE

for 1000 strokes. Please zoom in for details.

parameterization is as described in this paper. The trained

renderer yields results comparable to our simple renderer

but requires more precise hyperparameter tuning an takes

more time to optimize on. Since the trained renderer is

based on the StyleGAN [24] architecture, it consumes much

more memory and thus fitting hundreds or thousands of

brushstrokes cannot be run in parallel. In Fig. 5 we present

results of our renderer and the trained renderer. See supple-

mentary for more details.

5.4. Controlling Brushstrokes

To highlight the additional control our brushstroke rep-

resentation enables over the stylization process, we show

how users can control the flow of brushstrokes in the styl-

ized image, see Fig. 2. A user can draw arbitrary curves on

the content image and the brushstrokes in the stylized image

will follow these curves. This can be achieved by adding a

simple projection loss that enforces brushstrokes along the

drawn paths to align with the tangent vectors of the paths.

See Sec. 2 of the supplementary for details. Fig. 2 further

(a) Content (b) Style

(c) Before Pixel Optimization (d) After Pixel Optimization

Figure 7: The effect of the pixel optimization. Brushstrokes

are blended together and texture is added. Zoom in for de-

tails.

shows the effect the number of brushstrokes has on the styl-

ization.

6. Conclusion and Future Work

In this paper, we have proposed to switch the represen-

tation for style transfer from pixels to parameterized brush-

strokes. We argue that the latter representation is more nat-

ural for artistic style transfer and show how it benefits the

visual quality of the stylizations and enables additional con-

trol.

We have further introduced an explicit rendering mecha-

nism and show that it can be applied even beyond the field

of style transfer.

A limitation of our approach is that it performs best for

artistic styles where brushstrokes are clearly visible. This

can potentially be alleviated with more sophisticated brush-

stroke blending procedures and should be investigated in

future endeavors.
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