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Abstract

Modern deep neural networks (DNNs) cannot be effec-

tively used in mobile and embedded devices due to strict

requirements for computational complexity, memory, and

power consumption. The quantization of weights and fea-

ture maps (activations) is a popular approach to solve this

problem. Training-aware quantization often shows excel-

lent results but requires a full dataset, which is not always

available. Post-training quantization methods, in turn, are

applied without fine-tuning but still work well for many

classes of tasks like classification, segmentation, and so on.

However, they either imply a big overhead for quantization

parameters (QPs) calculation at runtime (dynamic meth-

ods) or lead to an accuracy drop if pre-computed static QPs

are used (static methods). Moreover, most inference frame-

works don’t support dynamic quantization. Thus we pro-

pose a novel quantization approach called QPP: quantiza-

tion parameter prediction. With a small subset of a training

dataset or unlabeled data from the same domain, we find the

predictor that can accurately estimate QPs of activations

given only the NN’s input data. Such a predictor allows

us to avoid complex calculation of precise values of QPs

while maintaining the quality of the model. To illustrate

our method’s efficiency, we added QPP into two dynamic

approaches: 1) Dense+Sparse quantization, where the pre-

determined percentage of activations are not quantized, 2)

standard quantization with equal quantization steps. We

provide experiments on a wide set of tasks including super-

resolution, facial landmark, segmentation, and classifica-

tion.

1. Introduction

Deep Neural Networks (DNNs) have been actively de-

veloping in recent years. They have already proven to be

powerful tools for solving a wide variety of complex tasks

∗Equally-contributed first authors

such as classification, segmentation, image enhancement,

etc. But modern architectures are usually quite bulky and do

not meet the industry requirements for energy and memory

efficiency. Therefore, additional methods have to be used to

compress a neural network in order to decrease the model’s

inference time while preserving its quality. One of such ap-

proaches is the quantization of weights and feature maps

(activations). The efficiency of quantization is based on the

redundant representation of parameters in a single-precision

floating-point format. The values in low-precision (e.g., 4,

8 bit-width) format require less memory, and fixed-point

arithmetic operations take less time with hardware support

than floating-point ones.

To date, many different quantization approaches have

been proposed, so we give a classification of these meth-

ods and highlight their scope below. We also indicate the

place of our work in this classification.

The following systematization is built upon the two basic

criteria: the availability of a training dataset and the infer-

ence time.

1. Quatization-Aware Training. These methods are

characterized by the presence of the fine-tuning pro-

cedure, which requires a labeled training dataset. The

quantization parameters are fixed after the quantized

neural network converges. Usually, such methods have

better performance compared to other schemes. For

example, the method described in [25] aims to train

CNNs with low bit-width weights and activations us-

ing low bit-width parameter gradients. In [5] authors

propose to find the proper activation clipping parame-

ter during training, which helps to find to the optimal

quantization scale. The further improved quantization-

aware scheme based on the trainable quantization step

size is introduced in the paper [8]. Esser et al. de-

scribe how they adjust the task loss gradients in order

to learn the quantization step size and the weights of

NN simultaneously. In [3] authors added the offset, a

new trainable parameter, in addition to trainable quan-

tization step size, and achieved good results compared
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to other methods. However, the main disadvantages of

quantization-aware training methods are privacy and

copyright considerations in the industry. It means that

training datasets may be either unavailable or partially

available, so quantization-aware training schemes can-

not be used in such cases.

2. Post-Training Dynamic Quantization (Dynamic).

In such methods the quantization is applied to a well-

trained NN’s weights and its activations without fur-

ther fine-tuning procedure. The quantization parame-

ters (QP) like scale factors are computed at runtime us-

ing exact values of feature maps. The main advantages

of this approach are that it doesn’t require a training

dataset and is stable to changes in data between sam-

ples. So it is easy to convert any full-precision model

to a quantized one and get acceleration. Such approach

is not used so often because it imposes a computational

overhead on QPs estimation. It also restricts the abil-

ity to fuse quantized convolution and followed quan-

tization in order to produce quantized output data di-

rectly avoiding additional scanning of tensor of acti-

vations. Even the computation of min and max val-

ues (used for the scale factors estimation) of an input

feature maps is a developer’s headache (2-3% of the

complexity of 448x448x64@64 convolution), so using

more complex statistics is impossible blue(for exam-

ple, the overhead for α-quantile for above convolution

equals to 10%). The method ACIQ, described in [1], is

an example of a post-training dynamic method. Ban-

ner et al. proposed a method for bias correction and

methods for on-line estimation of the optimal clipping

value and per-channel bit allocation with prior assump-

tions on the input distribution. The combination of

these methods showed good results for the 4-bit quan-

tization of weights and activations.

3. Post-Training Static Quantization (Static). In con-

trast to dynamic quantization, static methods estimate

QPs using a calibration dataset, e.g., a subset of a train-

ing dataset and use predefined QPs for data quanti-

zation during the inference stage without an opportu-

nity to adjust them to particular samples. These meth-

ods are computationally more efficient because, firstly,

there is no overhead on QPs estimation during the in-

ference stage and, secondly, quantization can be fused

with a convolutional layer. But static methods have

typically higher quality degradation compared to dy-

namic ones and therefore are not always applicable.

This happens when the standard deviation of feature

maps varies significantly among samples in the task

domain, and it is impossible to choose static quan-

tization bounds to satisfy all data, i.e., they will be

either too large (data doesn’t cover all quantization

range) or too small (data does not fit the boundaries

and saturates). In [14], Migacz proposed the quan-

tization scheme, which finds a tradeoff between the

saturation and internal quantization errors mentioned

above. The idea of this method is based on comput-

ing the optimal clipping values for each layer off-line

by minimizing the Kullback-Leibler divergence with

the help of a time-consuming iterative procedure. In

[12] the author proposes a simple post-training quan-

tization scheme based on the minimum and maximum

values for weights and a moving average of the min-

imum and maximum values across batches for activa-

tions. Another works, [16] and [17], develop meth-

ods based on combining floating-point arithmetic and

fixed-point one. The main idea is to apply the low-

bit quantization to the majority of activations of small

values while keeping the rest (up to 5% of data) in

the full-precision format. This approach is compelling

because, on the one hand, it saves precise high val-

ues, which have a strong influence on the NN output,

and on the other hand, the quantization range becomes

significantly smaller (due to feature maps distribution

usually has long tails). In our work we call such an ap-

proach as Dense + Sparse (D+S) quantization and will

focus on it in Section 5. Looking ahead, QPs for the

D+S approach should be estimated carefully to get a

certain amount of data in the sparse part. Otherwise,

an accuracy drop or an increase of inference time can

happen. That is why the static QPs for D+S is not a

good solution.

We propose a new post-training quantization approach that

eliminates the computational overhead of dynamic quanti-

zation and simultaneously allows one to maintain stability

to changes between samples. Contributions of our work can

be summarized more precisely as follows:

1. The detailed description of the novel method for the

fast estimation of QPs before the inference stage for

every input sample called Quantization Parameter Pre-

dictor (QPP, see Section 3). The small set of samples

from the same domain as the supposed input data of

the neural network is used to build an estimator of

QPs. Before the inference stage one applies this esti-

mator on the new input data and then run the inference

using obtained estimations of QPs to quantize activa-

tions. Thereby this approach combines advantages of

static (efficient inference) and dynamic (adjusting to a

sample) quantization schemes. We also describe the

examples of proposed QPP.

2. Theoretical analysis with simple assumptions to clarify

the motivation and possibility of building such an es-

timator described above (see Section 4). We also pro-

vide a toy example on the MNIST dataset to confirm
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the validity of this analysis and illustrate the correla-

tion between NN’s input and corresponding QPs.

3. We describe the implementation of QPP for the follow-

ing dynamic methods: 1) standard dynamic quantiza-

tion with equal quantization steps (see supplementary

materials); 2) Dense+Sparse approach, where the pre-

determined percentage of activations are not quantized

(see Section 5). We compare QPP with the static ap-

proach and underline the advantages of the first one on

the wide set of tasks, including super-resolution, facial

landmark, segmentation, and classification.

The 8-bit (both for weights and activations) post-training

quantization works agreeably for the selected tasks. To

highlight the advantages of the proposed method we de-

crease the activations bit-width to 4 bits. The current work

doesn’t cover the efficiency of 4-bit activations in compar-

ison to 8-bit. The low-bits strengthen the disadvantages of

the standard methods and therefore the improvements be-

come easier to measure.

We deliberately don’t use the pipeline of methods aimed

to recover accuracy degradation after quantization like

AdaRound [15], AdaQuant [11], batch norm tuning [11],

bias correction [1] and so on. We use the QPP approach

alone proving its efficiency.

We used QPP to predict the following QPs: 1) α-quantile

for both standard and D+S quantization methods; 2) stan-

dard deviations used in the toy example in the section 4.

We believe that QPP can predict more complex QPs ob-

tained by some other dynamic methods. So, we can safely

state that the suggested idea can be applied to any dynamic

quantization method.

2. Static Quantization with Averaging

Until now, the only way to implement the dynamic

method statically was to use the average value of the QPs

calculated on the calibration dataset. More precisely, this

approach can be described as follows. Denote Xl
m as the

activations at l-th NN’s layer of m-th input sample of the

subset of the initial training dataset. Ql
m as corresponding

target QPs at the l-th layer computed dynamically, l ∈ 1, L,

m ∈ 1,M . For example, Ql
m is the maximum of abso-

lute value of a feature maps for the symmetric quantization.

Then, static QPs Ql
static can be expressed as follows:

Ql
static =

1

M

M
∑

i=1

Ql
i (1)

Further, these QPs are used on the inference stage and never

changed.

Figure 1. QPP Inference Scheme

3. QPP: Quantization Parameter Predictor

The static methods, assuming that the QPs are calculated

on the subset of the training dataset in advance and then

are fixed, are more computationally efficient than dynamic

ones. Still, in general, they are more inaccurate. Instead of

averaging the suboptimal QPs found for each sample from

the training subset, one can build an estimator that evaluates

them using the information from the NN input data. Our

proposed method has the following steps:

1. Estimator Construction. Denote X1
m as the m-th in-

put sample (”1” denotes that it is the input of the first

layer, i.e. the NN input) of the subset of the initial

training dataset, Ql
m = f l(X1

m) as corresponding tar-

get QPs at the l-th layer, l ∈ 1, L, m ∈ 1,M . Also

let F be the class of considered estimators. Given the

subset {X1
m}, the task of the estimator f̂ l ∈ F is to

minimize the MSE between optimal QPs and obtained

estimations of QPs. The precise optimization problem

is formalized as follows:

f̂ l = arg min
f l∈F

M
∑

m=1

1

M
‖f l(X1

m)−Ql
m‖2, ∀l ∈ 1, L.

(2)

After the estimator is found, one can proceed to the

inference stage.

2. Inference Stage. Assume Xl is the tensor of activa-

tions at l-th layer and quant(·, ·) is a quatization func-

tion at l-th layer. At first one obtains estimations of

QPs {Ql = f l(X1)}Ll=1 for all quantized layers. Then

the quantization function with obtained estimations at

each quantized layer X̃
l
= quant(Xl+1, Ql) is applied

during the forward-pass. The schematic representation

of the inference scheme is given in Figure 1.

QPP is applicable only if there is a dependency between

the input sample and the QPs. In the next section we present

the proof of the existence of such dependencies and in Sec-

tion 8 confirm it experimentally for all considered tasks.

4. Theoretical Analysis

In this section we demonstrate the motivation for using

QPP on a toy example. First, we show a linear relationship

between the activations variance of the deep feedforward

neural network on different layers with simple assumptions.

Next, we will consider the NN consisting of several linear
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Figure 2. Variance dependence (untrained NN)

layers and ReLU activation functions located between them

(see Figure 1). We demonstrate the validity of the obtained

result in the assumptions used on the denoising task for the

MNIST dataset [13]. Then we show that for the trained

NN the linear dependence remains but becomes worse. Let

Xl ∈ R
Nl be the activations of the l-th linear layer (w/o

bias), Wl ∈ R
Nl+1×Nl be its weights and X̂

l+1 ∈ R
Nl+1

be the output of this layer. In this section we assume that

the weights are sampled from gaussian distribution by the

following way: Wl ∼ N (0, σ2
wl
). The activations Xl are

sampled from arbitrary distribution with the following ex-

pectation E[Xl] = µxl
and variance D[Xl] = σ2

xl
. Also,

we assume independence between elements of Wl and ele-

ments of Xl. Now, consider linear transformation:

X̂
l+1

= WlXl. (3)

Then we assume that the i-th item of X̂
l+1

has the gaus-

sian distribution. This assumption is justified by the fact

that layers of NNs have a sufficiently large dimension and

the law of large numbers is fulfilled. With the following ex-

pectation and variance (taking into account that µwl
≡ 0):

E[x̂l+1
i ] = E

[ Nl
∑

j=1

xl
jw

l
i,j

]

= Nlµxl
µwl

= 0; (4)

D[x̂l+1
i ] = Nlσ

2
wl
(σ2

xl
+ µ2

xl
). (5)

Here we used an assumption of independence of random

variables. To finalize the analysis one needs to calculate the

expectation and the variance of the output of ReLU layer:

Xl+1 = ReLU(X̂
l+1

), (6)

Then probability density function can be expressed as fol-

lows:

ρXl+1(x) =



















0 if x < 0,
1
2 if x = 0,

1√
2πD[x̂l+1

i
]
e

−x
2

2D[x̂
l+1
i

] otherwise.

(7)

Further, µxl+1
and σ2

xl+1
calculating is straightforward, so

we give only the exact result:

µ2
xl+1

= 1
2πD[x̂l+1

i ] = 1
2πNlσ

2
wl
(σ2

xl
+ µ2

xl
); (8)

Figure 3. Variance dependence (trained NN)

σ2
xl+1

= 1
2 (1− 1

π
)Nlσ

2
wl
(σ2

xl
+ µ2

xl
). (9)

The linear dependence between variance of activations of

l-th layer and variance of NN’s input can be expressed as

follows:

σ2
xl+1

= 1
2l
(1− 1

π
)N1 . . . Nlσ

2
w1

. . . σ2
wl
(µ2

x1
+σ2

x1
). (10)

To verify this result we consider the NN consisting of

L = 10 linear layers with the following sizes N l = 3088−
256(l − 1) of hidden layers. We also used xavier initializa-

tion [9] for weights. As input of NN we consider MNIST

dataset. In Figures 2, 3 one can see the dependence of the

variance at 4-th and 9-th layers on the variance of the input

sample for the trained and untrained NNs. Expression 10 is

very accurate for an untrained network because the assump-

tions of the independence of weights and activations and the

zero expectation of weights are met.

For the trained network the assumptions are violated, and

the dependence becomes weaker and can no longer be de-

scribed by 10 (Figure 3, blue line). We estimated variance

with the least-squares method (red dotted line) to take into

account the internal correlations. As one can see, there is

a strong linear dependence at the shallow layers. However,

we would like to note that the linear dependence vanishes

at the deep layers. This problem can be solved by applying

additional estimators at the intermediate layers of NNs. We

will describe this approach in Section 7 more precisely.

The mathematical derivation and conclusions above can

be repeated for CNN, but we will lose the simplicity of the

toy example in this case.

Section conclusions. The formula 10 proves the exis-

tence of a linear dependency of the variance of an internal

activation on the input statistics. Of course, the formula can-

not be used in practice directly due to the correlations. Thus

we train QPP to take into account all internal dependencies

of the model.

5. Dense+Sparse Quantization

5.1. Definition

As noted in Section 1, selecting too small quantization

step leads to large changes in outlier values, which in turn

leads to quality degradation. To cope with this effect the au-

thors of [17] propose to compute a fixed number of outliers
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in full-precision (FP) format without applying quantization

on them. For this case the quantization function can be de-

scribed formally as follows:

quantDS(x,Q
l) =

{

⌊ x
sl
⌉ · sl if x ∈ [al, bl],

x otherwise;
(11)

where ⌊·⌉ denotes the round operation. We choose quanti-

zation bounds Ql = (al, bl) as QPs at each l-th layer (al

and bl represent bottom and upper thresholds). We assume

equal quantization steps sl with bit-width k of quantized

values defined as follows:

sl =
bl − al

2k − 1
. (12)

The amount of outliers computed in the precise mode is de-

fined by the density. In the original formulation, al and

bl are chosen as dynamically computed α-quantiles to pre-

serve fixed density. But in static implementation α-quantile

can only be estimated. Thus we suppose al and bl are

thresholds, which have values close to the target quantile.

In the next section, we will describe the problem associated

with the inaccurate estimation of QPs al and bl, which leads

to a degradation in the model’s quality or an increase of in-

ference time.

5.2. Stability Problem

Figure 4. Density as a function of the estimation error bl. Target

density is 1%.

In the case of D+S quantization the problem of accurate

choice al and bl is critical. The Figure 4 shows the exponen-

tial dependence of the density on the estimation error (the

plot was made under the assumption that the distribution

of activations is Gaussian). Even rather small deviations

from optimal values can cause either a drop in quality (if

bl > blopt) or an increase in inference time (if bl < blopt).

Drop in quality. To illustrate this effect we show the

relation between model performance and density and sum-

marize the results for ResNet34 in Figure 5. One can see

that the accuracy increases very fast with density grow-

ing up and reaching the full-precision model’s accuracy at

10%. However, even 1% is enough to recover the accuracy

loss after quantization. This can be explained as follows.

Firstly, one reduces the quantization range Ql. As a result,

Figure 5. Accuracy vs Density (ResNet34. w:8, a:4 )

Figure 6. Normalized Inference Time vs Density (data presented

in the Table 1).

the quantization step (12) shrinks and the quantization error

decreases. Secondly, a small number of outliers, which play

an important role for NN, are processed in FP32.

Increase in inference time. The D+S inference time lin-

early depends on the density (see Figure 6), which, in turn,

has exponential dependence on QPs Ql = (al, bl) repre-

sented as α - quantiles. For example, if an actual value of

al or bl is decreased by 30% by any estimation procedure,

then the density can rise from desired 1% up to 6%. As a

result, the inference time of D+S exceeds the full-precision

models. This can lag or even hang the application, which is

not acceptable for real-time applications.

Since this approach requires finding a fixed number of

outliers (α-quantiles) for every tensor of activations, it can

only be applied dynamically in the original formulation.

But as noted, the dynamic searching of the α-quantiles

value of activations imposes high computational costs (see

the detailed discussion of the results presented in Table 1 in

the Section 8). Most importantly, it restricts the opportunity

to fuse convolution and quantization operations. Therefore,

Park et al. use static clipping values (see Section 2) - the av-

erage value of the 0.97-quantile (3% density) on the training

subset. However they can face the stability issue described

above.

Thus we propose using QPP instead of static QPs to re-

duce these effects.

6. QPP based on Linear Regression

The QPs and the quantization function depend on the

chosen basic dynamic method. To finish the method pro-

posed above one needs to define the class of estimators F
suitable for it. Since NN’s input has typically large dimen-
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Table 1. Inference time of different implementations of convolutions: float16 - full-precision convolution via BOLT2(w32a32); Int8 -

quantized convolution via BOLT (w8a8); D+S - the Dense (w8a8) + Sparse (w32a32) convolution (w - weights, a - activations). Input size

(HxWxC): 56x56x64. Convolution size (KxKxF): 3x3x64. CPU: Kirin 980 (Cortex A76, 1 thread).

Conv Type Density, % Inference time, ms (%)

Max*/

Quantile**
Quantization

Sparese

(float16)

Dense

(int8)
D+S Total

float16 - 3.23 (163%)

Dynamic Int8* - 0.03 (2%) 0.19 (10%) - 1.76 (89%) - 1.98 (100%)

Dynamic D+S** 0 0.23 (12%) 0 (0%) 1.69 (86%) 2.14 (108%)

0.5 0.25 (13%) 0.13 (6%) 1.82 (92%) 2.29 (116%)

1.0
0.22

(11%)
0.28 (14%) 0.24 (12%)

1.7

(86%)
1.94 (98%) 2.43 (123%)

2.0 0.32 (16%) 0.47 (24%) 2.17 (109%) 2.70 (136%)

6.0 0.39 (20%) 1.36 (68%) 3.06 (155%) 3.67 (185%)

sions, the information has to be compressed to a small set

of several variables. For Desnse+Sparse approach the QPs

values are α-quantiles. Thus we consider linear regressors

constructed in the space of α-quantiles as the base estima-

tors. More precisely, given the input X of the NN, we de-

fine a corresponding feature space S ∈ RM×d, where Sij

defined as follows:

Sij = F (Xi, αj), (13)

and where F (X, αj) is an αj-quantile of X. Denote βl as

weight vectors of linear regressors for l-th layer for upper

thresholds bl (equations for the bottom thresholds al are

omitted to save the space). Then the optimization task 2

can be formulated as follows:

β̂
l
= argmin

βl

1

M

M
∑

m=1

(

βlSm − blm
)2
, ∀l ∈ 1, L. (14)

The solution to this problem is well-known and can be

expressed as follows:

β̂
l
= (ST S)−1ST bl. (15)

7. Prediction Quality and Extra QPP

We have introduced the optimization problem 2, where

the goal of QPP is minimizing MSE between predictions

and dynamically calculated QPs. In this section, we illus-

trate how much the QPP allows to reduce MSE compared

to the static approach with averaging. Figure 7 demon-

strates the MSE of predictions at each quantized layer of

ResNet34. Set up of the experiment can be found in Sec-

tion 8. For example, for a static approach (brown line) we

can see that the first and 29-th layers have, on average, about

4% error of estimation of QPs, and the error standard devi-

ation is huge - it is about 6%. With only one predictor (dot-

ted line) predictions have significantly smaller MSE at the

2https://github.com/huawei-noah/bolt

first half of NN compared to ordinary averaged static values

(brown line). Furthermore, QPP is much more stable than a

static scheme: predictors have a considerably smaller vari-

ance of their predictions. We have introduced a problem of

vanishing correlation between feature space and QPs which

can be clearly seen in Figure 7: QPP (dotted line) predicts

the same values as the static method (brown line). A natural

extension of the proposed design is to add QPP to the in-

termediate layers of the CNN. To maintain the low MSE in

deep layers, we added another predictor at 17-th layer (blue

line). One can see that this simple approach allows one to

use the advantages of the predictor also at the deep layers

of the CNN. But we would like to note that setting another

QPPs increases the model’s inference time since one needs

to build a feature space several times.

Figure 7. Comparison of 2 QPP, 1 QPP and Static approaches

8. Experiments

Let us clarify what we expect from the quantized model

before embarking on analysis of the experimental results.

The post-training quantization doesn’t imply a fine-tuning,

so it’s only fair to expect that both pure static and static with

QPP approaches can’t overcome the dynamic quantization

methods QPs. Here we expect that QPs of all these three

methods are based on the same statistics, like maximum or
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Table 2. Performance of QPP based D+S Quantization Scheme with 1% density (weights: 8 bit, activations: 4 bit)

4*Scheme
Classification

Acc Top 1, %

Segmentation

mIoU, %

Facial Landmark

NME, %

Super-Resolution

PSNR, dB

1 QPP (first ReLU) 4 QPP (first ReLU, Transition layer 1,2,3) 1 QPP (input of NN)

Imagenet CityScapes COFW WFLW 300W Vimeo Set5 Set14

ResNet18 ResNet34 HRNet HRNet ESPCN

FP32 69.76 73.30 70.26 3.45 4.60 3.85 34.06 30.74 27.06

Full Dynamic 66.85 70.34 66.14 3.7 4.95 4.01 33.45 30.39 26.84

D+S Dynamic 69.04 72.72 69.84 3.56 4.70 3.95 34.01 30.69 27.02

D+S Static 69.08 72.60 69.99 3.52 4.68 3.92 34.0 30.70 27.04

D+S QPP 69.14 72.67 70.0 3.55 4.69 3.93 34.01 30.69 27.02

Table 3. Stability of D+S vs Static (weights: 8 bit, activations: 4 bit)

3*Scheme
Classification

FR(1), % / FR(0.5), %

Segmentation

FR(1), % / FR(0.5), %

Facial Landmark

FR(1), % / FR(0.5), %

Super-Resolution

FR(1), % / FR(0.5), %

Imagenet CityScapes COFW WFLW 300W Vimeo Set5 Set14

ResNet18 ResNet34 HRNet HRNet ESPCN

D+S Static
3.4 /

16.1

4.5 /

23.9

0.7 /

13.9

3.5 /

64.2

8.5 /

93.4

2.1 /

34.2

26.5 /

59.5

60.0 /

60.0

62.9 /

80.0

D+S QPP
0.78 /

7.7

0.5 /

7.1

0.06 /

2.2

0.2 /

56.7

1.4 /

64.4

0.3 /

13.9

3.8 /

20.1

0 /

28.0

0 /

11.4

α-quantile. In an optimal case, they tend to dynamic behav-

ior. So, if we note that in an experiment, then it means that

QPP works perfectly.

The type of statistics is responsible for the proximity to

the behavior of a full-precision model. Both the develop-

ment of a new quantization method or finding the optimal

statistic for QPs are out of the paper’s scope. The purpose of

the section is experimental proof that the QPP can predict

different statistics, and therefore it can be used in various

quantization methods.

We examined QPP’s performance for 4 tasks: classifica-

tion (ResNet18 and ResNet34 models [10] on ImageNet [7]

dataset), segmentation (HRNetV2-W18 3 model [20, 21]

on CityScapes dataset [6]), facial landmark (HRNetV2-

W18 model on COFW [4], WFLW [22], 300W [18]

datasets), and super-resolution (ESPCN [19] on Vimeo

[23], Set5 [2] and Set14 [24] datasets).

The pipeline for every experiment is the same and can

be described as follows. In our experiments, we consid-

ered α-quantiles of activations as clipping values, i.e., QPs.

Then the regressor was trained to predict them. We used

0.9-quantile, 0.99-quantile, 0.999-quantile, the mean, and

maximum value of NN’s input as the regressor’s features.

In the presented experiments for weights quantization we

had used 8-bit (t = 8) asymmetric quantization method:

w̃l =

⌊

wl

slw

⌉

slw; slw =
max(W l)−min(W l)

2t − 1
. (16)

The 8-bit (both for weights and activations) post-training

3https://github.com/HRNet

quantization works agreeably for the selected tasks. To

highlight the QPP’s advantages, we decrease the activations

bit-width to 4 bits. The current work doesn’t cover the effi-

ciency of 4-bit activations in comparison to 8-bit. The low-

bits strengthen the disadvantages of the standard methods,

and improvements become easier to measure.

In all models, except ESPCN, we didn’t quantize the first

and last layer of NN as it was accepted in the literature.

Therefore, in this case, QPP was placed after the first ReLU

layer to increase QP’s predictions’ accuracy. A position of

QPPs in a model and their number are indicated in Table 2

(the second row in the head). For example, we embed four

QPPs to HRNet model because it contains a huge amount of

layers. The QPP positions are depicted in the supplemen-

tary materials.

In this section we presented only results for D+S ap-

proach combined with QPP and summarized them in Tables

2 and 3. The results for standard quantization can be found

in supplementary materials.

Firstly, we would like to note that the D+S approach with

1% density outperforms standard dynamic quantization sig-

nificantly. For example, for ResNet34 the increase in ac-

curacy is 2,19% due to the lack of quantization in just one

percent of the activations (please, compare ”Full Dynamic”

and ”D+S Dynamic” in Table 2). This strongly motivates us

to draw attention to the D+S approach.

One can observe that the performance of models is com-

parable with dynamic D+S, and at first glance, the static

D+S works well so that there are no reasons to use QPP (see

Table 2). However, there is a significant issue with the com-

putational cost stability of the static D+S on the sparse part
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Figure 8. Distribution of density on validation dataset with 1 QPP (ResNet34). Black lines denote the desired density.

(see Section 5.2). In case of non-dynamic D+S approach

the density is different for every input sample. Thus, some

input data will be processed with a quality drop (see Fig 5)

or with computational overhead (see Fig 6).

Figure 9. Distribution of density on validation dataset with 2 QPPs

(ResNet34)

Also, we show the distribution of density for different in-

put samples from the validation dataset for static and QPP

quantization with one predictor for average density 1% in

Figure 8 (black lines denote the desired density) or in Fig-

ure 9 for approach with two predictors. By correlating the

obtained curves, one can see that some samples are at risk

of getting into a zone with very low density and, therefore,

suffer from quantization quality degradation, or in the zone

of big density, which leads to big computational overhead.

But as noted, QPP can significantly reduce these risks, mak-

ing the Dense+Sparse approach more attractive for indus-

trial use. The good evidence of this approval is contained in

Table 3. We show the Failure Rate (FR) metric for 1% and

0.5% deviations from the desired 1% of density, i.e., the per-

centage of elements that lie outside [0; 2] and [0.5; 1.5] in-

tervals correspondingly. Both FR(1) and FR(0.5) values of

QPP are smaller than the static approach values in all our ex-

periments. For example, the number of samples with a den-

sity of more than 2% is reduced by more than 10 times for

a segmentation task. And each such sample leads to a slow-

down in inference by at least 13% (see Table 1. Thus we

can conclude that models quantized with QPP based D+S

approach are much more stable.

We implemented dynamic D+S for the CPU Kirin 980

(Cortex A76, 1 thread) with ARM architecture and per-

formed low-level optimization. We compared our results

with the quantization presented in the BOLT framework,

which uses dynamic quantization with the max/min value as

QPs. The inference time of these approaches is shown in Ta-

ble 1. One can observe that D+S with 1% density imposes

23% overhead on inference time but almost eliminates the

drop in quality. But quantile calculation can be dropped by

QPP, and inference time can be decreased by 11%. More-

over, the implementation of convolution with fused quanti-

zation also allows one to reduce computational complexity.

Unfortunately, we don’t have the implementation of fused

operation, so we can’t present the exact numbers for static

D+S. In comparison with the FP model, D+S+QPP allows

one to achieve x1.46 (BOLT int8: x1.63) acceleration with

a negligible drop in quality.

9. Conclusions

In our work we presented a new post-training quantiza-

tion method QPP that allows one to effectively use dynamic

quantization statically with small computation overhead on

CNN’s inference. Unlike the only previously known static

approach with QP’s averaging, QPP adjusts QPs for every

input sample, leading to less quality degradation and more

stable quantization. For a more detailed study of the method

we conducted experiments on a wide range of problems.

Our analysis showed greater stability of QPP based schemes

compared to the static approach with averaging. We mainly

discussed the Dense+Sparse schemes, where the stability

problem affects not only the quality of the model but also

the inference time. For them we demonstrated that QPP

also reduced the influence of static QPs on the model’s per-

formance.

In this paper we considered a specific linear regressor to

estimate QPs, but we don’t claim that this scheme is an opti-

mal solution to the optimization problem (2). So by further

analysis of feature maps distribution one can try to find a

more suitable class of estimators F to solve (2). Also we

would like to note that even for dynamic quantization the

choice of optimal QPs is still an open problem. Since their

values lie in the range of upper α-quantiles, we expect that

QPP can be applied instead of the arbitrary dynamic quan-

tization method.
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