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(a) Conventional NMS Pipeline
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(b) GrooMeD-NMS Pipeline
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Figure 1: Overview of our method. (a) Conventional object detection has a mismatch between training and inference as it uses NMS

only in inference. (b) To address this, we propose a novel GrooMeD-NMS layer, such that the network is trained end-to-end with NMS

applied. s and r denote the score of boxes B before and after the NMS respectively. O denotes the matrix containing IoU2D overlaps of

B. Lbefore denotes the losses before the NMS, while Lafter denotes the loss after the NMS. (c) GrooMeD-NMS layer calculates r in a

differentiable manner giving gradients from Lafter when the best-localized box corresponding to an object is not selected after NMS.

Abstract

Modern 3D object detectors have immensely benefited

from the end-to-end learning idea. However, most of them

use a post-processing algorithm called Non-Maximal Sup-

pression (NMS) only during inference. While there were

attempts to include NMS in the training pipeline for tasks

such as 2D object detection, they have been less widely

adopted due to a non-mathematical expression of the NMS.

In this paper, we present and integrate GrooMeD-NMS –

a novel Grouped Mathematically Differentiable NMS for

monocular 3D object detection, such that the network is

trained end-to-end with a loss on the boxes after NMS. We

first formulate NMS as a matrix operation and then group

and mask the boxes in an unsupervised manner to obtain

a simple closed-form expression of the NMS. GrooMeD-

NMS addresses the mismatch between training and infer-

ence pipelines and, therefore, forces the network to select

the best 3D box in a differentiable manner. As a result,

GrooMeD-NMS achieves state-of-the-art monocular 3D ob-

ject detection results on the KITTI benchmark dataset per-

forming comparably to monocular video-based methods.

1. Introduction

3D object detection is one of the fundamental problems

in computer vision, where the task is to infer 3D informa-

tion of the object. Its applications include augmented re-

ality [2, 68], robotics [43, 74], medical surgery [70], and,

more recently path planning and scene understanding in au-

tonomous driving [17, 35, 46, 77]. Most of the 3D object

detectors [17,35,44,46,77] are extensions of the 2D object

detector Faster R-CNN [69], which relies on the end-to-end

learning idea to achieve State-of-the-Art (SoTA) object de-

tection. Some of these methods have proposed changing ar-

chitectures [46, 76, 77] or losses [10, 18]. Others have tried

incorporating confidence [12, 76, 77] or temporal cues [12].

Almost all of them output a massive number of boxes

for each object and, thus, rely on post-processing with a

greedy [65] clustering algorithm called Non-Maximal Sup-

pression (NMS) during inference to reduce the number of

false positives and increase performance. However, these

works have largely overlooked NMS’s inclusion in training

leading to an apparent mismatch between training and in-

ference pipelines as the losses are applied on all boxes be-

fore NMS but not on final boxes after NMS (see Fig. 1(a)).
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We also find that 3D object detection suffers a greater mis-

match between classification and 3D localization compared

to that of 2D localization, as discussed further in Sec. A3.2

of the supplementary and observed in [12, 35, 76]. Hence,

our focus is 3D object detection.

Earlier attempts to include NMS in the training

pipeline [31,32,65] have been made for 2D object detection

where the improvements are less visible. Recent efforts to

improve the correlation in 3D object detection involve cal-

culating [77, 79] or predicting [12, 76] the scores via like-

lihood estimation [40] or enforcing the correlation explic-

itly [35]. Although this improves the 3D detection perfor-

mance, improvements are limited as their training pipeline

is not end to end in the absence of a differentiable NMS.

To address the mismatch between training and inference

pipelines as well as the mismatch between classification and

3D localization, we propose including the NMS in the train-

ing pipeline, which gives a useful gradient to the network

so that it figures out which boxes are the best-localized in

3D and, therefore, should be ranked higher (see Fig. 1(b)).

An ideal NMS for inclusion in the training pipeline

should be not only differentiable but also parallelizable.

Unfortunately, the inference-based classical NMS and Soft-

NMS [8] are greedy, set-based and, therefore, not paralleliz-

able [65]. To make the NMS parallelizable, we first for-

mulate the classical NMS as matrix operation and then ob-

tain a closed-form mathematical expression using elemen-

tary matrix operations such as matrix multiplication, ma-

trix inversion, and clipping. We then replace the threshold

pruning in the classical NMS with its softer version [8] to

get useful gradients. These two changes make the NMS

GPU-friendly, and the gradients are backpropagated. We

next group and mask the boxes in an unsupervised man-

ner, which removes the matrix inversion and simplifies our

proposed differentiable NMS expression further. We call

this NMS as Grouped Mathematically Differentiable Non-

Maximal Suppression (GrooMeD-NMS).

In summary, the main contributions of this work include:

• This is the first work to propose and integrate a closed-

form mathematically differentiable NMS for object de-

tection, such that the network is trained end-to-end

with a loss on the boxes after NMS.

• We propose an unsupervised grouping and masking on

the boxes to remove the matrix inversion in the closed-

form NMS expression.

• We achieve SoTA monocular 3D object detection per-

formance on the KITTI dataset performing compara-

bly to monocular video-based methods.

2. Related Work

3D Object Detection. Recent success in 2D object detec-

tion [26, 27, 48, 67, 69] has inspired people to infer 3D in-

formation from a single 2D (monocular) image. How-

ever, the monocular problem is ill-posed due to the inherent

scale/depth ambiguity [82]. Hence, approaches use addi-

tional sensors such as LiDAR [35,75,88], stereo [45,87] or

radar [58, 84]. Although LiDAR depth estimations are ac-

curate, LiDAR data is sparse [33] and computationally ex-

pensive to process [82]. Moreover, LiDARs are expensive

and do not work well in severe weather [82].

Hence, there have been several works on monocular

3D object detection. Earlier approaches [15, 23, 61, 62] use

hand-crafted features, while the recent ones are all based

on deep learning. Some of these methods have proposed

changing architectures [46, 49, 82] or losses [10, 18]. Oth-

ers have tried incorporating confidence [12,49,76,77], aug-

mentation [80], depth in convolution [10, 22] or temporal

cues [12]. Our work proposes to incorporate NMS in the

training pipeline of monocular 3D object detection.

Non-Maximal Suppression. NMS has been used to re-

duce false positives in edge detection [72], feature point

detection [29, 53, 57], face detection [85], human detec-

tion [11, 13, 20] as well as SoTA 2D [26, 48, 67, 69] and

3D detection [4, 12, 17, 76, 77, 82]. Modifications to NMS

in 2D detection [8, 21, 31, 32, 65], 2D pedestrian detec-

tion [42,51,73], 2D salient object detection [91] and 3D de-

tection [76] can be classified into three categories – infer-

ence NMS [8, 76], optimization-based NMS [3, 21, 42, 73,

86, 91] and neural network based NMS [30–32, 51, 65].

The inference NMS [8] changes the way the boxes are

pruned in the final set of predictions. [76] uses weighted av-

eraging to update the z-coordinate after NMS. [73] solves

quadratic unconstrained binary optimization while [3, 42,

81] and [91] use point processes and MAP based inference

respectively. [21] and [86] formulate NMS as a structured

prediction task for isolated and all object instances respec-

tively. The neural network NMS use a multi-layer net-

work and message-passing to approximate NMS [31,32,65]

or to predict the NMS threshold adaptively [51]. [30] ap-

proximates the sub-gradients of the network without mod-

elling NMS via a transitive relationship. Our work pro-

poses a grouped closed-form mathematical approximation

of the classical NMS and does not require multiple layers

or message-passing. We detail these differences in Sec. 4.2.

3. Background

3.1. Notations

Let B= {bi}
n
i=1 denote the set of boxes or proposals bi

from an image. Let s = {si}
n
i=1 and r = {ri}

n
i=1 denote

their scores (before NMS) and rescores (updated scores af-

ter NMS) respectively such that ri, si ≥ 0 ∀ i. D denotes

the subset of B after the NMS. Let O = [oij ] denote the

n × n matrix with oij denoting the 2D Intersection over

Union (IoU2D) of bi and bj . The pruning function p decides

how to rescore a set of boxes B based on IoU2D overlaps
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Algorithm 1: Classical/Soft-NMS [8]

Input: s: scores, O: IoU2D matrix, Nt: NMS threshold,

p: pruning function, τ : temperature

Output: d: box index after NMS, r: scores after NMS

1 begin

2 d← {}
3 t← {1, · · · , |s|} ⊲ All box indices

4 r← s

5 while t 6= empty do

6 ν ← argmax r[t] ⊲ Top scored box

7 d← d ∪ ν ⊲ Add to valid box index

8 t← t− ν ⊲ Remove from t

9 for i← 1 : |t| do

10 ri ← (1− pτ (O[ν, i]))ri ⊲ Rescore

11 end

12 end

13 end

of its neighbors, sometimes suppressing boxes entirely. In

other words, p(oi) = 1 denotes the box bi is suppressed

while p(oi) = 0 denotes bi is kept in D. The NMS thresh-

old Nt is the threshold for which two boxes need in order

for the non-maximum to be suppressed. The temperature τ

controls the shape of the exponential and sigmoidal prun-

ing functions p. v thresholds the rescores in GrooMeD and

Soft-NMS [9] to decide if the box remains valid after NMS.

B is partitioned into different groups G = {Gk}. BGk

denotes the subset of B belonging to group k. Thus, BGk
=

{bi} ∀ bi ∈ Gk and BGk
∩ BGl

= φ ∀ k 6= l. Gk in the

subscript of a variable denotes its subset corresponding to

BGk
. Thus, sGk

and rGk
denote the scores and the rescores

of BGk
respectively. α denotes the maximum group size.

∨ denotes the logical OR while ⌊x⌉ denotes clipping of

x in the range [0, 1]. Formally,

⌊x⌉ =











1, x > 1

x, 0 ≤ x ≤ 1

0, x < 0

(1)

|s| denotes the number of elements in s. ❧
❧ in the subscript

denotes the lower triangular version of the matrix without

the principal diagonal. ⊙ denotes the element-wise multi-

plication. I denotes the identity matrix.

3.2. Classical and Soft­NMS

NMS is one of the building blocks in object detection

whose high-level goal is to iteratively suppress boxes which

have too much IoU with a nearby high-scoring box. We first

give an overview of the classical and Soft-NMS [8], which

are greedy and used in inference. Classical NMS uses the

idea that the score of a box having a high IoU2D overlap

with any of the selected boxes should be suppressed to zero.

That is, it uses a hard pruning p without any temperature τ .

Soft-NMS makes this pruning soft via temperature τ . Thus,

Algorithm 2: GrooMeD-NMS

Input: s: scores, O: IoU2D matrix, Nt: NMS threshold,

p: pruning function, v: valid box threshold, α:

maximum group size

Output: d: box index after NMS, r: scores after NMS

1 begin

2 s, index← sort(s, descending= True) ⊲ Sort s

3 O← O[index][:, index] ⊲ Sort O

4 O ❧
❧ ← lower(O) ⊲ Lower △ular matrix

5 P← p(O ❧
❧ ) ⊲ Prune matrix

6 I← Identity(|s|) ⊲ Identity matrix

7 G ← group(O, Nt, α) ⊲ Group boxes B

8 for k ← 1 : |G| do

9 MGk
← zeros (|Gk| , |Gk|) ⊲ Prepare mask

10 MGk
[:,Gk[1]]← 1 ⊲ First col of MGk

11 rGk
← ⌊(IGk

−MGk
⊙PGk

) sGk
⌉ ⊲ Rescore

12 end

13 d← index[r >= v] ⊲ Valid box index

14 end

Algorithm 3: Grouping of boxes

Input: O: sorted IoU2D matrix, Nt: NMS threshold, α:

maximum group size

Output: G: Groups

1 begin

2 G ← {}
3 t← {1, · · · ,O.shape[1]} ⊲ All box indices

4 while t 6= empty do

5 u←O[:, 1]> Nt ⊲ High overlap indices

6 v← t[u] ⊲ New group

7 nGk
← min(|v|, α)

8 G.insert(v[: nGk
]) ⊲ Insert new group

9 w←O[:, 1]≤ Nt ⊲ Low overlap indices

10 t← t[w] ⊲ Keep w indices in t

11 O← O[w][:,w] ⊲ Keep w indices in O

12 end

13 end

classical and Soft-NMS only differ in the choice of p. We

reproduce them in Alg. 1 using our notations.

4. GrooMeD-NMS

Classical NMS (Alg. 1) uses argmax and greedily calcu-

lates the rescore ri of boxes B and, is thus not parallelizable

or differentiable [65]. We wish to find its smooth approxi-

mation in closed-form for including in the training pipeline.

4.1. Formulation

4.1.1 Sorting

Classical NMS uses the non-differentiable hard argmax op-

eration (Line 6 of Alg. 1). We remove the argmax by hard

sorting the scores s and O in decreasing order (lines 2-3 of

Alg. 2). We also try making the sorting soft. Note that we

require the permutation of s to sort O. Most soft sorting
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methods [6,7,60,63] apply the soft permutation to the same

vector. Only two other methods [19, 64] can apply the soft

permutation to another vector. Both methods use O
(

n2
)

computations for soft sorting [7]. We implement [64] and

find that [64] is overly dependent on temperature τ to break

out the ranks, and its gradients are too unreliable to train our

model. Hence, we stick with the hard sorting of s and O.

4.1.2 NMS as a Matrix Operation

The rescoring process of the classical NMS is greedy set-

based [65] and only considers overlaps with unsuppressed

boxes. We first generalize this rescoring by accounting for

the effect of all (suppressed and unsuppressed) boxes as

ri ≈ max



si −
i−1
∑

j=1

p(oij)rj , 0



 (2)

using the relaxation of logical OR
∨

operator as
∑

[38,47].

See Sec. A1 of the supplementary material for an alter-

nate explanation of (2). The presence of rj on the RHS of

(2) prevents suppressed boxes from influencing other boxes

hugely. When p outputs discretely as {0, 1} as in classical

NMS, scores si are guaranteed to be suppressed to ri = 0
or left unchanged ri = si thereby implying ri ≤ si ∀ i. We

write the rescores r in a matrix formulation as















r1
r2
r3
...

rn















≈max





























c1
c2
c3
...

cn















,















0
0
0
...

0





























, (3)

with















c1
c2
c3
...

cn















=















s1
s2
s3
...

sn















−















0 0 . . . 0
p(o21) 0 . . . 0
p(o31) p(o32) . . . 0

...
...

...
...

p(on1) p(on2) . . . 0





























r1
r2
r3
...

rn















. (4)

The above two equations are written compactly as

r ≈ max(s−Pr,0), (5)

where P, called the Prune Matrix, is obtained when the

pruning function p operates element-wise on O
❧

❧ . Maxi-

mum operation makes (5) non-linear [41] and, thus, difficult

to solve. However, to avoid recursion, we use

r ≈
⌊

(I+P)
−1

s

⌉

, (6)

as the solution to (5) with I being the identity matrix. Intu-

itively, if the matrix inversion is considered division in (6)

and the boxes have overlaps, the rescores are the scores di-

vided by a number greater than one and are, therefore, lesser

than scores. If the boxes do not overlap, the division is by

one and rescores equal scores.

Note that the I + P in (6) is a lower triangular matrix

with ones on the principal diagonal. Hence, I+P is always

full rank and, therefore, always invertible.

4.1.3 Grouping

We next observe that the object detectors output multiple

boxes for an object, and a good detector outputs boxes

wherever it finds objects in the monocular image. Thus, we

cluster the boxes in an image in an unsupervised manner

based on IoU2D overlaps to obtain the groups G. Grouping

thus mimics the grouping of the classical NMS, but does

not rescore the boxes. As clustering limits interactions to

intra-group interactions among the boxes, we write (6) as

rGk
≈

⌊

(IGk
+PGk

)
−1

sGk

⌉

. (7)

This results in taking smaller matrix inverses in (7) than (6).

We use a simplistic grouping algorithm, i.e., we form a

group Gk with boxes having high IoU2D overlap with the

top-ranked box, given that we sorted the scores. As the

group size is limited by α, we choose a minimum of α and

the number of boxes in Gk. We next delete all the boxes

of this group and iterate until we run out of boxes. Also,

grouping uses IoU2D since we can achieve meaningful clus-

tering in 2D. We detail this unsupervised grouping in Alg. 3.

4.1.4 Masking

Classical NMS considers the IoU2D of the top-scored box

with other boxes. This consideration is equivalent to only

keeping the column of O corresponding to the top box while

assigning the rest of the columns to be zero. We implement

this through masking of PGk
. Let MGk

denote the binary

mask corresponding to group Gk. Then, entries in the bi-

nary matrix MGk
in the column corresponding to the top-

scored box are 1 and the rest are 0. Hence, only one of the

columns in MGk
⊙ PGk

is non-zero. Now, IGk
+MGk

⊙PGk

is a Frobenius matrix (Gaussian transformation) and we,

therefore, invert this matrix by simply subtracting the sec-

ond term [28]. In other words, (IGk
+ MGk

⊙ PGk
)−1 =

IGk
−MGk

⊙PGk
. Hence, we simplify (7) further to get

rGk
≈ ⌊(IGk

−MGk
⊙PGk

) sGk
⌉ . (8)

Thus, masking allows to bypass the computationally expen-

sive matrix inverse operation altogether.

We call the NMS based on (8) as Grouped Math-

ematically Differentiable Non-Maximal Suppression or

GrooMeD-NMS. We summarize the complete GrooMeD-

NMS in Alg. 2 and show its block-diagram in Fig. 1(c).
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Figure 2: Pruning functions p of the classical and GrooMeD-

NMS. We use the Linear and Exponential pruning of the Soft-

NMS [8] while training with the GrooMeD-NMS.

GrooMeD-NMS in Fig. 1(c) provides two gradients - one

through s and other through O.

4.1.5 Pruning Function

As explained in Sec. 3.1, the pruning function p decides

whether to keep the box in the final set of predictions D or

not based on IoU2D overlaps, i.e., p(oi) = 1 denotes the box

bi is suppressed while p(oi) = 0 denotes bi is kept in D.

Classical NMS uses the threshold as the pruning func-

tion, which does not give useful gradients. Therefore, we

considered three different functions for p: Linear, a temper-

ature (τ)-controlled Exponential, and Sigmoidal function.

• Linear Linear pruning function [8] is p(o) = o.

• Exponential Exponential pruning function [8] is

p(o) = 1− exp
(

− o2

τ

)

.

• Sigmoidal Sigmoidal pruning function is p(o) =
σ
(

o−Nt

τ

)

with σ denoting the standard sigmoid. Sig-

moidal function appears as the binary cross entropy re-

laxation of the subset selection problem [60].

We show these pruning functions in Fig. 2. The ablation

studies (Sec. 5.4) show that choosing p as Linear yields the

simplest and the best GrooMeD-NMS.

4.2. Differences from Existing NMS

Although no differentiable NMS has been proposed

for the monocular 3D object detection, we compare our

GrooMeD-NMS with the NMS proposed for 2D object de-

tection, 2D pedestrian detection, 2D salient object detec-

tion, and 3D object detection in Tab. 1. No method de-

scribed in Tab. 1 has a matrix-based closed-form mathe-

matical expression of the NMS. Classical, Soft [8] and

Distance-NMS [76] are used at the inference time, while

GrooMeD-NMS is used during both training and inference.

Distance-NMS [76] updates the z-coordinate of the box af-

ter NMS as the weighted average of the z-coordinates of

top-κ boxes. QUBO-NMS [73], Point-NMS [42, 81], and

MAP-NMS [91] are not used in end-to-end training. [3] pro-

poses a trainable Point-NMS. The Structured-SVM based

NMS [21,86] rely on structured SVM to obtain the rescores.

Table 1: Overview of different NMS. [Key: Train= End-to-end

Trainable, Prune= Pruning function, #Layers= Number of layers,

Par= Parallelizable]

NMS Train Rescore Prune #Layers Par

Classical ✕ ✕ Hard - O (|G|)
Soft-NMS [8] ✕ ✕ Soft - O (|G|)
Distance-NMS [76] ✕ ✕ Hard - O (|G|)
QUBO-NMS [73] ✕ Optimization ✕ - -

Point-NMS [42, 81] ✕ Point Process ✕ - -

Trainable Point-NMS [3] X Point Process ✕ - -

MAP-NMS [91] ✕ MAP ✕ - -

Structured-NMS [21, 86] ✕ SSVM ✕ - -

Adaptive-NMS [51] ✕ ✕ Hard >1 O (|G|)
NN-NMS [31, 32, 65] X Neural Network ✕ >1 O (1)

GrooMeD-NMS (Ours) X Matrix Soft 1 O (|G|)

Adaptive-NMS [51] uses a separate neural network to pre-

dict the classical NMS threshold Nt. The trainable neural

network based NMS (NN-NMS) [31, 32, 65] use a separate

neural network containing multiple layers and/or message-

passing to approximate the NMS and do not use the prun-

ing function. Unlike these methods, GrooMeD-NMS uses a

single layer and does not require multiple layers or message

passing. Our NMS is parallel up to group (denoted by G).

However, |G| is, in general, << |B| in the NMS.

4.3. Target Assignment and Loss Function

Target Assignment. Our method consists of M3D-

RPN [10] and uses binning and self-balancing confi-

dence [12]. The boxes’ self-balancing confidence are used

as scores s, which pass through the GrooMeD-NMS layer

to obtain the rescores r. The rescores signal the network if

the best box has not been selected for a particular object.

We extend the notion of the best 2D box [65] to 3D. The

best box has the highest product of IoU2D and gIoU3D [71]

with ground truth gl. If the product is greater than a certain

threshold β, it is assigned a positive label. Mathematically,

target(bi) =







1,
if ∃ gl st i = argmax q(bj , gl)

and q(bi, gl) ≥ β

0, otherwise

(9)

with q(bj , gl) = IoU2D(bj , gl)
(

1+gIoU3D(bj ,gl)
2

)

. gIoU3D is

known to provide signal even for non-intersecting

boxes [71], where the usual IoU3D is always zero. There-

fore, we use gIoU3D instead of regular IoU3D for figur-

ing out the best box in 3D as many 3D boxes have a

zero IoU3D overlap with the ground truth. For calculating

gIoU3D, we first calculate the volume V and hull volume

Vhull of the 3D boxes. Vhull is the product of gIoU2D in

Birds Eye View (BEV), removing the rotations and hull of

the Y dimension. gIoU3D is then given by

gIoU3D(bi, bj) =
V (bi ∩ bj)

V (bi ∪ bj)
+

V (bi ∪ bj)

Vhull(bi, bj)
− 1. (10)

Loss Function. Generally the number of best boxes is less

than the number of ground truths in an image, as there could
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be some ground truth boxes for which no box is predicted.

The tiny number of best boxes introduces a far-heavier skew

than the foreground-background classification. Thus, we

use the modified AP-Loss [14] as our loss after NMS since

AP-Loss does not suffer from class imbalance [14].

Vanilla AP-Loss treats boxes of all images in a mini-

batch equally, and the gradients are back-propagated

through all the boxes. We remove this condition and rank

boxes in an image-wise manner. In other words, if the best

boxes are correctly ranked in one image and are not in the

second, then the gradients only affect the boxes of the sec-

ond image. We call this modification of AP-Loss as Image-

wise AP-Loss. In other words,

LImagewise =
1

N

N
∑

m=1

AP(r(m), target(B(m))), (11)

where r
(m) and B(m) denote the rescores and the boxes of

the mth image in a mini-batch respectively. This is differ-

ent from previous NMS approaches [30–32, 65], which use

classification losses. Our ablation studies (Sec. 5.4) show

that the Imagewise AP-Loss is better suited to be used after

NMS than the classification loss.

Our overall loss function is thus given by L = Lbefore+
λLafter where Lbefore denotes the losses before the NMS

including classification, 2D and 3D regression as well as

confidence losses, and Lafter denotes the loss term after

the NMS, which is the Imagewise AP-Loss with λ being

the weight. See Sec. A2 of the supplementary material for

more details of the loss function.

5. Experiments

Our experiments use the most widely used KITTI au-

tonomous driving dataset [25]. We modify the publicly-

available PyTorch [59] code of Kinematic-3D [12]. [12]

uses DenseNet-121 [34] trained on ImageNet as the back-

bone and nh = 1,024 using 3D-RPN settings of [10]. As

[12] is a video-based method while GrooMeD-NMS is an

image-based method, we use the best image model of [12]

henceforth called Kinematic (Image) as our baseline for

a fair comparison. Kinematic (Image) is built on M3D-

RPN [10] and uses binning and self-balancing confidence.

Data Splits. There are three commonly used data splits of

the KITTI dataset; we evaluate our method on all three.

Test Split: Official KITTI 3D benchmark [1] consists of

7,481 training and 7,518 testing images [25].

Val 1 Split: It partitions the 7,481 training images into

3,712 training and 3,769 validation images [12, 16, 77].

Val 2 Split: It partitions the 7,481 training images into

3,682 training and 3,799 validation images [89].

Training. Training is done in two phases - warmup and

full [12]. We initialize the model with the confidence pre-

diction branch from warmup weights and finetune using the

Table 2: AP3D|R40
and APBEV|R40

comparisons on the KITTI Test

Cars (IoU3D ≥ 0.7). Previous results are quoted from the official

leader-board or from papers.[Key: Best, Second Best].

Method
AP3D|R40

(↑) APBEV|R40
(↑)

Easy Mod Hard Easy Mod Hard

FQNet [49] 2.77 1.51 1.01 5.40 3.23 2.46
ROI-10D [56] 4.32 2.02 1.46 9.78 4.91 3.74
GS3D [44] 4.47 2.90 2.47 8.41 6.08 4.94
MonoGRNet [66] 9.61 5.74 4.25 18.19 11.17 8.73
MonoPSR [39] 10.76 7.25 5.85 18.33 12.58 9.91
MonoDIS [79] 10.37 7.94 6.40 17.23 13.19 11.12
UR3D [76] 15.58 8.61 6.00 21.85 12.51 9.20
M3D-RPN [10] 14.76 9.71 7.42 21.02 13.67 10.23
SMOKE [52] 14.03 9.76 7.84 20.83 14.49 12.75
MonoPair [18] 13.04 9.99 8.65 19.28 14.83 12.89
RTM3D [46] 14.41 10.34 8.77 19.17 14.20 11.99
AM3D [55] 16.50 10.74 9.52 25.03 17.32 14.91

MoVi-3D [80] 15.19 10.90 9.26 22.76 17.03 10.86
RAR-Net [50] 16.37 11.01 9.52 22.45 15.02 12.93
M3D-SSD [54] 17.51 11.46 8.98 24.15 15.93 12.11
DA-3Ddet [90] 16.77 11.50 8.93 - - -

D4LCN [22] 16.65 11.72 9.51 22.51 16.02 12.55
Kinematic (Video) [12] 19.07 12.72 9.17 26.69 17.52 13.10

GrooMeD-NMS (Ours) 18.10 12.32 9.65 26.19 18.27 14.05

self-balancing loss [12] and Imagewise AP-Loss [14] after

our GrooMeD-NMS. See Sec. A3.1 of the supplementary

material for more training details. We keep the weight λ at

0.05. Unless otherwise stated, we use p as the Linear func-

tion (this does not require τ ) with α = 100. Nt, v and β are

set to 0.4 [10, 12], 0.3 and 0.3 respectively.

Inference. We multiply the class and predicted confidence

to get the box’s overall score in inference as in [36, 76, 83].

See Sec. 5.2 for training and inference times.

Evaluation Metrics. KITTI uses AP3D|R40
metric to eval-

uate object detection following [77, 79]. KITTI benchmark

evaluates on three object categories: Easy, Moderate and

Hard. It assigns each object to a category based on its

occlusion, truncation, and height in the image space. The

AP3D|R40
performance on the Moderate category compares

different models in the benchmark [25]. We focus primarily

on the Car class following [12].

5.1. KITTI Test 3D Object Detection

Tab. 2 summarizes the results of 3D object detection

and BEV evaluation on KITTI Test Split. The results in

Tab. 2 show that GrooMeD-NMS outperforms the baseline

M3D-RPN [10] by a significant margin and several other

SoTA methods on both the tasks. GrooMeD-NMS also out-

performs augmentation based approach MoVi-3D [80] and

depth-convolution based D4LCN [22]. Despite being an

image-based method, GrooMeD-NMS performs competi-

tively to the video-based method Kinematic (Video) [12],

outperforming it on the most-challenging Hard set.

5.2. KITTI Val 1 3D Object Detection

Results. Tab. 3 summarizes the results of 3D object de-

tection and BEV evaluation on KITTI Val 1 Split at two
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Table 3: AP3D|R40
and APBEV|R40

comparisons on KITTI Val 1 Cars. [Key: Best, Second Best].

Method

IoU3D ≥ 0.7 IoU3D ≥ 0.5
AP3D|R40

(↑) APBEV|R40
(↑) AP3D|R40

(↑) APBEV|R40
(↑)

Easy Mod Hard Easy Mod Hard Easy Mod Hard Easy Mod Hard

MonoDR [5] 12.50 7.34 4.98 19.49 11.51 8.72 - - - - - -

MonoGRNet [66] in [18] 11.90 7.56 5.76 19.72 12.81 10.15 47.59 32.28 25.50 52.13 35.99 28.72
MonoDIS [79] in [77] 11.06 7.60 6.37 18.45 12.58 10.66 - - - - - -

M3D-RPN [10] in [12] 14.53 11.07 8.65 20.85 15.62 11.88 48.56 35.94 28.59 53.35 39.60 31.77
MoVi-3D [80] 14.28 11.13 9.68 22.36 17.87 15.73 - - - - - -

MonoPair [18] 16.28 12.30 10.42 24.12 18.17 15.76 55.38 42.39 37.99 61.06 47.63 41.92

Kinematic (Image) [12] 18.28 13.55 10.13 25.72 18.82 14.48 54.70 39.33 31.25 60.87 44.36 34.48
Kinematic (Video) [12] 19.76 14.10 10.47 27.83 19.72 15.10 55.44 39.47 31.26 61.79 44.68 34.56
GrooMeD-NMS (Ours) 19.67 14.32 11.27 27.38 19.75 15.92 55.62 41.07 32.89 61.83 44.98 36.29

Table 4: AP3D|R40
and APBEV|R40

comparisons with other NMS

on KITTI Val 1 Cars (IoU3D ≥ 0.7). [Key: C= Classical, S= Soft-

NMS [8], D= Distance-NMS [76], G= GrooMeD-NMS]

Method
Infer
NMS

AP3D|R40
(↑) APBEV|R40

(↑)

Easy Mod Hard Easy Mod Hard

Kinematic (Image) C 18.28 13.55 10.13 25.72 18.82 14.48
Kinematic (Image) S 18.29 13.55 10.13 25.71 18.81 14.48
Kinematic (Image) D 18.25 13.53 10.11 25.71 18.82 14.48
Kinematic (Image) G 18.26 13.51 10.10 25.67 18.77 14.44
GrooMeD-NMS C 19.67 14.31 11.27 27.38 19.75 15.93
GrooMeD-NMS S 19.67 14.31 11.27 27.38 19.75 15.93
GrooMeD-NMS D 19.67 14.31 11.27 27.38 19.75 15.93
GrooMeD-NMS G 19.67 14.32 11.27 27.38 19.75 15.92

(a) Linear Scale (b) Log Scale

Figure 3: Comparison of AP3D at different depths and

IoU3D matching thresholds on KITTI Val 1 Split.

IoU3D thresholds of 0.7 and 0.5 [12, 18]. The results in

Tab. 3 show that GrooMeD-NMS outperforms the baseline

of M3D-RPN [10] and Kinematic (Image) [12] by a sig-

nificant margin. Interestingly, GrooMeD-NMS (an image-

based method) also outperforms the video-based method

Kinematic (Video) [12] on most of the metrics. Thus,

GrooMeD-NMS performs best on 6 out of the 12 cases (3
categories × 2 tasks × 2 thresholds) while second-best on

all other cases. The performance is especially impressive

since the biggest improvements are shown on the Moderate

and Hard set, where objects are more distant and occluded.

AP3D at different depths and IoU3D thresholds. We next

compare the AP3D performance of GrooMeD-NMS and

Kinematic (Image) on linear and log scale for objects at dif-

ferent depths of [15, 30, 45, 60] meters and IoU3D match-

ing criteria of 0.3 −� 0.7 in Fig. 3 as in [12]. Fig. 3

shows that GrooMeD-NMS outperforms the Kinematic

(Image) [12] at all depths and all IoU3D thresholds.

Comparisons with other NMS. We compare with the clas-

Figure 4: Score-IoU3D plot after the NMS.

sical NMS, Soft-NMS [8] and Distance-NMS [76] in Tab. 4.

More detailed results are in Tab. 8 of the supplementary ma-

terial. The results show that NMS inclusion in the train-

ing pipeline benefits the performance, unlike [8], which

suggests otherwise. Training with GrooMeD-NMS helps

because the network gets an additional signal through the

GrooMeD-NMS layer whenever the best-localized box cor-

responding to an object is not selected. Interestingly, Tab. 4

also suggests that replacing GrooMeD-NMS with the clas-

sical NMS in inference does not affect the performance.

Score-IoU3D Plot. We further correlate the scores with

IoU3D after NMS of our model with two baselines - M3D-

RPN [10] and Kinematic (Image) [12] and also the Kine-

matic (Video) [12] in Fig. 4. We obtain the best correlation

of 0.345 exceeding the correlations of M3D-RPN, Kine-

matic (Image) and, also Kinematic (Video). This proves

that including NMS in the training pipeline is beneficial.

Training and Inference Times. We now compare the train-

ing and inference times of including GrooMeD-NMS in

the pipeline. Warmup training phase takes about 13 hours

to train on a single 12 GB GeForce GTX Titan-X GPU.

Full training phase of Kinematic (Image) and GrooMeD-

NMS takes about 8 and 8.5 hours respectively. The infer-

ence time per image using classical and GrooMeD-NMS is

0.12 and 0.15 ms respectively. Tab. 4 suggests that chang-

ing the NMS from GrooMeD to classical during inference

does not alter the performance. Then, the inference time of

our method is the same as 0.12 ms.

5.3. KITTI Val 2 3D Object Detection

Tab. 5 summarizes the results of 3D object detection and

BEV evaluation on KITTI Val 2 Split at two IoU3D thresh-
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Table 5: AP3D|R40
and APBEV|R40

comparisons on KITTI Val 2 Cars. [Key: Best, *= Released, †= Retrained].

Method

IoU3D ≥ 0.7 IoU3D ≥ 0.5
AP3D|R40

(↑) APBEV|R40
(↑) AP3D|R40

(↑) APBEV|R40
(↑)

Easy Mod Hard Easy Mod Hard Easy Mod Hard Easy Mod Hard

M3D-RPN [10]* 14.57 10.07 7.51 21.36 15.22 11.28 49.14 34.43 26.39 53.44 37.79 29.36
Kinematic (Image) [12]† 13.54 10.21 7.24 20.60 15.14 11.30 51.53 36.55 28.26 56.20 40.02 31.25
GrooMeD-NMS (Ours) 14.72 10.87 7.67 22.03 16.05 11.93 51.91 36.78 28.40 56.29 40.31 31.39

Table 6: Ablation studies of our method on KITTI Val 1 Cars.

Change from GrooMeD-NMS model: IoU3D ≥ 0.7 IoU3D ≥ 0.5

Changed From −−�To
AP3D|R40

(↑) APBEV|R40
(↑) AP3D|R40

(↑) APBEV|R40
(↑)

Easy Mod Hard Easy Mod Hard Easy Mod Hard Easy Mod Hard

Training

Conf+NMS−�No Conf+No NMS 16.66 12.10 9.40 23.15 17.43 13.48 51.47 38.58 30.98 56.48 42.53 34.37
Conf+NMS−�Conf+No NMS 19.16 13.89 10.96 27.01 19.33 14.84 57.12 41.07 32.79 61.60 44.58 35.97
Conf+NMS−�No Conf+NMS 15.02 11.21 8.83 21.07 16.27 12.77 48.01 36.18 29.96 53.82 40.94 33.35

Initialization No Warmup 15.33 11.68 8.78 21.32 16.59 12.93 49.15 37.42 30.11 54.32 41.44 33.48

Pruning

Function

Linear−�Exponential, τ = 1 12.81 9.26 7.10 17.07 12.17 9.25 29.58 20.42 15.88 32.06 22.16 17.20
Linear−�Exponential, τ = 0.5 [8] 18.63 13.85 10.98 27.52 20.14 15.76 56.64 41.01 32.79 61.43 44.73 36.02
Linear−�Exponential, τ = 0.1 18.34 13.79 10.88 27.26 19.71 15.90 56.98 41.16 32.96 62.77 45.23 36.56
Linear−�Sigmoidal, τ = 0.1 17.40 13.21 9.80 26.77 19.26 14.76 55.15 40.77 32.63 60.56 44.23 35.74

Group+Mask
Group+Mask−�No Group 18.43 13.91 11.08 26.53 19.46 15.83 55.93 40.98 32.78 61.02 44.77 36.09
Group+Mask−�Group+No Mask 18.99 13.74 10.24 26.71 19.21 14.77 55.21 40.69 32.55 61.74 44.67 36.00

Loss
Imagewise AP−�Vanilla AP 18.23 13.73 10.28 26.42 19.31 14.76 54.47 40.35 32.20 60.90 44.08 35.47
Imagewise AP−�BCE 16.34 12.74 9.73 22.40 17.46 13.70 52.46 39.40 31.68 58.22 43.60 35.27

Inference Class*Pred−�Class 18.26 13.36 10.49 25.39 18.64 15.12 52.44 38.99 31.3 57.37 42.89 34.68
NMS Scores Class*Pred−�Pred 17.51 12.84 9.55 24.55 17.85 13.63 52.78 37.48 29.37 58.30 41.26 32.66

— GrooMeD-NMS (best model) 19.67 14.32 11.27 27.38 19.75 15.92 55.62 41.07 32.89 61.83 44.98 36.29

olds of 0.7 and 0.5 [12, 18]. Again, we use M3D-RPN [10]

and Kinematic (Image) [12] as our baselines. We evaluate

the released model of M3D-RPN [10] using the KITTI met-

ric. [12] does not report Val 2 results, so we retrain on Val

2 using their public code. The results in Tab. 5 show that

GrooMeD-NMS performs best in all cases. This is again

impressive because the improvements are shown on Moder-

ate and Hard set, consistent with Tabs. 2 and 3.

5.4. Ablation Studies

Tab. 6 compares the modifications of our approach on

KITTI Val 1 Cars. Unless stated otherwise, we stick with

the experimental settings described in Sec. 5. Using a

confidence head (Conf+No NMS) proves beneficial com-

pared to the warmup model (No Conf+No NMS), which

is consistent with the observations of [12, 76]. Further,

GrooMeD-NMS on classification scores (denoted by No

Conf + NMS) is detrimental as the classification scores are

not suited for localization [12, 35]. Training the warmup

model and then finetuning also works better than training

without warmup as in [12] since the warmup phase allows

GrooMeD-NMS to carry meaningful grouping of the boxes.

As described in Sec. 4.1.5, in addition to Linear, we com-

pare two other functions for pruning function p: Exponen-

tial and Sigmoidal. Both of them do not perform as well

as the Linear p possibly because they have vanishing gradi-

ents close to overlap of zero or one. Grouping and masking

both help our model to reach a better minimum. As de-

scribed in Sec. 4.3, Imagewise AP loss is better than the

Vanilla AP loss since it treats boxes of two images differ-

ently. Imagewise AP also performs better than the binary

cross-entropy (BCE) loss proposed in [30–32, 65]. Using

the product of self-balancing confidence and classification

scores instead of using them individually as the scores to

the NMS in inference is better, consistent with [36, 76, 83].

Class confidence performs worse since it does not have

the localization information while the self-balancing con-

fidence (Pred) gives the localization without considering

whether the box belongs to foreground or background.

6. Conclusions

In this paper, we present and integrate GrooMeD-NMS –

a novel Grouped Mathematically Differentiable NMS for

monocular 3D object detection, such that the network is

trained end-to-end with a loss on the boxes after NMS. We

first formulate NMS as a matrix operation and then do un-

supervised grouping and masking of the boxes to obtain

a simple closed-form expression of the NMS. GrooMeD-

NMS addresses the mismatch between training and infer-

ence pipelines and, therefore, forces the network to se-

lect the best 3D box in a differentiable manner. As a

result, GrooMeD-NMS achieves state-of-the-art monoc-

ular 3D object detection results on the KITTI bench-

mark dataset. Although our implementation demonstrates

monocular 3D object detection, GrooMeD-NMS is fairly

generic for other object detection tasks. Future work in-

cludes applying this method to tasks such as LiDAR-based

3D object detection and pedestrian detection.
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Single-stage monocular 3D object detection via keypoint es-

timation. In CVPR Workshops, 2020. 6

[53] David Lowe. Distinctive image features from scale-invariant

keypoints. IJCV, 2004. 2

[54] Shujie Luo, Hang Dai, Ling Shao, and Yong Ding.

M3DSSD: Monocular 3D single stage object detector. In

CVPR, 2021. 6

[55] Xinzhu Ma, Zhihui Wang, Haojie Li, Pengbo Zhang, Wanli

Ouyang, and Xin Fan. Accurate monocular 3D object detec-

tion via color-embedded 3D reconstruction for autonomous

driving. In ICCV, 2019. 6

[56] Fabian Manhardt, Wadim Kehl, and Adrien Gaidon. Roi-

10D: Monocular lifting of 2D detection to 6 pose and metric

shape. In CVPR, 2019. 6

[57] Krystian Mikolajczyk and Cordelia Schmid. Scale & affine

invariant interest point detectors. IJCV, 2004. 2

[58] Frank Moosmann, Oliver Pink, and Christoph Stiller. Seg-

mentation of 3D LiDAR data in non-flat urban environments

using a local convexity criterion. In Intelligent Vehicles Sym-

posium, 2009. 2

[59] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,

Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-

son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,

Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An

imperative style, high-performance deep learning library. In

NeurIPS, 2019. 6

[60] Max Paulus, Dami Choi, Daniel Tarlow, Andreas Krause,

and Chris Maddison. Gradient estimation with stochastic

softmax tricks. In NeurIPS, 2020. 4, 5

[61] Nadia Payet and Sinisa Todorovic. From contours to 3D ob-

ject detection and pose estimation. In ICCV, 2011. 2

[62] Bojan Pepik, Michael Stark, Peter Gehler, and Bernt Schiele.

Multi-view and 3D deformable part models. TPAMI, 2015.

2
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