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Abstract

Under-display camera (UDC) technology is essential for

full-screen display in smartphones and is achieved by re-

moving the concept of drilling holes on display. However,

this causes inevitable image degradation in the form of spa-

tially variant blur and noise because of the opaque display

in front of the camera. To address spatially variant blur and

noise in UDC images, we propose a novel controllable im-

age restoration algorithm utilizing pixel-wise UDC-specific

kernel representation and a noise estimator. The kernel

representation is derived from an elaborate optical model

that reflects the effect of both normal and oblique light inci-

dence. Also, noise-adaptive learning is introduced to con-

trol noise levels, which can be utilized to provide optimal

results depending on the user preferences. The experiments

showed that the proposed method achieved superior quan-

titative performance as well as higher perceptual quality

on both a real-world dataset and a monitor-based aligned

dataset compared to conventional image restoration algo-

rithms.

1. Introduction

Recently, an under-display camera (UDC) is in the spot-

light as a new design form factor for smartphones. UDC

is mounted below the display, which enables a full-screen

display for better user experience without punch holes or

notches. However, inevitable image degradation is accom-

panied by UDC, and thus, to realize this attractive technol-

ogy, the corresponding technical breakthrough against the

degraded camera imaging performance is required.

One of the major limitations of UDC system is low light

transmission of the display. Relatively low signal-to-noise

ratio (SNR) and additional noise due to the display cause

severe image quality degradation especially in smartphone

cameras, whereas other cameras powered by large sensor

pixels and a large lens adequately compensate for the signal

reduction [36]. In addition, various forms of optical diffrac-
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Figure 1: Controllable image restoration algorithm to en-

hance the quality of UDC images degraded by spatially

variant blur and noise.

tion and interference are generated by the display pattern

which consists of transparent and opaque areas; therefore, a

complicated blurry image is captured by a particular diffrac-

tion blur kernel [10]. Furthermore, the color tone is dis-

torted by the wavelength-dependent light transmittance of

the display, which is applied to each color filter array.

Meanwhile, image sensor data are normally recon-

structed into standard RGB images by an image signal pro-

cessor (ISP) which consists of the sequential process of de-

mosaicing, white balancing, color space transform, sharp-

ening, etc. The ISP is implemented on-chip and tuned to a

specific sensor. Recently, several attempts have been made

to replace ISP with neural networks [13, 17, 22]. However,

their preliminary results under laboratory experimental set-

tings may be incompatible with existing functions such as

scalability, scene-specific detail enhancement, multi-image

fusion, and high dynamic range.

Therefore, solving the UDC problem while maintaining

compatibility with the existing functions has become an im-

portant problem. A simple solution is to handle the degra-

dation caused only by a UDC in the linear RGB sensor data,

while maintaining the conventional ISP. The linear RGB do-

main has the advantage of preserving the physical properties

of the UDC system because it does not go through nonlin-
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ear processes in the ISP [2, 4]. In addition, color tone dis-

tortion can be solved by white-balance correction and tone

mapping in the ISP, which can reduce the network burden

by focusing on deblurring and denoising. Therefore, we

attempted to solve the UDC problem in the linear RGB do-

main to cope with various imaging conditions in real-world

scenarios.

In this study, the UDC problem is defined as im-

age restoration from complicated diffraction blur and high

noise, which are described in Fig. 1. In order to address

spatially variant blur and noise, the proposed architecture

is designed to be controllable pixel-by-pixel with respect to

the level of blur and noise. Additionally, in terms of prac-

tical usage, a controllable noise-balancing level is proposed

because user preferences vary depending on the light con-

ditions.

The training dataset is important for learning-based ap-

proach to solve the image restoration problem, but it is diffi-

cult to obtain actual pairs of degraded and ground truth im-

ages. Although [1, 36] provide an actual paired dataset, it is

restricted to artificial settings such as only indoor scenes or

monitor-displayed images under fixed lighting, focus, and

exposure time. This dataset cannot cover the wide range of

light brightnesses and multiple light sources in real-world

scenarios. To address the gap between synthetic and actual

data, we propose elaborate optical modeling by reflecting

the effects of oblique light incidence additionally. Based on

the modeling results, realistic training data is synthesized

and controllable restoration architectures are trained to ad-

dress spatially variant degradation.

The contributions of this work are summarized as fol-

lows. (1) A realistic optical model of the UDC system is

presented by considering the effects of both normal and

oblique light incidence. (2) A new pixel-wise controllable

architecture is provided to address spatially variant diffrac-

tion blur and noise of UDC images from a smartphone in an

ISP-compatible manner. (3) Noise-adaptive learning is in-

troduced to control noise levels depending on the user pref-

erence and various imaging conditions.

2. Related Works

2.1. Image restoration for UDC

UDC image restoration was firstly addressed in [36],

which included the handling of various types of image

degradation such as blur, noise, and color shift. The au-

thors proposed data synthesis by optical modeling and col-

lected actual paired data using a monitor-camera imaging

system. They presented comprehensive results about the

display structures, training data, loss functions, and net-

work architectures. A UDC image restoration challenge

[35] was held based on the collected monitor-captured UDC

images. The participants applied various well-known tech-

niques such as skip or dense connections, attention layers,

utilization of explicit information such as shade maps, and

decomposition of images. They all showed feasible per-

formance under the given conditions of the monitor-camera

imaging system.

UDC image degradation can differ depending on the dis-

play structure and camera specifications [19, 24, 30, 34]. In

real-world scenarios such as UDC imaging in smartphones,

UDC image restoration must be performed in collaboration

with the 3A conditions (auto exposure, auto white-balance

and auto focus) and image reconstruction pipelines (from

linear RGB to standard RGB). In this study, the UDC image

restoration problem is newly defined for smartphones. The

proposed method is applied not only to monitor-captured

images, but also to actual images captured in various real-

world scenarios.

2.2. Controllable network

Deep learning has shown remarkable performance in

various image restoration tasks such as denoising [14, 16,

31, 32], deblurring [6, 21, 23, 25], and super-resolution

[5, 18, 28, 33]. However, a deterministic result is output

by feeding an input into the network. Moreover, they have

no option to reflect the user preferences or to adapt to con-

dition variations.

Pioneering works [11, 12, 27] have proposed control-

lable networks that can produce various results based on

the given control parameters to restore single or multiple

types of degradations adaptively, such as noise, blur, and

compression artifacts. Their networks were trained on syn-

thetic data that were generated by controlling degradation,

and the performance was demonstrated using synthetic data

under similar experimental settings. Perceptually or quan-

titatively better results can be achieved by controlling the

parameters, even compared to the results for the parameters

corresponding to the input degradation levels.

In UDC image restoration, controllable networks are es-

sential to address spatially variant blur and noise. In ad-

dition, controlling the balance between deblurring and de-

noising is also important for better subjective evaluation. In

this study, we parameterize the blur and noise induced by

UDC, and adaptively relieve actual UDC degradation based

on pixel-wise control parameter maps instead of the image-

wise control parameter vector in [12]. We also propose a

noise-adaptive training method to control the level of de-

noising, which enables the optimal results to be output for

the given user preferences according to the conditions.

3. Method

3.1. Background

The light transmission rate (LTR) through a typical mo-

bile display (P-OLED) is less than 3% [36]. A UDC in-
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evitably utilizes more gains (analog and digital gains) to

achieve acceptable exposure values, which results in in-

creasing noise levels. This issue is critical for the imag-

ing sensors of smartphones because they are too small

to achieve acceptable SNR. To overcome these problems,

some display pixels are replaced with transparent window

areas [30]. The transparent window areas are regularly ar-

ranged to preserve reasonable visibility of the display. Light

transmission is allowed only through the transparent win-

dow areas by accumulating an additional layer outside the

transparent window area. This feature helps simplify the

degradation patterns and predict the degradation kernels

more accurately. Fig. 2 shows schematic diagrams of the

transparent window areas in the camera region. This ap-

proach enables LTR improvement up to about 20%.

A P-OLED display attenuates the LTR depending on

the wavelength of light, which results in color shift [36].

In other words, blue components (short wavelengths) are

attenuated more than red components (long wavelengths).

The unbalanced light transmission can be compensated by

white balancing and tone mapping in conventional ISP

pipelines.

3.2. Problem formulation

We define the UDC image restoration problem in smart-

phones as deblurring and denoising, to resolve diffraction

induced by the transparent window areas and to suppress

noise induced by compensating for the decreased LTR, re-

spectively. We assume that the UDC images and non-UDC

images are captured with the same exposure value under

an auto-exposure algorithm. The image restoration is pro-

cessed in the linear raw-RGB domain because the noise dis-

tribution and shape of the blur kernel induced by a UDC are

significantly changed in the standard-RGB domain [2, 4]. In

summary, the UDC image degradation can be represented

by

y = Ax+ n, (1)

where y, x, A, and n are a UDC image, a ground-truth im-

age, a spatially variant blurring operator, and noise, respec-

tively. Detailed explanations are provided in the following

sections.

3.3. Optical modeling

The degradation model of the UDC panel is explained in

detail in [36]. We used the design of transparent window

pattern U as in Fig. 2a, instead of a microscope image of

the display panel [36]. By multiplying this pattern times the

circular aperture P from the entrance pupil distance of the

camera and computing the Fourier transform F = F{UP},

the point spread function (PSF) of the UDC panel can be

derived. Explicitly, the PSF intensity h at the focal plane

of the lens is proportional to the Fraunhofer pattern of the

Display U

fLens P Sensor h

(a) Normal incidence

(b) Oblique incidence

Figure 2: Optical modeling including (a) normal incidence

and (b) oblique incidence of light to reflect the spatially

variant properties.

incident field [26, 36]:
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where (u, v) is the sensor coordinate, λ is the wavelength,

and f is the effective focal length of the lens.

Although the PSF in Eq. (2) is valid for the center of the

image, where the light is normally incident on the panel

(Fig. 2a), it does not work for the corners of the image,

where the light is obliquely incident on the panel (Fig. 2b).

Owing to the periodic windows pattern, the UDC panel acts

as a planar diffraction grating and the obliquely incident

light induces conical diffraction [10] and distorted PSFs.

In order to reflect the spatially variant properties in our

degradation model, we generalized (2) by considering the

oblique-incidence cases.

This problem has been addressed in previous studies. For

instance, [10] discussed the diffraction with obliquely inci-

dent angles in terms of the direction cosines of the incident

and diffracted angles, but it was limited to specific types

of gratings such as grooves. Although diffraction was ana-

lyzed in [20] using arbitrarily oriented gratings under an ar-

bitrary angle of incidence, a complicated three-dimensional

vector coupled-wave analysis was utilized, which is diffi-

cult to implement. Instead, we simplified the generaliza-

tion problem of obtaining spatially variant PSF information

valid for all image pixel coordinates, using the orthogonal

projection. For each sensor pixel p, the orthogonal projec-

tion Qp onto the plane perpendicular to the incident ray

to p is considered. Thereafter, the PSF corresponding to

sensor pixel p can be approximated from the Fourier trans-

form of the orthogonal projection of the UDC panel pattern
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Figure 3: Proposed framework, which consists of a main network for UDC image restoration and auxiliary components to

control the main network. Degradation induced by UDC is resolved pixel by pixel based on given kernel-guide maps and

noise maps from the noise estimator.
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3.4. Overall framework

The main network enhances UDC images by utilizing

controllable parameters such as explicit kernel-guide maps,

estimated noise maps, and an explicit noise-balancing level

as shown in Fig. 3. The noise estimator and main network

are based on EDSR [18]. The residual block of EDSR is

replaced with a multi-dilated (MD) block in the noise esti-

mator. The residual block uses n-channel 3×3 convolutions

with a dilation rate of 1, but the MD block uses four n/4-

channel 3×3 convolutions with four different dilation rates

of 1, 2, 3, and 4. It enables the receptive field to be enlarged

efficiently in relatively shallow networks and noise levels to

be estimated properly from complex texture patterns. The

main network uses pixel-wise guided (PG) blocks, which

modulate feature maps by utilizing control parameters that

represent the kernel and noise level in each position. The

control parameters are mapped to the number of channels

in each block by using a 1×1 convolution layer. CResMD

[12] showed that this feature modulation is better than direct

concatenation to input or AdaFM [11].

3.4.1 Controllable kernel representation

The calculated kernels hp in (3) are represented as seven

semantic parameters (k = (b1, x1, y1, x2, y2, r1, r2)) as

shown in Fig. 2b. Because the kernel is symmetric with re-

spect to the origin, it is sufficient to use half of the kernels to

represent all of the kernels. Each kernel is parameterized as

the width b1 of the main lobe, coordinates (x1, y1, x2, y2)

and the intensity ratios (r1, r2) between the peaks of the

main lobe and first grating lobe. The width is given by

1/(2ρ), where ρ is the pixel pitch size. For example, when

the pixel pitch size is 1 µm, the width of the kernel is repre-

sented as 0.5.

From the representation parameter k, the original kernels

can be reconstructed as the main lobe and four first grating

lobes by ignoring high-order grating lobes and small rip-

ples. The root-mean-square error between the reconstructed

kernels and optics-based calculated kernels is 0.29% and

0.32% in the center and corners of the image, respectively.

Hence, the kernel representation can significantly reduce

the number of kernel parameters from 33×33 (kernel size

including second grating lobes) to 7, with acceptable error

rates.

In the training phase, training data are synthesized by the

seven kernel parameters with certain ranges to reflect the ac-

tual degradation levels and for robustness against potential

variations, as described in 4.1.1. In the inference phase, the

pre-calculated kernel-guide maps are utilized. The kernel-

guide maps are calculated from the hardware specifications,

such as those of the transparent window areas, lens array,

and imaging sensor.

3.4.2 Noise estimator

Noise in the linear raw-RGB domain is generated by var-

ious sources, and it includes signal-dependent (owing to

photon noise and color-dependent transmission rate), and

spatially variant characteristics (owing to the lens shad-

ing correction). The noise is simplified by using the het-

eroscedastic Gaussian model. The noise estimator outputs

the standard deviation of the Gaussian model to represent

the noise from various sources as parameter σ.

In the training phase, the noise n is generated by utilizing

the Gaussian distribution N of a signal-dependent term α1

and a signal-independent term α2 as follows:

n ∼ N (0, σ2) = N (0, α1Ax+ α2). (4)
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Spatially variant noise is efficiently relieved by considering

explicit known noise level maps [32]. ATDNet [14] uti-

lizes estimated noise level maps and thus retains details in

the texture regions while suppressing the noise. The noise

changes with the imaging objects or imaging conditions,

and the noise level maps cannot be appropriately calculated

from only metadata such as the gain, luminance, and aper-

ture size. Therefore, the noise maps are estimated from

UDC images, and utilized to enable proper restoration of

the UDC images by the main network based on the noise

level.

3.4.3 Noise-adaptive training

The noise estimator is trained to minimize the following

loss function:

Lne = ‖σ −N(Ax+ n)‖2 (5)

= ‖σ − σ̂‖2, (6)

where N is the noise estimator that utilizes the UDC im-

age (Ax + n) as input. The main network is trained by the

following loss function:

Lm = ‖x+ (1− s)n–M(Ax+ n, sσ̂, k)‖1, (7)

where M is main network that utilizes the UDC image

(Ax + n), estimated noise level maps σ̂, and kernel-guide

maps k as input. The estimated noise maps are multiplied

by a random noise-balancing level s ∈ [0, 1], and the main

network reduces the noise level proportional to s while de-

blurring the UDC images. This training method allows the

main network to take full advantage of the estimated noise

map and control the noise level efficiently.

4. Experiments

4.1. Data

Synthetic training data were generated from the model-

ing 3.3. Aligned and real-world datasets were utilized for

quantitative and qualitative evaluations. The aligned dataset

was collected by utilizing a monitor-camera imaging sys-

tem [35], and its details are provided in the supplementary

material.

4.1.1 Synthetic training data

Synthetic data were generated on the fly in the train-

ing phase based on DIV2k data [3]. Original patches with

dimensions of 512×512 were randomly cropped from the

DIV2k data, and normalized to be within the range [0,1].

The patches were unprocessed by gamma decompression

[4]. Degraded patches were generated by filtering the UDC

kernels and injecting noise. The UDC kernels were ran-

domly generated by the representation parameters k, de-

scribed in Section 3.4.1, as follows. (1) The values of the

width b1 were generated to follow a uniform distribution

in the range of [0.25, 1]. (2) The values of the coordi-

nates (x1, y1, x2, y2) were within the range of [4, 14], and

were scaled by 100 to balance with other parameters. (3)

The intensity ratios (r1, r2) were within the range of [0.01,

0.015]. The signal-dependent (α1 ∈[0,0.001]) and signal-

independent (α2 ∈[0,0.001]) noise were injected channel-

wise into the images filtered by the UDC kernels.The distri-

butions of the parameters were empirically chosen based on

the calculated kernels and the measured noise. The pairs of

degraded and original patches were subsampled to follow

the Bayer pattern, reshaped to four-channel GRBG images,

and cropped to dimensions of 160×160 for training. Each

pair corresponded to seven-channel kernel-guide maps and

four-channel noise level maps.

4.1.2 Real-world dataset

Real-world images were captured by smartphones (Sam-

sung Galaxy S20 Plus) under on-device 3A conditions. The

images were 10-bit Bayer-pattern 3648×2736 linear-RGB

images. The images were labeled as UDC images and non-

UDC images, depending on whether there was a panel in

front of the camera when the relevant image was captured.

We collected paired data of UDC and non-UDC images

in real-world scenarios such as indoor/outdoor, day/night,

moving/stationary objects, and low/high lighting condi-

tions. The real-world paired data were not aligned pixel-

wise, and some of the pairs had time and/or perspective

gaps. They were utilized as test sets for modulation transfer

function (MTF) analysis and qualitative evaluation.

4.2. Implementation details

In our implementation, the noise estimator consisted of

6 MD blocks with 32 channels, and the main network con-

sisted of 12 PG blocks with 32 channels. Each network

had approximately 113.4k and 228.9k learnable weights, re-

spectively. The whole framework was trained end to end

using the synthetic data by minimizing Lm + 100Lne. We

trained the model using the ADAM optimizer [15] with

β1 = 0.9 and β2 = 0.999. We set the minibatch size to 1.

The learning rate was initialized to 0.0002 and multiplied

by 0.97 every 8k updates of the weights. We trained several

models with differently initialized weights [8] by perform-

ing 800k weight updates, and we chose the model with the

best validation performance, which was marked as “Ours”.

In the experimental results, the noise-balancing level of

Ours was chosen based on the ISO value to achieve the best

mean opinion score (MOS), which is described in 4.5. For

visualization, all linear-RGB images were processed by in-

house ISP pipelines designed for Samsung Galaxy smart-

phones.
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4.3. Ablation study

We performed several ablation studies to demonstrate

the effectiveness of each component as follows.

Kernel-guide maps. The skewed blur kernels in image cor-

ners can be easily observed in the region with high con-

trast, as shown in Fig. 4. The restoration performance of

the model without utilizing kernel-guide maps (w/o KG)

deteriorates in the skewed blur of the corner regions. In

addition, the degradations in corner regions were not re-

solved at all when the kernel-guide parameters represent-

ing the blur in the center regions were given for the pro-

posed method, as shown in “incorrectKG” in Fig. 4. How-

ever, Ours resolves various blurs when the correct pixel-

wise kernel-guide maps are given.

non-UDC non-UDC UDC

w/o KG incorrectKG Ours

Figure 4: Ablation study of kernel-guide maps.

Noise estimator. The model without utilizing the noise

estimator (w/o NE) over-smoothed the fine details, as

shown in Fig. 5. The noise estimator was trained to esti-

mate the noise maps properly, enabling the distinction of

complex patterns and noise. The main network can reduce

the noise, while maintaining delicate structures based on

the estimated noise maps. Empirically, the receptive fields

of the noise estimator influence the performance of the

texture regions, which is why we utilized MD blocks for

the noise estimator. We provide an example of this in the

supplementary material.

Noise-adaptive training. When noise-adaptive training is

not utilized, the effect of the noise-balancing level is slight

as shown in Fig. 6. The restored images from the model

without noise-adaptive training (w/o NT) are almost the

same, although the estimated noise maps were scaled by

different noise-balancing levels. In addition, the noise dis-

tributions in the UDC image and restored image (s = 0)

are completely different. On the other hand, the proposed

model reduces the noise from the UDC image by a given

noise-balancing level. The restored image (s = 0) does not

change the noise distribution of the UDC image while re-

non-UDC non-UDC

UDC w/o NE Ours

Figure 5: Ablation study of noise estimator.

non-UDC non-UDC w/o NT s=0 w/o NT s=0.5 w/o NT s=1

UDC UDC Ours s=0 Ours s=0.5 Ours s=1

Figure 6: Ablation study of noise-adaptive training.

solving blur. Noise-adaptive training helps the main net-

work utilize the estimated noise maps fully because the

main network cannot perform noise reduction by a certain

quantity without utilizing the noise level maps.

4.4. Performance evaluation

The proposed method was compared with two classical

methods and two learning-based methods as follows. (1)

WF [9]: The Wiener filter was used for deconvolution with

a fixed kernel from the normal light incidence. (2) CGLS

[7]: The conjugate gradient algorithm for least squares

problems was used for the spatially variant deconvolution.

(3) Real-mon: The network was trained using the aligned

monitor-captured dataset. The monitor-camera imaging

system was introduced in [36]. (4) Syn-nor: The network

was trained using synthetic data that were generated by

only considering normal incidence. The data synthesis

method corresponds to [36]. The networks of Real-mon

and Syn-nor were the same as the main network in the

proposed framework. Note that Real-mon and Syn-nor

are designed to compare to [36] because their conditions

were completely different from ours, for example, the blur
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Table 1: Performance comparison between several methods

on DIV2k monitor-captured images (PSNR(dB) and SSIM)

and TE42v2 chart image (MTFs (cycles/pixel)). The best

and second best performances are indicated in red and blue,

respectively.

Method PSNR SSIM MTF25 MTF50

UDC 36.46 0.9218 0.3614 0.2017

WF 37.65 0.9460 0.2674 0.1761

CGLS 38.15 0.9511 0.2638 0.1726

Real-mon 38.24 0.9804 0.1623 0.1384

Syn-nor 38.52 0.9676 0.3482 0.3014

Ours 38.68 0.9715 0.3797 0.3024

by transparent windows in the display, size of the target

imaging sensors, and domain of the network output (linear

RGB or standard RGB) were different.

Quantitative evaluation. The PSNR and SSIM[29] val-

ues in Table 1 were calculated using 40 aligned monitor-

captured images. The learning-based methods outper-

formed the classical methods, and the performances of both

the classical and learning-based methods improved when

the spatially variant blur was considered. Ours and Real-

mon showed the best performance in terms of PSNR and

SSIM, respectively. Ours showed results comparable to

those of Real-mon, although actual monitor-captured data

were not utilized for training.

MTF was measured to quantify image sharpness in

TE42v2 chart images by using Image Engineering iQ-

Analyzer v6.2.2.1. The spatial frequencies with relative

contrast values of 25%, and 50% are labeled as MTF25, and

MTF50 in Table 1, respectively. The restored images are

displayed in Fig. 7. Ours improved MTFs, in other words,

the sharpness at all frequencies, but the other methods

showed partial improvements at specific frequencies or

no improvements in terms of MTFs. MTF50, which is

well known to be correlated with perceptual sharpness,

dramatically increased by about 50% in Ours.

Qualitative evaluation. A monitor-captured image, and

three actual images taken in various imaging conditions

were restored using several methods, and are displayed as

shown in Fig. 7. The deblurring performances of the two

classical methods were marginal, and they suffered from

boosted noise in low-light conditions. WF and Syn-nor can-

not address skewed blurs in corner regions as shown in chart

images of Fig. 7. Syn-nor and Ours showed quite similar

performance in center regions with low noise levels. Syn-

nor had suboptimal results except in the center regions, and

it frequently caused over-smoothing in regions with high

noise levels or complex texture because it does not uti-
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Figure 8: Scatter plots of noise-balancing level s versus

ISO. Each sample point represents averaged s value for one

test image.

lize kernel-guide maps and noise estimator. Real-mon was

tuned to only monitor-captured data, and thus it frequently

suffered from halo artifacts and had residual noise in ac-

tual scenarios. Moreover, Real-mon partially caused blur in

restored actual images and even monitor-captured images.

Ours produced superior deblurring effects in complex tex-

ture or character regions. In addition, Ours retained fine

details without causing over-smoothing or boosted noise.

4.5. MOS test on the noise­balancing level

We performed a MOS test to analyze perceptual quality

according to noise-balancing levels. Specifically, we asked

25 raters to select the best image among five restored images

that were adjusted by changing the noise-balancing level s.

The raters compared 50 sets of anonymized restored im-

ages including selfies and general images taken under vari-

ous light conditions. All of the raters performed subjective

evaluation under the same environment with a full HD mon-

itor and were given instructions before the experiments. In

the instruction, we recommend that the raters select the best

image, but if the decision was difficult, they could select

multiple images that seemed better than the others.

We analyzed the results depending on the ISO, which is

proportional to the gains in the image. The raters preferred

high noise-balancing levels for the noisy images that were

taken under low-light conditions and low noise-balancing

levels for the images that were taken under sufficient illumi-

nation. In Fig. 8, the results are divided into face and non-

face categories because UDC is designed for front camera,

which is typically used to take selfies. According to this ex-

periment, people are more tolerant to noise in face images

than in non-face images, and they reported that the residual

noise was more natural and realistic.

5. Conclusion

We propose a novel controllable image restoration

framework for UDC in smartphones. An optical model-

ing is elaborated to represent the degradation caused by

UDC accurately. In designing the proposed software archi-

tecture, a noise estimator is adopted to maintain the fine
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non-UDC UDC WF CGLS Real-mon Syn-nor Ours

Figure 7: Restoration results obtained using several methods on (first row) a monitor-captured image from DIV2k, (second

row) a TE42v2 chart image, (third row) an outdoor image taken in daylight, and (fourth row) a selfie image taken under

low-light conditions. See more samples with large sizes in the supplementary material.

details while deblurring and denoising. And then, kernel-

guide maps and estimated noise maps are utilized in the

manner of feature modulation for the main restoration net-

work to address spatially variant blur and noise. Moreover,

practical computing issues such as ISP compatibility and

use-case constraints also have been considered. The noise-

adaptive training is adopted to control desired noise levels,

which can reflect user preferences depending on various

real-world imaging conditions. Finally, we would like to

remark that the proposed method quantitatively and qualita-

tively outperforms the compared methods in various actual

scenarios. We believe that the proposed method provides

the core technical foundation for enabling a new form fac-

tor, UDC, in smartphones.
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