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Abstract

We introduce RoboPose, a method to estimate the joint

angles and the 6D camera-to-robot pose of a known articu-

lated robot from a single RGB image. This is an important

problem to grant mobile and itinerant autonomous systems

the ability to interact with other robots using only visual

information in non-instrumented environments, especially

in the context of collaborative robotics. It is also challeng-

ing because robots have many degrees of freedom and an

infinite space of possible configurations that often result in

self-occlusions and depth ambiguities when imaged by a

single camera. The contributions of this work are three-fold.

First, we introduce a new render & compare approach for es-

timating the 6D pose and joint angles of an articulated robot

that can be trained from synthetic data, generalizes to new

unseen robot configurations at test time, and can be applied

to a variety of robots. Second, we experimentally demon-

strate the importance of the robot parametrization for the

iterative pose updates and design a parametrization strategy

that is independent of the robot structure. Finally, we show

experimental results on existing benchmark datasets for four

different robots and demonstrate that our method signifi-

cantly outperforms the state of the art. Code and pre-trained

models are available on the project webpage [1].

1. Introduction

The goal of this work is to recover the state of a known ar-

ticulated robot within a 3D scene using a single RGB image.

The robot state is defined by (i) its 6D pose, i.e. a 3D transla-

tion and a 3D rotation with respect to the camera frame, and

(ii) the joint angle values of the robot’s articulations. The

problem set-up is illustrated in Figure 1. This is an important

problem to grant mobile and itinerant autonomous systems

the ability to interact with other robots using only visual

information in non-instrumented environments. For instance,

in the context of collaborative tasks between two or more

robots, having knowledge of the pose and the joint angle
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Figure 1: RoboPose. (a) Given a single RGB image of a known

articulated robot in an unknown configuration (left), RoboPose

estimates the joint angles and the 6D camera-to-robot pose (rigid

translation and rotation) providing the complete state of the robot

within the 3D scene, here illustrated by overlaying the articulated

CAD model of the robot over the input image (right). (b) When

the joint angles are known at test-time (e.g. from internal measure-

ments of the robot), RoboPose can use them as an additional input

to estimate the 6D camera-to-robot pose to enable, for example,

visually guided manipulation without fiducial markers.

values of all other robots would allow better distribution of

the load between robots involved in the task [5].

The problem is, however, very challenging because robots

can have many degrees of freedom (DoF) and an infinite

space of admissible configurations that often result in self-

occlusions and depth ambiguities when imaged by a single

camera. The current best performing methods for this prob-

lem [28, 61] use a deep neural network to localize in the

image a fixed number of pre-defined keypoints (typically

located at the articulations) and then solve a 2D-to-3D opti-

mization problem to recover the robot 6D pose [28] or pose
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and configuration [61]. For rigid objects, however, methods

based on 2D keypoints [34, 3, 7, 6, 45, 52, 23, 50, 44, 43, 18]

have been recently outperformed by render & compare meth-

ods that forgo explicit detection of 2D keypoints but instead

use the entire shape of the object by comparing the rendered

view of the 3D model to the input image and iteratively re-

fining the object’s 6D pose [59, 31, 25]. Motivated by this

success, we investigate how to extend the render & compare

paradigm for articulated objects. This presents significant

challenges. First, we need to estimate many more degrees

of freedom than the sole 6D pose. Articulated robots we

consider in this work can have up to 15 degrees of freedom

in addition to their 6D rigid pose in the environment. Sec-

ond, the space of configurations is continuous and hence

there are infinitely many configurations in which the object

can appear. As a result, it is not possible to see all config-

urations during training and the method has to generalize

to unseen configurations at test time. Third, the choice of

transformation parametrization plays an important role for

6D pose estimation of rigid objects [31] and finding a good

parametrization of pose updates for articulated objects is a

key technical challenge.

Contributions. To address these challenges, we make the

following contributions. First, we introduce a new render &

compare approach for estimating the 6D pose and joint an-

gles of an articulated robot that can be trained from synthetic

data, generalizes to new unseen robot configurations at test

time, and can be applied to a large variety of robots (robotic

arms, bi-manual robots, etc.). Second, we experimentally

demonstrate the importance of the robot pose parametriza-

tion for the iterative pose updates and design an effective

parametrization strategy that is independent of the robot.

Third, we apply the proposed method in two settings: (i)

with known joint angles (e.g. provided by internal measure-

ments from the robot such as joint encoders), only predicting

the camera-to-robot 6D pose, and (ii) with unknown joint an-

gles, predicting both the joint angles and the camera-to-robot

6D pose. We show experimental results on existing bench-

mark datasets for both settings that include a total of four

different robots and demonstrate significant improvements

compared to the state of the art.

2. Related work

6D pose estimation of rigid objects from RGB im-

ages [46, 33, 34] is one of the oldest problems in com-

puter vision. It has been successfully approached by es-

timating the pose from 2D-3D correspondences obtained

via local invariant features [34, 3, 7, 6], or by template-

matching [14]. Both these strategies have been revisited us-

ing convolutional neural networks (CNNs). A set of sparse

[45, 52, 23, 50, 44, 43, 18] or dense [56, 41, 49, 59] features

is detected on the object in the image using a CNN and the

resulting 2D-to-3D correspondences are used to recover the

camera pose using PnP [29]. The best performing methods

for 6D pose estimation from RGB images are now based on

variants of the render & compare strategy [31, 35, 38, 25, 59]

and are approaching the accuracy of methods using depth as

input [16, 15, 31, 25].

Hand-eye calibration (HEC) [17, 13] methods recover

the 6D pose of the camera with respect to a robot. The

most common approach is to detect in the image fiducial

markers [10, 9, 39] placed on the robot at known positions.

The resulting 3D-to-2D correspondences are then used to

recover the camera-to-robot pose using known joint angles

and the kinematic description of the robot by solving an opti-

mization problem [40, 19, 57]. Recent works have explored

using CNNs [27, 28] to perform this task by recognizing 2D

keypoints at specific robot parts and using the resulting 3D-

to-2D correspondences to recover the hand-eye calibration

via PnP. The most recent work in this direction [28] demon-

strated that such learning-based approach could replace more

standard hand-eye calibration methods [54] to perform on-

line calibration and object manipulation [53]. Our render

& compare method significantly outperforms [28] and we

also demonstrate that our method can achieve a competitive

accuracy without requiring known joint angles at test time.

Depth-based pose estimation of articulated objects.

Previous work on this problem can be split into three

classes. The first class of methods aims at discovering

properties of the kinematic chain through active manipu-

lation [21, 22, 11, 36] using depth as input and unlike our

approach cannot be applied to a single image. The second

class of methods aims at recovering all parameters of the

kinematic chain from a single RGBD image, including the

joint angles, without knowing the specific articulated ob-

ject [30, 58, 2, 60]. In contrast, we focus on the set-up with

a known 3D model, e.g. a specific type of a robot. The third

class of methods, which is closest to our set-up, considers

pose and joint angle estimation [37, 8, 42] for known articu-

lated objects but relies on depth as input and only considers

relatively simple kinematic chains such as laptops or draw-

ers where the joint parameters only affect the pose of one

part. Others recover joint angles of a known articulated robot

part [4, 55] but do not recover the 6D pose of the camera

and also rely on depth. In contrast, our method accurately

estimates the pose and joint angles of a robotic arm with

many degrees of freedom from a single RGB image.

Robot pose and joint angle estimation from an RGB im-

age. To the best of our knowledge, only [61] has addressed

a scenario similar to us where the robot pose and joint angles

are estimated together from a single RGB image. A set of

predefined 2D keypoints is recognized in the image and the

6D pose and joint angles are then recovered by solving a

nonlinear non-convex optimization problem. Results are

shown on a 4 DoF robotic arm. In contrast, we describe a
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Figure 2: Problem definition. Given an RGB image (a) of a

known robot, the goal is to recover (b) the 6D pose TC,a of an

anchor part Pa with respect to the camera frame and all the joint

angles qi of the known robot kinematic description (in green).

new render & compare approach for this problem, demon-

strate significantly improvements in 3D accuracy and show

results on robots with up to 15 DoF.

3. Approach

We present our render & compare framework to recover

the state of a robot within a 3D scene given a single RGB

image. We assume the camera intrinsic parameters, the CAD

model and kinematic description of the robot are known.

We start by formalizing the problem in Section 3.1. We

then present an overview of our approach in Section 3.2 and

explain our training in Section 3.3. Finally, we detail the key

choices in the problem parametrization in Section 3.4.

3.1. Problem formalization

Our notations are summarized in Figure 2. We consider

a known robot composed of rigid parts P0,...,PN whose

3D models are known. An articulation, or joint, connects

a parent part to a child part. Given the joint angle qi of

the i-th joint, we can retrieve the relative 6D transformation

between the parent and child reference frames. Note that

for simplicity we only consider revolute joints, i.e. joints

parametrized by a single scalar angle of rotation qi, but our

method is not specific to this type of joints. The rigid parts

and the joints define the kinematic tree of the robot. This

kinematic description can be used to compute the relative

6D pose between any two parts of the robot. In robotics,

the full state of a robot S is defined by the joint angles and

the 6D pose of the root of the kinematic tree. Defining the

6D pose of the robot with respect to the root (whose pose

is independent of the joint angles since it is not a child of

any joint) is a crucial choice in the parametrization of the

problem, but also arbitrary, since an equivalent kinematic

tree could be defined using any part as the root. We instead

define the full state of the robot by (i) the selection of an

anchor part Pa, (ii) the 6D pose of the anchor with respect to

the camera TC,a, and (iii) the joint angles q = (q1, ..., qD) ∈
R

D, where D is the number of joints. Note the anchor part

can change across iterations of our approach. We discuss

the choice of the anchor in Section 3.4 and experimentally

demonstrate it has an important influence on the results.

3.2. Render & compare for robot state estimation

We now present our iterative deep render & compare

framework, illustrated in Figure 3. We iteratively refine the

state estimate as follows. First, given a current estimate of

the state Sk we render an RGB image of the robot R(Sk)
and the mask of the anchor part. We then apply a deep refiner

network that takes as input crops of the rendered image and

the input RGB image I of the scene. It outputs a new state of

the robot Sk+1 = fθ(S
k, I) to attempt to match the ground

truth state Sgt of the observed robot. Unlike prior works that

have used render & compare strategies for estimating the

6D pose of rigid objects [31, 59, 25], our method does not

require a coarse pose estimate as initialization.

Image rendering and cropping. To render the image of

the robot we use a fixed focal length (defining an intrinsic

camera matrix) during training. The rendering is fully de-

fined by the state of the robot and the camera matrix. Instead

of giving to the refiner network the full image and the ren-

dered view, we focus the inputs on the robot by cropping the

images as follows. We project the centroid of the rendered

robot in the image, consider the smallest bounding box of

aspect ratio 4/3 centered on this point that encloses the pro-

jected robot and increase its size by 40% (see details in the

appendix [26]). This crop depends on the projection of the

robot to the input image that varies during training, and thus

provides an augmentation of the effective focal length of the

virtual cropped cameras. Hence, our method can be applied

to cameras with different intrinsics at test time as we show

in our experiments.

Initialization. We initialize the robot to a state S0 defined

by the joint configuration q0 and the pose T 0
C,a of the anchor

part a with respect to the camera C. At training time we

define S0 using perturbations of the ground truth state. At

test time we initialize the joints to the middle of the joint

limits, and the initial pose T 0
C,a so that the frame of the

robot base is aligned with the camera frame and the 2D

bounding box defined by the projection of the robot model

approximately matches the size of image. More details are

given in the appendix [26].

Refiner and state update. At iteration k, the refiner pre-

dicts an update ∆qk of the joint angles qk (composed of one

scalar angle per joint), such that

qk+1 = qk +∆qk, (1)
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Figure 3: RoboPose overview. Given a single input RGB image, the state S (6D camera-to-robot pose and joint angles) of the robot is

iteratively updated using renderer and refiner modules to match the input image. The refinement module takes as input the cropped observed

image and a rendering of the robot as well as the mask of an anchor part. The anchor part is used for updating the rigid 6D pose of the robot

while the rest of the parts are updated by changing their joint angles. Note that the anchor part is changing across iterations making the

refinement more robust.

and an update ∆T k of the current 6D pose T k
C,a of the anchor

part, such that

T k+1
C,a = T k

C,a ◦∆T k, (2)

where we follow DeepIM [31]’s parametrization for pose

update ∆T k. This parametrization disentangles rotation and

translation prediction but crucially depends on the choice of

a reference point we call O. In DeepIM this point is simply

taken as the center of the reference frame of the rigid object

but there is not such a natural choice of reference point for

articulated objects, which have multiple moving parts. We

discuss several possible choices of the reference point O in

Sec. 3.4 and demonstrate experimentally it has an important

impact on the results. In particular, we show that naively

selecting the reference frame of the root part is sub-optimal.

3.3. Training

In the following, we describe our loss function, synthetic

training data, implementation details and discuss how to best

use known joint angles if available.

Loss function. We train our refiner network using the fol-

lowing loss:

L(θ) =

K−1∑

k=0

La(T
k
C,a,∆T k, T gt

C,a)+λLq(q
k,∆qk, qgt), (3)

where θ are the parameters of the refiner network, K is the

maximum number of iterations of the refinement algorithm,

T gt
C,a is the ground truth 6D pose of the anchor, qgt are the

ground truth joint angles and λ is a hyper-parameter to bal-

ance between the 6D pose loss La and the joint angle loss

Lq . The 6D pose loss La measures the distance between the

predicted 3D point cloud obtained using T k
C,a transformed

with ∆T k and the ground truth 3D point cloud (obtained

using T gt
C,a) of the anchor Pa. We use the same loss as [25]

that disentangles rotation, depth and image-plane transla-

tions [48] (see equations in the appendix [26]). For Lq, we

use a simple L2 regression loss, Lq = ‖qk +∆qk − qgt‖22.

Note that the 6D pose loss is measured only on the anchor

part a while the alignment of the other parts of the robot

is measured by the error on their joint angles (rather than

alignment of their 3D point clouds). This disentangles the

6D pose loss La from the joint angle loss Lq and we found

this leads to better convergence. We sum the loss over the

refinement iterations k to imitate how the refinement algo-

rithm is applied at test time but the error gradients are not

backpropagated through rendering and iterations. Finally,

for simplicity the loss (3) is written for a single training

example, but we sum it over all examples in the training set.

Training data. For training the refiner, we use existing

datasets [28, 61] provided by prior works for the Kuka,

Panda, Baxter, OWI-535 robots. All of these datasets are

synthetic, generated using similar procedures based on do-

main randomization [51, 32, 47, 20]. The joint angles are

sampled independently and uniformly within their bounds,

without assuming further knowledge about their test time

distribution. We add data augmentation similar to [25].

We sample the initial state S0 by adding noise to the

ground truth state in order to simulate errors of the network

prediction at the previous state of the refinement as well as

the error at the initalization. For the pose, we sample a trans-

lation from a centered Gaussian distribution with standard

deviation of 10 cm, and a rotation by sampling three angles

from a centered Gaussian distribution of standard deviation

60◦. For the joint angles, we sample an additive noise from

a centered Gaussian distribution with a standard deviation

equal to 5% of the joint range of motion, which is around

20◦ for most of the joints of the robots we considered.

Implementation details. We train separate networks for

each robot. We use a standard ResNet-34 architecture [12]

as the backbone of the deep refiner. The hyper-parameters

are λ = 1 and K = 3 training iterations. Note that at test

time we can perform more iterations, and the results we

report correspond to 10 iterations. The anchor is sampled

randomly among the 5 largest parts of the robot at each
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iteration. This choice is motivated in Section 3.4 and other

choices are considered in the experiments, Section 4.3. We

initialize the network parameters randomly and perform the

optimization using Adam [24], with the procedure described

in the appendix [26] for all the networks.

Known joint angles at test time. The approach described

previously could be used at test time with measured joint

angles q0 = qgt and by ignoring the joint update, but we

observed better results by training a separate network which

only predicts a pose update for this scenario. In this context

where the joint values are known and constant, the full robot

is considered as a single and unique anchor. Yet, the problem

remains different from classic rigid object 6D object pose

estimation because the network must generalize to new joint

configurations unseen during training.

3.4. Parametrization choices

There are two main parametrization choices in our ap-

proach: (i) the choice of the reference point O for the

parametrization of the pose update ∆T k in equation (2)

and (ii) the choice of the anchor part to update the 6D pose

and measure pose loss in equation (3). These choices have a

significant impact on the results, as shown in Section 4.

Choice of the reference point for the pose update. Sim-

ilar to [31], we parametrize the pose update as a rotation

around a reference point O and a translation defined as a

function of the position of O with respect to the camera.

The fact that the rotation is around O is a first obvious in-

fluence of this choice on the transformation that needs to be

predicted. The impact on the translation update parameters

is more complicated: they are defined by a multiplicative

update on the depth of O and by an equivalent update in

pixels in the image, which is also related to the real update

by the depth of O (see equations in the appendix [26]).

A seemingly natural choice for reference point O would

be a physical point on the robot, for example the center of

the base of the robot or the anchor part. However, on the

contrary to the rigid object case, if that part is not visible or

is partially occluded, the network cannot infer the position of

the reference O precisely, and thus cannot predict a relevant

translation and rotation update. In experiments, we show it

is better to use as O the centroid of the estimated robot state,

which takes into account the estimated joint configuration,

and can be more reliably estimated.

Choice of the anchor part. The impact of the choice of

the anchor part Pa used for computing the 6D pose loss in

equation (3), is illustrated in Figure 4. We explore several

choices of anchor part in our experiments, and show that

this choice has a significant impact on the results. Since the

optimal choice depends on the robot, and the observed pose,

we introduce a strategy where we randomly select the anchor

among the largest parts of the robot, during both training and

Figure 4: Choice of the anchor part. (a) We analyze how the

choice of the anchor part affects the complexity of the rigid align-

ment ∆T and the joint angle update ∆q to align an initial state of

the robot (green) with the target state of the robot (red). (b) We

show the required rigid pose update (composed of a rotation and a

translation) and the required joint update for two different choices

of the anchor part (shown using a dashed line). In (1), the required

pose update of the anchor part consists of successively applying

rotation ∆R and translation ∆t along x and y axes (in blue). In (2),

the anchor part is aligned using only a translation along the y axis

resulting in a simpler solution compared to (1). These examples

illustrate that the choice of the anchor can have a significant impact

on the complexity of the alignment problem.

refinement, and show that on average it performs similarly

or slightly better than the optimal oracle choice of a single

unique anchor on the test set.

4. Experiments

We evaluate our method on recent benchmarks for the

following two tasks: (i) camera-to-robot 6D pose estimation

for three widely used manipulators (Kuka iiwa7, Rethink

robotic Baxter, Franka Emika Panda) [28], and (ii) full state

estimation of the low-cost 4 DoF robotic arm OWI-535 [61].

In Section 4.1, we consider the first task, where an image

of a robot with fixed known joint angles is used to estimate

the 6D camera-to-robot pose. We show that our approach

outperforms the state-of-the-art DREAM method [28]. In

Section 4.2, we evaluate our full approach where both the

6D pose and joint angles are unknown. We show our method

outperforms the state-of-the-art method [61] for this problem

on their dataset depicting the low-cost 4 DoF robot and that

it can recover the 6D pose and joint angles of more com-

plex robotic manipulators. Finally, Section 4.3 analyzes the

parametrization choices discussed in Section 3.4.

4.1. 6D pose estimation with known joint angles

Datasets and metrics. We focus on the datasets annotated

with 6D pose and joint angle measurements recently intro-

duced by the state-of-the-art method for single-view camera-

to-robot calibration, DREAM [28]. We use the provided

training datasets with 100k images generated with domain
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Dataset informations DREAM [28] DREAM [28] DREAM [28] Ours Ours

Robot Robot (DoF) Real # images # 6D poses cam. VGG19-F VGG19-Q ResNet101-H ResNet34 Unknown angles

Baxter DR Baxter (15) × 5982 5982 GL - 75.47 - 86.60 32.35

Kuka DR Kuka (7) × 5997 5997 GL - - 73.30 89.62 80.44

Kuka Photo Kuka (7) × 5999 5999 GL - - 72.14 86.87 78.62

Panda DR Panda (8) × 5998 5998 GL 81.33 77.82 82.89 92.70 82.19

Panda Photo Panda (8) × 5997 5997 GL 79.53 74.30 81.09 89.89 77.15

Panda 3CAM-AK Panda (8) X 6394 1 AK 68.91 52.38 60.52 76.53 66.86

Panda 3CAM-XK Panda (8) X 4966 1 XK 24.36 37.47 64.01 85.97 78.66

Panda 3CAM-RS Panda (8) X 5944 1 RS 76.13 77.98 78.83 76.90 77.06

Panda ORB Panda (8) X 32315 27 RS 61.93 57.09 69.05 80.54 68.87

Table 1: Comparison of RoboPose (ours) with the state-of-the-art approach DREAM [28] for the camera-to-robot 6D pose estimation task

using the 3D reconstruction ADD metric (higher is better). The robot joint configuration is assumed to be known (results in black) and

is different in each of the image in the dataset, but the pose of the camera with respect to the robot can be fixed (# number of 6D poses).

Multiple cameras are considered to capture the input RGB images: synthetic rendering (GL), and real Microsoft Azure (AK), Microsoft

Kinect360 (XK) and Intel RealSense (RS), which all have different intrinsic parameters. Our results in blue do not use ground truth joint

angles (see Section 4.2) and the accuracy of the robot 3D reconstruction is evaluated using both the estimated 6D pose and the joint angles.

randomization. Test splits are available as well as photore-

alistic synthetic test images (Photo). For the Panda robot,

real datasets are also available. The Panda 3CAM datasets

display the fixed robot performing various motions captured

by 3 fixed different cameras with different focal lengths and

resolution, all of which are different than the focal length

used during training. The largest dataset with the more var-

ied viewpoints is Panda-ORB with 32,315 real images in a

kitchen environnement captured from 27 viewpoints with

different joint angles in each image.

We use the 3D reconstruction ADD metric which directly

measures the pose estimation accuracy, comparing distances

between 3D keypoints defined at joint locations of the robot

in the ground truth and predicted pose. We refer to the

appendix [26] for exact details on the evaluation protocol of

our comparison with DREAM [28].

Comparison with DREAM [28]. We train one network

for each robot using the same synthetic datasets as [28] and

report our results in Table 1. Our method achieves significant

improvements across datasets and robots except on Panda

3CAM-RS where the performance of [28] with ResNet101-

H variant is similar to ours. On the Panda 3CAM-AK and

Panda 3CAM-XK datasets, the performance of our method

is significantly higher than the ResNet101-H model of [28]

(e.g. +21.96 on 3CAM-XK), which suggests that the ap-

proach of [28] based on 2D keypoints is more sensitive

to some viewpoints or camera parameters. Note that our

method trained with the synthetic GL camera can be ap-

plied to different real cameras with different intrinsics at

test time thanks to our cropping strategy which provides an

augmentation of the effective focal length during training.

On Panda-ORB, the largest real dataset that covers mul-

tiple camera viewpoints, our method achieves a large im-

provement of 11.5 points. Our performance on the synthetic

datasets for the Kuka and Baxter robots is also significantly

higher than [28]. We believe the main reason for this large

Ours (individual frames) Ours (online) DREAM [28]

K=1 K=2 K=3 K=5 K=10 K=1 ResNet101-H

ADD 28.5 72.8 79.1 80.4 80.7 80.6 69.1

FPS 16 8 4 2 1 16 30

Table 2: Benefits of iterative refinement and running time on

Panda-ORB video sequence of robot trajectories. We report ADD

and running time (frames per second, FPS) for a varying number of

refiner iterations K. The frames are either considered individually,

or the estimate is used to initialize the refiner in the subsequent

frames (online) without additionnal temporal filtering.

improvements is the fact that our Render & Compare ap-

proach can directly use the shape of the entire robot rendered

in the observed configuration for estimating the pose rather

than detecting a small number of keypoints.

Running time. In Table 2 we report the running time of

our method on the Panda-ORB dataset which consists of

robot motion videos captured from 27 different viewpoints.

The first observation is that the accuracy increases with the

number of refinement iterations K used at test-time, and the

most significant improvements are during the first 3 itera-

tions. The importance of using multiple network iterations

during training is further discussed in the appendix [26]. We

also report an online version of our approach that leverages

temporal continuity. It runs the refiner with K = 10 it-

erations on the first frame of the video and then uses the

output pose as the initialization for the next frame and so

on, without any additional temporal filtering of the resulting

6D poses. This version runs at 16 frames per second (FPS)

and achieves a similar performance as the full approach that

considers each frame independently and runs at 1 FPS.

4.2. 6D pose and joint angle estimation

We now evaluate the performance of our method in the

more challenging scenario where the robot joint angles are

unknown and need to be estimated jointly with the 6D pose
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Figure 5: Qualitative results of RoboPose 6D pose and joint angle estimation for four different robots. (a) The OWI-535 robot from the

CRAVES-lab (first row) and CRAVES-youtube (second and third row) datasets, (b) the Panda robot from the Panda 3CAM dataset and (c)

the Panda, Baxter and Kuka robots on example images from the Internet. Please see additional results in the appendix [26].

CRAVES [61] CRAVES [61] ours

synt synt+real* synt

PCK@0.2 95.66 99.55 99.28

Error all top 50% all top 50%

Joints (degrees) 11.3 4.74 5.44 3.34

Trans xyz. (cm) 10.1 5.52 0.63 0.49

Trans norm. (cm) 19.6 10.5 1.34 1.01

Rot. (degrees) 10.3 5.29 4.36 3.19

Table 3: Results on the CRAVES-lab [61] dataset with unknown

joint angles. We report average errors on all the images of the

dataset, or on the top 50% images selected according to the best

joint angle accuracy with respect to the ground truth. Networks are

trained on synthetic data only (synt) or also using non-annotated

real images of the robot (synt+real*).

from a single RGB image. Qualitative results on the con-

sidered datasets as well as on real images crawled from the

web are shown in Figure 5. Please see the appendix [26] for

additional qualitative examples, and the project page [1] for

a movie showing our predictions on several videos.

Comparison with CRAVES [61]. CRAVES [61] is the

state-of-the-art approach for this task. We consider the

two datasets used in [61]. CRAVES-lab displays the OWI-

535 4DoF in a lab environment and contains 20,000 RGB

images of which 428 key frames are annotated with 2D

robot keypoints, ground truth joint angles (not used by our

method) and camera intrinsics. CRAVES-youtube is the

second dataset containing real-world images crawled from

YouTube depicting large variations in viewpoint, illumina-

tion conditions and robot appearance. It contains 275 frames

annotated with 2D keypoints but no camera intrinsic param-

eters, 6D pose or joint angle ground truth. In addition to

CRAVES CRAVES Ours, synt

synt [61] synt+real* [61] f=500 f=1000 f=1500 f=2000 f=best

81.61 88.89 85.16 86.96 84.87 83.57 91.48

Table 4: PCK@0.2 on the CRAVES-Youtube dataset [61].

metrics that measure the 6D pose and joint angle estimates,

we report a 2D keypoint metric, PCK (percentage of key-

points), following [61]. We refer to the appendix [26] for

details of the metrics and the evaluation protocol.

We compare with two variants of CRAVES, one trained

only on synthetic images (synt), and one that also requires

real non-annotated images (synt+real*). Our method is

trained only using the 5, 000 provided synthetic images. We

report results on CRAVES-lab in Table 3. To compare with

the 2D keypoint metric PCK@0.2, we project in the im-

age the 3D keypoints of our estimated robot state. On this

metric, our method outperforms CRAVES trained only on

synthetic images and achieves a near-perfect score, similar

to their approach trained with real images. More importantly,

we achieve much better results when comparing with the

3D metrics (joint angles error and translation/rotation error).

CRAVES achieves high average errors when all images of

the datasets are considered, which is due to the complexity

of solving the nonlinear nonconvex 2D-to-3D optimization

problem for recovering 6D pose and joint angles given 2D

keypoint positions. Our method trained to directly predict

the 6D pose and joint angles, achieves large improvements

in precision. We reduce the translation error by a factor of

10, demonstrating robustness to depth ambiguities.

We also evaluated our method on CRAVES-youtube. On

this dataset, the camera intrinisic parameters are unknown

and cannot be used for projecting the estimated robot pose
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Reference point ADD

on Root P0 75.02

on Middle P4 79.45

on Hand P7 00.00

Centroid (ours) 80.54

(a)

Reference point
Volume

(cm3)
ADD

on P5 3092 74.40

on P2 2812 75.06

on P1 2763 74.89

on P0 2660 75.02

on P4 2198 79.45

on P7 637 0.00

Centroid (ours) - 80.54

(b)

Table 5: Analysis of the choice of reference point O. Networks

are trained and evaluated with known joint angles as in Section 4.1.

The reference point is placed on (a) a naively chosen part and (b)

on one of the 5 largest parts. Our strategy of using the centroid of

the imaged robot performs the best.

into the 2D image. We therefore report results for different

hypothesis of (fixed) focal lengths for all the images of the

dataset, as well as using an oracle (f=best) which selects

the best focal length for each image. Results are reported

in Table 4. For 2D keypoints, our method for f = 1000
achieves results superior to CRAVES trained only on syn-

thetic images, and also outperforms CRAVES trained with

real data when selecting the best focal length. 3D ground

truth is not available, but similar to CRAVES-lab we could

expect large improvements in 3D accuracy.

Experiments on 7DoF+ robots. We also train our method

for jointly predicting 6D pose and joint angles for the robots

considered in Section 4.1. We evaluate the 6D pose and

joint angles accuracy using ADD. Results are reported in

Table 1 in blue (last column). For the 7DoF robotic arms

(Kuka and Panda), these results demonstrate a competitive

or superior ADD accuracy compared to [28] for inferring

the 3D geometry of a known robot, but our method does

not require known joint angles. The more complex 15 DoF

Baxter robot remains challenging although our qualitative

results often show reasonable alignments. We discuss the

failure modes of our approach in the appendix [26].

4.3. Analysis of parametrization choices

We analyze our method on the Panda-ORB dataset: it is

the largest real dataset containing significant variations in

joint angles and camera viewpoints and the Panda robot has

a long kinematic chain with 8 DoF. We study the choice of

reference point O for the 6D pose update and the choice of

the anchor part (see Section 3.4).

Reference point. We train different networks with the ref-

erence point at the origin of the root P0, the part in the middle

of the kinematic chain P4 and at the end of the kinematic

chain P7. Results are reported in Table 5(a). We observe

that the performance indeed depends on the choice of the

reference point. The network trained with the “Hand” part

(P7, the end effector) as a reference point fails to converge

Anchor
Volume

(cm3)
ADD

P5 3092 68.01

P2 2812 65.56

P1 2763 60.40

P0 2660 57.44

P4 2198 69.54

P7 637 63.40

(a)

Anchor ADD

Root part P0 57.44

Middle part P4 69.54

Hand part P7 63.40

Random (all) 64.24

Random (5 largest) 68.87

Random (3 largest) 71.33

(b)

Table 6: Analysis of the choice of the anchor part. Networks are

trained and evaluated with unknown joint angles as in Section 4.2.

(a) Results when one fixed anchor part is used during training and

testing. (b) Randomly selecting the anchor part among a given set

of largest robot parts during refinement in both training and testing.

because this part is often difficult to identify in the train-

ing images and its pose cannot be inferred from any other

part because the robot is not a rigid object. We investigate

picking the reference point on one of the five largest parts

(measured by their 3D volume which is correlated with 2D

visibility) in Table 5(b) again demonstrating our approach of

using the centroid of the robot performs better than any of

these specific parts.

Choice of the anchor part. Table 6 reports results using

different strategies for chosing the anchor part during train-

ing and testing. First, in 6(a) we show that choosing different

parts as one (fixed) anchor results in significant variation in

the resulting performance. To mitigate this issue we con-

sider in 6(b) a strategy where the anchor is picked randomly

among the robot parts at each iteration (both during train-

ing and testing). This strategy performs better than always

naively selecting the root P0 as anchor. By restricting the

sampled anchors to the largest parts, our automatic strategy

can also perform better than the best performing part P4.

5. Conclusion

We have introduced a new render & compare approach

to estimate the joint angles and the 6D camera-to-robot pose

of an articulated robot from a single image demonstrating

significant improvements over prior state-of-the-art for this

problem. These results open-up exciting applications in vi-

sually guided manipulation or collaborative robotics without

fiducial markers or time-consuming hand-eye calibration. To

stimulate these applications, we released the training code

as well as the pre-trained models for commonly used robots.
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Madrid-Cuevas, and Manuel Jesús Marı́n-Jiménez. Automatic
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