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Abstract

In this paper, we present a video-based learning frame-

work for animating personalized 3D talking faces from au-

dio. We introduce two training-time data normalizations

that significantly improve data sample efficiency. First, we

isolate and represent faces in a normalized space that de-

couples 3D geometry, head pose, and texture. This decom-

poses the prediction problem into regressions over the 3D

face shape and the corresponding 2D texture atlas. Second,

we leverage facial symmetry and approximate albedo con-

stancy of skin to isolate and remove spatio-temporal light-

ing variations. Together, these normalizations allow sim-

ple networks to generate high fidelity lip-sync videos under

novel ambient illumination while training with just a single

speaker-specific video. Further, to stabilize temporal dy-

namics, we introduce an auto-regressive approach that con-

ditions the model on its previous visual state. Human rat-

ings and objective metrics demonstrate that our method out-

performs contemporary state-of-the-art audio-driven video

reenactment benchmarks in terms of realism, lip-sync and

visual quality scores. We illustrate several applications en-

abled by our framework.

1. Introduction

“Talking head” videos, consisting of closeups of a talk-

ing person, are widely used in newscasting, video blogs,

online courses, etc. Other applications that feature talking

faces prominently are face-to-face live chat, 3D avatars and

animated characters in games and movies. We present a

deep learning approach to synthesize 3D talking faces (both

photorealistic and animated) driven by an audio speech sig-

nal. We use speaker-specific videos to train our model in a

data-efficient manner by employing 3D facial tracking. The

resulting system has multiple applications, including video

editing, lip-sync for dubbing of videos in a new language,

personalized 3D talking avatars in gaming, VR and CGI, as

well as compression in multimedia communication.

The importance of talking head synthesis has led to a

variety of methods in the research literature. Many recent
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Figure 1: Flow diagram of our approach to (a) generate a dynamically textured 3D

face mesh from audio, and (b) insert the generated face mesh into a target video to

create a synthesized talking head video from new audio input.

techniques [6, 7, 40, 43, 28, 30] use the approach of regress-

ing facial motion from audio, employing it to deform one or

more reference images of the subject. These approaches

can inherit the realism of the reference photos, however, the

results do not accurately reproduce 3D facial articulation

and appearance under general viewpoint and lighting varia-

tions. Another body of research predicts 3D facial meshes

from audio [38, 13, 19, 11]. These approaches are directly

suitable for VR and gaming applications. However, visual

realism is often restricted by the quality of texturing. Some

recent approaches [32, 33, 14] attempt to bridge the gap by

combining 3D prediction with high-quality rendering, but

are only able to edit fixed target videos that they train on.

Our work encompasses several of the scenarios men-

tioned above. We can use 3D information to edit 2D video,

including novel videos of the same speaker not seen dur-

ing training. We can also drive a 3D mesh from audio or

text-to-speech (TTS), and synthesize animated characters

by predicting face blendshapes. Next, we highlight some

of our key design choices.

Personalized models: We train personalized speaker-

specific models, instead of building a single universal model

to be applied across different people. While universal mod-
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els like Wav2Lip [30] are easier to reuse for novel speak-

ers, they need large datasets for training and do not ad-

equately capture person-specific idiosyncrasies [5]. Per-

sonalized models like ours and NVP [33] produce results

with higher visual fidelity, more suitable for editing long

speaker-specific videos. Additionally, our model can be

trained entirely using a single video of the speaker.

3D pose normalization: We use a 3D face detector [20]

to obtain the pose and 3D landmarks of the speaker’s face

in the video. This information allows us to decompose

the face into a normalized 3D mesh and texture atlas, thus

decoupling head pose from speech-induced face deforma-

tions, e.g. lip motion and teeth/tongue appearance.

Lighting normalization: We design a novel algorithm

for removing spatial and temporal lighting variations from

the 3D decomposition of the face by exploiting traits such

as facial symmetry and albedo constancy of the skin. This

lighting normalization removes another confounding factor

that can otherwise affect the speech-to-lips mapping.

Data-efficient learning: Our model employs an

encoder-decoder architecture that computes embeddings

from audio spectrograms, and decodes them to predict the

decomposed 3D geometry and texture. Pose and light-

ing normalization allows us to train this model in a data-

efficient manner. The model complexity is greatly reduced,

since the network is not forced to disentangle unrelated head

pose and lighting changes from speech, allowing it to syn-

thesize high quality lip-sync results even from short training

videos (2-5 minutes long). Lighting normalization allows

training and inference illumination to be different, which

obviates the need to train under multiple lighting scenarios.

The model predicts 3D talking faces instead of just a 2D

image, even though it learns just from video, broadening its

applicability. Finally, pose and lighting normalization can

be applied in a backward fashion to align and match the ap-

pearance of the synthesized face with novel target videos.

See Figure 1 for an overview of our approach.

Our key technical contributions are:

• A method to convert arbitrary talking head video footage

into a normalized space that decouples 3D pose, geome-

try, texture, and lighting, thereby enabling data-efficient

learning and versatile high-quality lip-sync synthesis for

video and 3D applications.

• A novel algorithm for normalizing facial lighting in video

that exploits 3D decomposition and face-specific traits

such as symmetry and skin albedo constancy.

• To our best knowledge, this is the first attempt at dis-

entangling pose and lighting from speech via data pre-

normalization for personalized models.

• An easy-to-train auto-regressive texture prediction model

for temporally smooth video synthesis.

• Human ratings and objective metrics suggest that our

method outperforms contemporary audio-driven video

reenactment baselines in terms of realism, lip-sync and

visual quality scores.

2. Related Work

Audio-driven 3D Mesh Animation: These methods gener-

ate 3D face models driven by input audio or text, but do not

necessarily aim for photorealism. In [38], the authors learn

a Hidden Markov Model (HMM) to map Mel-frequency

Cepstral Coefficients (MFCC) to PCA model parameters.

Audio features are mapped to Jali [13] coefficients in [44].

In [19], the authors learn to regress to 3D vertices of a face

model conditioned on input audio spectrograms and simul-

taneously disambiguate variations in facial expressions un-

explained by audio. In [18], the authors learn to regress

blendshapes of a 3D face using the combined audio-visual

embedding from a deep network. VOCA [12] pre-registers

subject-specific 3D mesh models using FLAME [26] and

then learns (using hours of high quality 4D scans) an off-

set to that template based on incoming speech, represented

with DeepSpeech [15] features.

Audio-driven Video Synthesis: These methods aim to gen-

erate visually plausible 2D talking head videos, conditioned

on novel audio. In [6], an audio-visual correlation loss is

used to match lip shapes to speech, while maintaining the

identity of the target face. In [7], a two-stage cascaded

network is used to first predict 2D facial landmarks from

audio, followed by target frame editing conditioned upon

these landmarks. In [36], the authors leverage a tempo-

ral GAN for synthesizing video conditioned on audio and

a reference frame. They improve it further in [37] via a spe-

cialized lip-sync discriminator. In contrast to our approach,

the above methods fail to produce full-frame outputs; in-

stead they generate normalized cropped faces, whose lips

are animated based on input audio and a reference frame.

Among efforts on full-frame synthesis, Video

Rewrite [5] was a pioneering work. It represented

speech with phonetic labels and used exemplar-based

warping for mouth animation. Speech2Vid [8] learns a

joint embedding space for representing audio features and

the target frame, and uses a shared decoder to transform

the embedding into a synthesized frame. X2Face [40]

learns to drive a target frame with the head pose and

expression of another source video, and it can optionally

be also driven by an audio to animate a target frame. A

framework to translate an input speech to another language

and then modify the original video to match it is presented

in [23]. Recently, Wav2Lip [30] reported appreciable

lip-sync performance by using a powerful offline lip-sync

discriminator [9] as an expert to train their generator. While

currently this is one of the best universal models, it lacks
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Figure 2: Joint prediction pipeline: geometry and texture models have dedicated

decoders but share the audio encoder. The texture model also depends on the previ-

ously predicted atlas. Optionally, the audio embedding can drive a 3D CGI character

via a blendshape coefficients decoder. Please enlarge to see details.

the visual fidelity of speaker-specific models.

Some recent works [32, 33, 31] have focused on 3D

model guided video synthesis. In [32] an RNN regresses au-

dio to mouth shape, producing convincing results on Presi-

dent Obama. The approach required very extensive training

data however (17 hours). In [33], the DeepSpeech RNN is

used to map input speech to audio expression units which

then drive a blendshapes-based 3D face model. Finally, a

neural renderer [22] is used to render the face model with

the audio expressions. Since neural renderer training de-

pends on target illumination, the methods leveraging such

rendering [31, 33] suffer from the need for retraining if

inference-time lighting conditions change. On the contrary,

our method seamlessly adapts to novel lighting.

Text-based Video Editing: In [14], the authors present a

framework for text based editing of videos (TBE). They first

align written transcripts to audio and track each frame to

create a face model. During edit operations, a (slow) viseme

search is done to find best matching part of training video.

This method needs a time-aligned transcript and around one

hour of recorded data, and is mostly suitable for for small

edits. Our method, on the other hand, relies on just the audio

signal and can synthesize videos of unrestricted length.

Actor-driven Video Synthesis: [34, 22] present techniques

for generating and dubbing talking head videos by transfer-

ring facial features, such as landmarks or blendshape pa-

rameters, from a different actor’s video. These techniques

generate impressive results, however they require a video

of a surrogate actor to drive synthesis. We emphasize that

our approach uses only audio or text-to-speech (TTS) as the

driving input, and does not require any actors for dubbing.

It is therefore fundamentally different from these methods.

3. Method

We now describe the various components of our ap-

proach including data extraction and normalization, neural

network architecture and training, and finally, inference and

synthesis. Figure 2 shows an overview of our model.

We extract the audio channel from the training video and

transform it into frequency-domain spectrograms. These

Figure 3: Pose normalization of training data. For each subject– Left: input frames

with detected features (see zoomed in); Middle: normalized vertices and triangle

mesh; Right: texture atlas which acts as ground truth for texture prediction.

spectrograms are computed using Short-time Fourier trans-

forms (STFT) with a Hann window function [39], over

30ms wide sliding windows that are 10ms apart. We align

these STFTs with video frames and stack them across time

to create a 256× 24 complex spectrogram image, spanning

240ms centered around each video frame. Our model pre-

dicts the face geometry, texture, and optionally, blendshape

coefficients, for each frame based on the audio spectrogram.

The face in the video is tracked using a 3D face landmark

detector [20], resulting in 468 facial features, with the depth

(z-component) predicted using a deep neural network. We

refer to these features as vertices, which are accompanied

by a predefined triangulated face mesh with fixed topology.

3.1. Normalizing Training Data

We preprocess the training data to eliminate the effects

of head movement and lighting variations, and work with

normalized facial geometry and texture. Both training and

inference take place in this normalized space.

3.1.1 Pose normalization

For pose normalization, we first select one frame of the in-

put video as a reference frame, and its respective 3D face

feature points as reference vertices. The choice of frame is

not critical; any frame where the face is sufficiently frontal

is suitable. Using the reference vertices, we define a ref-

erence cylindrical coordinate system (similar to [4]) with a

vertical axis such that most face vertices are equidistant to

the axis. We then scale the face size such that the eyes and

nose project to fixed locations on this reference cylinder.

Next, for each frame of the training video, we stabilize

the rigid head motion (see [3, 24]) to provide a registered 3D

mesh suitable for training our geometry model. Specifically,

we approximately align the vertices of the upper, more rigid

parts of the face with corresponding vertices in the normal-

ized reference using Umeyama’s algorithm [35] and apply

the estimated rotation R, translation t and scale c to all

tracked vertices v as r̂ = cRv + t.

We use these normalized vertices, along with the cylin-

drical mapping defined above, to create a pose-invariant,

frontalized projection of the face texture for each video

frame (including the reference frame). Mapping the face

vertices to the reference cylinder creates a set of 2D texture
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Figure 4: Steps of our proposed lighting normalization during training. (A:) First step is to specularity removal from an input frame. (B:) Second step is self normalization of

the reference atlas. (C:) Finally, any given training frame is normalized with respect to the pre-normalized reference atlas of step B.

coordinates for the face’s surface, which are used to unroll

its texture. We warp the triangles associated with these co-

ordinates from the source frame onto the texture domain,

resulting in a 256×256 texture atlas that resembles a frontal

view of the face, but with the non-rigid features like the lips

and mouth moving with the speech. Figure 3 demonstrates

the effect of normalization; the head pose is removed, but

the moving lip shapes and mouth interior are preserved.

3.1.2 Lighting normalization

We normalize the frontalized texture atlas to remove light-

ing variations, which are mostly caused by head motion

or changing illumination. Our lighting normalization algo-

rithm works in two phases. It first exploits facial symmetry

to normalize the reference atlas R spatially, removing spec-

ularities and lighting variations that run across the face. It

then performs a temporal normalization across video frames

that transforms each frame’s atlas F to match the illumi-

nation of R. The resulting atlases have a more uniform

albedo-like appearance, that stays consistent across frames.

We first describe the temporal normalization algorithm,

as it is a core component also used during spatial normal-

ization. This algorithm assumes that the two textures F and

R are pre-aligned geometrically. However, any non-rigid

facial movements, e.g. from speech, can result in different

texture coordinates, and consequently, misalignments be-

tween R and F . Hence, we first warp R to align it with

F ’s texture coordinates, employing the same triangle-based

warping algorithm used for frontalization.

Given the aligned R and F , we estimate a mapping that

transforms F to match the illumination of R. This mapping

is composed of a smooth multiplicative pixel-wise gain G
in the luminance domain, followed by a global channel-wise

gain and bias mapping {a, b} in the RGB domain. The re-

sulting normalized texture Fn is obtained via the following

steps: (1) (Fy, Fu, Fv) = RGBtoYUV(F ); (2) F l
y = G∗Fy;

(3) F l = YUVtoRGB(F l
y, Fu, Fv); (4) Fn = aF l + b.

Gain Estimation: To estimate the gain G, we observe

that a pair of corresponding pixels at the same location k
in F and R should have the same underlying appearance,

modulo any change in illumination, since they are in geo-

metric alignment (see Figure 4(C)). This albedo constancy

assumption, if perfectly satisfied, yields the gain at pixel k
as Gk = Rk/Fk. However, we note that (a) G is a smoothly

varying illumination map, and (b) albedo constancy may be

occasionally violated, e.g. in non-skin pixels like the mouth,

eyes and nostrils, or where the skin deforms sharply, e.g. the

nasolabial folds. We account for these factors by, firstly, es-

timating Gk over a larger patch pk centered around k, and

secondly, employing a robust estimator that weights pixels

based on how well they satisfy albedo constancy. We for-

mulate estimating Gk as minimizing the error:

Ek =
∑

j∈pk

Wj‖Rj −Gk ∗ Fj‖
2, (1)

where W is the per-pixel weights image, and solve it us-

ing iteratively reweighted least squares (IRLS). In partic-

ular, we initialize the weights uniformly, and then update

them after each (ith) iteration as:

W i+1

k = exp

(

−E
i
k

T

)

, (2)

where T is a temperature parameter. The weights and gain

converge in 5-10 iterations; we use T = 0.1 and a patch

size of 16 × 16 pixels for 256 × 256 atlases. Figure 4(C)

shows example weights and gain images. Pixels with large

error Ek get low weights, and implicitly interpolate their

gain values from neighboring pixels with higher weights.

To estimate the global color transform {a, b} in closed

form, we minimize
∑

k Wk‖Rk−aFk−b‖2 over all pixels,

with Wk now fixed to the weights estimated above.

Reference Atlas Normalization using Facial Symme-

try: We first estimate the gain Gm between the reference

R and its mirror image R′, using the algorithm described

above. This gain represents the illumination change be-

tween the left and right half of the face. To obtain a ref-

erence with uniform illumination, we compute the sym-

metrized gain Gs = max(Gm, Gm′), where Gm′ is the

mirror image of Gm, i.e. for every symmetric pair of pix-

els, we make the darker pixel match the brighter one. The

normalized reference is then Rn = Gs∗R, as shown in Fig-

ure 4(B). Note that our weighting scheme makes the method

robust to inherent asymmetries on the face, since any incon-

sistent pixel pairs will be down-weighted during gain esti-

mation, thereby preserving those asymmetries.

Specularity Removal: We remove specularities from

the face before normalizing the reference and video frames,

since they are not properly modeled as a multiplicative gain,

and also lead to duplicate specularities on the reference due

to symmetrization. We model specular image formation as:

I = α+ (1− α) ∗ Ic, (3)

where I is the observed image, α is the specular alpha map
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and Ic is the underlying clean image without specularities.

We first compute a mask, where α > 0, as pixels whose

minimum value across RGB channels in a smoothed I ex-

ceeds the 90th percentile intensity across all skin pixels in

I . The face mesh topology is used to identify and restrict

computation to skin pixels. We then estimate a pseudo clean

image Ĩc by hole-filling the masked pixels from neighbor-

ing pixels, and use it to estimate α = (I− Ĩc)/(1− Ĩc). The

final clean image is then Ic = (I − α)/(1 − α). Note that

our soft alpha computation elegantly handles any erroneous

over-estimation of the specularity mask (see Figure 4(A)).

The above method is specifically tailored for stabilized face

textures and is simple and effective, thus we do not require

more generalized specularity removal techniques [42].

3.2. Joint Prediction Model and Training Pipeline

In this section we describe the framework for learning a

function F to jointly map from domain S of audio spectro-

grams to the domains V of vertices and A of texture atlases:

F : S → V×A, with V ∈ R
468×3 and A ∈ R

128×128×3,

where for the purpose of prediction, we crop the texture at-

las to a 128 × 128 region around the lips, and only pre-

dict these cropped regions. The texture for the upper face

is copied over from the reference, or target video frames,

depending upon the application. We follow an encoder-

decoder architecture for realizing F(·), as shown in Fig-

ure 2. It consists of a shared encoder for audio, but separate

dedicated decoders for geometry and texture. However, the

entire model is trained jointly, end-to-end.

Audio encoder: The input at time instant t is a complex

spectrogram, St ∈ R
256×24×2. Our audio encoder — and

face geometry prediction model — is inspired by the one

proposed in [19], in which the vertex positions of a fixed-

topology face mesh are also modified according to an au-

dio input. However, while [19] used formant preprocessing

and autocorrelation layers as input, we directly use complex

spectrograms St. Each St tensor is passed through a 12
layer deep encoder network, where the first 6 layers apply

1D convolutions over frequencies (kernel 3×1, stride 2×1),

and the subsequent 6 layers apply 1D convolution over time

(kernel 1× 3, stride 1× 2), all with leaky ReLU activation,

intuitively corresponding to phoneme detection and activa-

tion, respectively. This yields a latent code Ls
t ∈ R

Ns .

Geometry decoder: This decoder maps the latent au-

dio code Ls
t to vertex deformations δt, which are added

to the reference vertices Vr to obtain the predicted mesh

V̂t = Vr + δt. It consists of two fully connected layers with

150 and 1404 units, and linear activations, with a dropout

layer in the middle. The resulting output is 468 vertices

(1404 = 468 × 3 coordinates). As proposed in [19], we

initialize the last layer using PCA over the vertex training

data. Further, we impose ℓ2 loss on the vertex positions:

Rgeo = ‖Vt − V̂t‖2, where Vt are ground-truth vertices.

Texture decoder: This decoder maps the audio code

Ls
t to a texture atlas update (difference map) ∆t which is

added to the reference atlas Ar to obtain the predicted at-

las, Ât = Ar + ∆t. It consists of a fully connected layer

to distribute the latent code spatially, followed by progres-

sive up-sampling using convolutional and interpolation lay-

ers to generate the 128 × 128 texture update image (see

supplementary material). We impose an image similar-

ity loss between the predicted and ground-truth atlas At:

Rtex = d(At, Ât), where d is a visual distance measure.

We tried different variants of d(·) including the ℓ1 loss,

Structural Similarity Loss (SSIM), and Gradient Difference

Loss (GDL) [27] and found SSIM to perform the best.

Blendshapes decoder: To animate CGI characters us-

ing audio, we optionally add another decoder to our network

that predicts blendshape coefficients Bt in addition to ge-

ometry and texture. For training, these blendshapes are de-

rived from vertices Vt by fitting them to an existing blend-

shapes basis either via optimization or using a pre-trained

model [25]. We use a single fully connected layer to pre-

dict coefficients B̂t from audio code Ls
t , and train it using

ℓ1 loss Rbs = ‖Bt−B̂t‖1 to encourage sparse coefficients.

3.2.1 Auto-regressive (AR) Texture Synthesis:

Ambiguities in facial expressions while speaking (or silent)

can result in temporal jitters. We mitigate these by incorpo-

rating memory into the network. Rather than using RNNs,

we condition the current output of the network (At) not only

on St but also on the previous predicted atlas Ât−1, encod-

ing it as a latent code vector La
t−1 ∈ R

Na . Ls
t and La

t−1

are combined and passed to the texture decoder to gener-

ate the current texture Ât (Figure 2). This appreciably im-

proves the temporal consistency of synthesized results. We

can train this AR network satisfactorily via Teacher Forc-

ing [41], using previous ground truth atlases. The resulting

network F is trained end-to-end, minimizing the combined

loss R = Rtex + α1Rgeo + α2Rbs, where α1 = 3.0 and

α2 = 0.3 (when enabled). We used hyperparameter search

to determine the latent code lengths, Ns = 32 and Na = 2.

3.3. Inference and Synthesis

Textured 3D mesh: During inference, our model pre-

dicts geometry and texture from audio input. To convert it to

a textured 3D mesh, we project the predicted vertices onto

the reference cylinder, and use the resulting 2D locations as

texture coordinates. Since our predicted texture atlas is de-

fined on the same cylindrical domain, it is consistent with

the computed texture coordinates. The result is a fully tex-

tured 3D face mesh, driven by audio input (Figure 1a).

Talking head video synthesis: The pose and lighting

normalization transforms (Section 3.1) are invertible, i.e.

one can render the synthesized face mesh in a different pose

2759



Figure 5: Benefits of proposed auto-regressive (AR) prediction. Left: Four consecutive frames when the subject was silent. Middle: Prediction without AR. Right: Prediction

with AR. In absence of AR, the model fluctuates between different visual states, while the AR substantially improves temporal stability.

Figure 6: (a:) Benefits of the proposed lighting normalization. Top row shows

representative training frames in a sunny outdoor setting while we conduct inference

under two novel lighting settings which have not been used in training. Note that the

proposed lighting normalization enables realistic synthesis under new lighting while

absence of lighting normalization yields degraded outputs. (b:) Plot of SSIM loss

(texture prediction) and vertex loss (geometry prediction) on the evaluation set. Even

though both models result in similar lip shapes, the lower SSIM loss of the lighting-

normalized model boosts the visual realism and overall lip-sync quality.

under novel lighting, which allows us to procedurally blend

it back into a different target video (Figure 1b). Specifically,

we warp the textured face mesh to align it with the target

face, then apply our lighting normalization algorithm in re-

verse, i.e. on the warped texture, using the target face as ref-

erence. One caveat is that the target frame’s area below the

chin may not align with the warped synthesized face, due to

inconsistent non-rigid deformations of the jaw. Hence, we

pre-process each target frame by warping the area below the

original chin to match the expected new chin position. To

avoid seams at border areas, we gradually blend between

the original and new face geometry, and warp the original

face in the target frame according to the blended geometry.

Cartoon rendering: For stylized visualizations, we can

create a cartoon rendering of the textured mesh (or video),

by combining bilateral filtering with a line drawing of the

facial features. In particular, we identify nose, lips, cheeks

and chin contours in the synthesized face mesh, and draw

them prominently over the filtered texture or video frame

(see supplementary material).

CGI Characters: Models trained with the blendshapes

decoder also output blendshape coefficients that can drive

a CGI character. We combine these predicted blendshapes

(that generally affect the lips and mouth) with other blend-

shapes, such as those controlling head motion and eye gaze,

to create lively real-time animations.

4. Experiments

Our training and inference pipelines were implemented

in Tensorflow [1], Python and C++. We trained our mod-

els with batch sizes of 128 frames, for 500-1000 epochs,

with each epoch spanning the entire training video. Sample

training times were between 3-5 hours, depending on video

length (usually 2-5min). Average inference times were

3.5ms for vertices, 31ms for texture and 2ms for blend-

shapes, as measured on a GeForce GTX 1080 GPU. Our

research-quality code for blending into target videos takes

50-150ms per frame, depending on the output resolution.

4.1. Ablation Studies

Benefit of Auto-Regressive Prediction: The auto-

regressive texture prediction algorithm stabilizes mouth dy-

namics considerably. In Figure 5, we show that without

auto-regression, the model can produce an unrealistic jitter-

ing effect, especially during silent periods.

Benefit of Lighting Normalization: We use a short

training video (∼4 minutes) recorded in an outdoor setting

but with varying illumination. However, during inference,

we select two novel environments: a) indoor lighting with

continuous change of lighting direction, and b) a dark room

with a face illuminated by a moving flash light. Some rep-

resentative frames of models trained with and without light-

ing normalization are shown in Figure 6(a). Without light-

ing normalization, the model produces disturbing artifacts

around the lip region, exacerbated by the extreme changes

in illumination. However, with normalized lighting, the

model adapts to widely varying novel illumination condi-

tions. This ability to edit novel videos of the same speaker

on-the-fly without needing to retrain for new target illumi-

nation is a significant benefit. In contrast, neural rendering

based approaches [33] require retraining on each new video,

because they map 3D face models directly to the facial tex-

ture in video without disentangling illumination.

We also visualize the loss curves on held out evaluation

sets in Figure 6(b). With lighting normalization, the SSIM

loss (used for texture generation) saturates at a much lower
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Figure 7: Qualitative comparison on subjects from GRID, CREMA-D and TCD-TIMIT against IJCV’19 and CVPR’19 (latter only available on GRID). Our model is capable

of seamlessly blending back into the video instead of animating a normalized cropped frame as in IJCV’19 and CVPR’19..

Proposed

CPBD: 0.52

Wav2Lip

CPBD: 0.36 CPBD: 0.42 CPBD: 0.47

Figure 8: Comparison with Wav2Lip [30]. Our model generates higher resolu-

tion outputs (evident by higher CPBD metric [29]) with fewer artifacts compared to

Wav2Lip. Examples are provided in accompanying video.

Figure 9: Comparison with NVP [33]. We show that a sequence generated by our

method usually has better lip dynamics compared to NVP. The observation is also

supported by LSE-D (lower is better) and LSE-C (higher is better) metrics [30] for

our model. Examples are provided in accompanying video. Best viewed zoomed in.

value than without normalization. This supports our hy-

pothesis that lighting normalization results in more data-

efficient learning, since it achieves a better loss with the

same amount of training data. The vertex loss (responsible

for lip dynamics) is similar for both models, because light-

ing normalization does not directly affect the geometry de-

coder, but overall lip-sync and visual quality are improved.

4.2. Comparison: Self­reenactment

We objectively evaluate our model under the self-

reenactment setting (audio same as target video), since it

allows us to have access to ground truth facial informa-

tion. We show experiments with three talking head datasets:

GRID [10], TCD-TIMIT [16] and CREMA-D [21].

Comparing Methods: We perform quantitative compar-

isons against state-of-the-art methods whose models/results

are publicly available: CVPR’19 [7], IJCV’19 [37], CVPR-

W [36]. It is difficult to do an apples-to-apples comparison,

since we use personalized models while other techniques

use a universal model. However, we minimize this gap by

testing on the same 10 subjects (details in supplementary)

from each of the 3 datasets used in IJCV’19 and CVPR’19,

and employing the official evaluation frameworks of these

papers. We also compare against other prior methods, but

reuse the results already reported by CVPR’19 or IJCV’19.

Evaluation Metrics: We follow the trend in recent pa-

pers [7, 37, 36], which use SSIM (Structural Similarity In-

dex) as a reconstruction metric, LMD (Landmark Distance)

on mouth features as a shape similarity metric, CPBD

(Cumulative Probability Blur Detection) [29] as a sharp-

ness metric and WER (word error rate) as a content met-

ric to evaluate the correctness of words from reconstructed

videos. Following [37], we use a LipNet model [2] pre-

trained for lip-reading on GRID dataset [10].

Observations: We report the metrics in Figure 10

(left). On LMD and WER, which capture lip-sync, our

model is significantly better than any competing method.

Also, in terms of reconstruction measures (SSIM, CPBD),

our model almost always performs better. CVPR-W and

IJCV’19 have a better (though comparable) CPBD on

GRID, but it is a low-resolution dataset. On higher reso-

lution TCD-TIMIT and CREMA-D, our CPBD is the best.

We also show qualitative comparisons in Figure 7. Note

that we synthesize full frame videos, while CVPR’19 and

IJCV’19 only generated normalized face crops at a resolu-

tion of 128 × 128, and 96 × 128 respectively. Thus our

method is more suitable for practical video applications.

4.3. Comparison: Audio­Driven Video Dubbing

In this section we focus on ‘audio-driven’ video dubbing

where the driving audio is different from the target video.

User Study: We conducted a user study to quantitatively

compare our lip-sync and perceptual quality against the

state-of-the-art audio-driven frameworks of Wav2Lip, NVP,

IJCV’19 and TBE. In the study, 35 raters were each shown

29 sample clips consisting of synthetic and real videos. For

competing methods, we used their released videos or gener-

ated results with their pre-trained models. The raters were

asked three questions: Q1) Is the video real or fake? Q2)

Rate lip-sync quality on a 3-point discrete scale. Q3) Rate

visual quality on a 5-point discrete scale. We report the

Mean Opinion Scores (MOS) of the questions in Figure 10

(right). As is evident, among the competing methods our

method receives the most favorable user ratings.

Comparison with Wav2Lip [30]: Unlike other image-

based methods, Wav2Lip can paste back the generated face

on background video. However, compared to our model,

the outputs from Wav2Lip are of low resolution. Also, at
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Text

Self-reenactment Metrics MOS: Audio Driven Video Dubbing

Figure 10: Left: Self-reenactment performance comparison against state-of-the-art benchmarks of CVPR-W’19 [36], IJCV’19 [37], CVPR’19 [7], BMVC’17 [8], Chen et

al. [6] and Wiles et al. [40]. Pre-trained LipNet (for WER) is available only on GRID. Authors of [7] released checkpoint for GRID only. (↑):Higher is better. (↓):Lower is

better. Best results are marked in bold. Right: Mean Opinion Scores of user study. The statistical significance of these differences in ratings is confirmed by ANOVA with Tukey

post-hoc tests. Please see the supplementary material for details.

high resolution, Wav2Lip produces significant visual arti-

facts (see Figure 8) and lip-sync starts to degrade.

Comparison with NVP [33]: The lip-sync and dy-

namics of our model are generally better than NVP. The

lip movements of NVP are clearly muted compared to our

model, as seen in representative frames in Figure 9(a).

5. Applications

Speech/Text-to-Video: We can create or edit talking

head videos for education, advertisement, and entertain-

ment by simply providing new audio transcripts. “Actor-

free” video translation: while ‘actor-driven’ video trans-

lation techniques [22, 34] generally require a professional

actor to record the entire translated audio and video, our

‘actor-free’ approach does not need video, and can be

driven by either recorded audio, TTS, or voice cloning [17].

Voice controlled Avatars: Our model’s blendshapes output

can be used to animate CGI characters in real-time, allow-

ing low-bandwidth voice-driven avatars for chat, VR, and

games without the need for auxiliary cameras. Assistive

technologies: Voice-driven 3D faces can support accessi-

bility and educational applications, e.g. personified assis-

tants and cartoon animations for visualizing pronunciation.

6. Limitations and Conclusion

Facial expressions: We do not explicitly handle fa-

cial expressions, though our model may implicitly capture

correlations between expressions and emotion in the audio

track. Strong movements in the target video: When syn-

thesized faces are blended back into a target video, em-

phatic hand or head movement might seem out of place.

This has not proved to be a problem in our experiments.

Processing speed: Our research-quality code, running at

highest quality, is slightly slower than real-time.

We have presented a data efficient yet robust end-to-end

system for synthesizing personalized 3D talking faces, with

applications in video creation and editing, 3D gaming and

CGI. Our proposed pose and lighting normalization decou-

ples non-essential factors such as head pose and illumina-

tion from speech and enables training our model on a rel-

atively short video of a single person while nevertheless

generating high quality lip-sync videos under novel ambi-

ent lighting. We envision that our framework is a promising

stepping stone towards personalized audio-visual avatars

and AI-assisted video content creation.

7. Ethical Considerations

Our technology focuses on world-positive use cases and

applications. Video translation and dubbing have a vari-

ety of beneficial and impactful uses, including making ed-

ucational lectures, video-blogs, public discourse, and en-

tertainment media accessible to people speaking different

languages, and creating personable virtual “assistants” that

interact with humans more naturally.

However, we acknowledge the potential for misuse, es-

pecially since audiovisual media are often treated as vera-

cious information. We strongly believe that the develop-

ment of such generative models by good actors is crucial for

enabling preemptive research on fake content detection and

forensics, which would allow them to make early advances

and stay ahead of actual malicious attacks. Approaches like

ours can also be used to generate counterfactuals for train-

ing provenance and digital watermarking techniques.

We also emphasize the importance of acting responsibly

and taking ownership of synthesized content. To that end,

we strive to take special care when sharing videos or other

material that have been synthesized or modified using these

techniques, by clearly indicating the nature and intent of the

edits. Finally, we also believe it is imperative to obtain con-

sent from all performers whose videos are being modified,

and be thoughtful and ethical about the content being gen-

erated. We follow these guiding principles in our work.
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