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Abstract

This paper explores self-supervised learning of amodal

3D feature representations from RGB and RGB-D posed

images and videos, agnostic to object and scene semantic

content, and evaluates the resulting scene representations

in the downstream tasks of visual correspondence, object

tracking, and object detection. The model infers a latent

3D representation of the scene in the form of 3D feature

points, where each continuous world 3D point is mapped to

its corresponding feature vector. The model is trained for

contrastive view prediction by rendering 3D feature clouds

in queried viewpoints and matching against the 3D feature

point cloud predicted from the query view. Notably, the rep-

resentation can be queried for any 3D location, even if it is

not visible from the input view. Our model brings together

three powerful ideas of recent exciting research work: 3D

feature grids as a neural bottleneck for view prediction, im-

plicit functions for handling resolution limitations of 3D

grids, and contrastive learning for unsupervised training

of feature representations. We show the resulting 3D vi-

sual feature representations effectively scale across objects

and scenes, imagine information occluded or missing from

the input viewpoints, track objects over time, align seman-

tically related objects in 3D, and improve 3D object detec-

tion. We outperform many existing state-of-the-art methods

for 3D feature learning and view prediction, which are ei-

ther limited by 3D grid spatial resolution, do not attempt

to build amodal 3D representations, or do not handle com-

binatorial scene variability due to their non-convolutional

bottlenecks.

1. Introduction

Understanding the three-dimensional structure of objects

and scenes may be a key for success of machine percep-

tion and control in object detection, tracking, manipulation

and navigation. Exciting recent works have explored learn-
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ing representations of objects and scenes from multiview

imagery and capture the three-dimensional scene structure

implicitly or explicitly with 3D binary or feature grids

[46, 45, 40], 3D point feature clouds [50], implicit func-

tions that map continuous world coordinates to 3D point

occupancy [4, 9, 41, 25, 31, 3], as well as 1D or 2D feature

maps [6]. These methods typically evaluate the accuracy

of the inferred 3D scene occupancy [4, 30, 46, 25, 31, 3]

and the fidelity of image views rendered from the 3D rep-

resentation [22, 26, 6, 50, 41], as opposed to the suitability

of representations for downstream semantic tasks. Methods

that indeed focus on rendering photo-realistic images often

give up on cross-scene generalization [26, 36], or focus on

single-object scenes [41]. Methods that instead focus on

learning semantically relevant scene representations are ex-

pected to generalize across scenes, and handle multi-object

scenes. In the 2D image space, contrastive predictive cod-

ing has shown to generate state-of-the-art visual features for

correspondence and recognition [49, 12], but does not en-

code 3D scene structure. In 3D voxel feature learning meth-

ods [14, 13], convolutional latent 3D feature grids encode

the 3D structure and a view contrastive objective learns se-

mantically useful 3D representations, but the grid resolution

limits the discriminability of the features learnt. Recent ex-

citing works combine 3D voxel grids and implicit functions

and learn to predict 3D scene and object 3D occupancy from

a single view with unlimited spatial resolution [32, 33]. The

model proposed in this work brings together these two pow-

erful ideas: 3D feature grids as a 3D-informed neural bot-

tleneck for contrastive view prediction [14], and implicit

functions for handling the resolution limitations of 3D grids

[32].

We propose Continuous Contrastive 3D Networks (Co-

CoNets), a model that learns to map RGB-D images to

infinite-resolution 3D scene feature representations by con-

trastively predicting views, in an object and scene agnostic

way. Our model is trained to predict views of static scenes

given 2.5D (color and depth; RGB-D) video streams as in-

put, and is evaluated on its ability to detect and recognize

objects in 3D. CoCoNets map the 2.5D input streams into

3D feature grids of the depicted scene. Given a target view
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and its viewpoint, the model first warps its inferred 3D fea-

ture map from the input view to a target view, then queries

point features using their continuous coordinates, and pulls

these features closer to the point features extracted from the

target view at the same 3D locations (Figure 1). We use a

contrastive loss to measure the matching error, and back-

propagate gradients end-to-end to our differentiable modu-

lar architecture. At test time, our model forms plausible 3D

completions of the scene given a single RGB-D image as

input: it learns to fill in information behind occlusions, and

infer the 3D extents of objects.

We demonstrate the advantages of combining 3D neu-

ral bottleneck, implicit functions and contrastive learning

for 3D representation learning by comparing our model

against state-of-the-art self-supervised models, such as i)

contrastive learning for pointclouds [51], which shares a

similar loss but not the amodal predictive ability of our

model, ii) contrastive neural mapping [13], which can

amodally inpaint a 3D discrete feature grid but suffers from

limited spatial grid resolution, and iii) dense ObjectNets [7],

which self-learns 2D (instead of 3D) feature representations

with a triangulation-driven supervision similar to (i). Our

experimental results can be summarized as follows: (1) 3D

object tracking and re-identification (Figure 3): We show

that scene representations learnt by CoCoNets can detect

objects in 3D across large frame gaps better than the base-

lines [51, 13, 7]. (2) Supervised 3D object detection: Us-

ing the learnt 3D point features as initialization boosts the

performance of the state-of-the-art Deep Hough Voting de-

tector of [34]. (3) 3D cross-view and cross-scene object 3D

alignment: We show that the learnt 3D feature represen-

tations can infer 6DoF alignment between the same object

in different viewpoints, and across different objects of the

same category, better than [51, 13, 7]. We further show

that our model can predict image views (with or without

depth as input) and 3D occupancies that outperform or are

on par with the state-of-the-art view and occupancy predic-

tion models [33, 47, 6].

In summary, the main contribution of this paper is a

model that learns infinite-resolution 3D scene representa-

tions from RGB-D posed images, useful for tracking and

corresponding objects in 3D, pre-training 3D object detec-

tors, and predicting views and 3D occupancies. We set a

new state-of-the-art in self-supervision of 3D feature repre-

sentations.

2. Related work

Learning to 3D reconstruct objects and scenes Learn-

ing to infer 3D reconstructions of objects and scenes from

single images or videos has been the goal of recent deep ge-

ometrical methods, that have explored a variety of explicit

3D representations, such as 3D point clouds [29, 23], 3D

binary voxel occupancies [46, 52], or 3D meshes [18, 10].

Since detailed 3D supervision is only possible in large scale

in simulation, many approaches attempt supervision from

RGB or depth map prediction through differentiable ren-

dering of the inferred 3D reconstruction [18, 10]. To handle

limitations of spatial resolution of 3D voxel grids, recent ap-

proaches represent 3D object occupancy with implicit func-

tions parameterized by deep neural networks trained to map

continuous world 3D coordinates to the corresponding point

3D occupancy values [4, 25, 31, 3]. While these methods

train one 3D shape implicit function per object, by assigning

a 1D latent embedding to each object, some works [33, 32]

train 3D grids of functions where each function takes care

of estimating the occupancy of points in the vicinity of the

corresponding 3D voxel centroid. These latter methods en-

joy the generalization of 3D convolutions and can scale to

multi-object scenes, while implicit functions parametrized

by non-convolutional, fully connected networks are mostly

limited to single object scenes [4]. Our approach also em-

ploys 3D grids of functions which predict feature embed-

dings for the corresponding continuous 3D world coordi-

nates as opposed to merely occupancy.

Neural image synthesis with 3D inductive biases Deep

image generative networks have shown compelling results

in generating photorealistic images that match the image

statistics of the unlabelled image collections they are trained

on [11]. They are based on variational autoencoders [20],

generative adversarial networks [1], generative flows [19],

or autoregressive image pixel generators [48]. However,

these 2D generative models learn to parameterize the man-

ifold of 2D natural images, and struggle to generate im-

ages that are multi-view consistent, since the underlying

3D scene structure cannot be exploited. Generative models

trained from multi-view data can render arbitrary views of

an input scene [43, 17, 40, 42, 37]. Such multi-view genera-

tive models often restrict themselves to single-object scenes

[41, 28, 39] or to a single complex scene without aiming

at cross-scene generalization [26, 36], with the goal of gen-

erating high fidelity photorealistic images, replacing hand-

engineered graphics engines. Their architectures incorpo-

rate many inductive biases of graphics engines, such as 3D-

to-2D rendering modules [43] and explicit feature transfor-

mations to handle viewpoint changes [47]. Their lack of

cross-scene generalization or their limitation to single ob-

ject scenes makes it hard to adopt their inferred feature rep-

resentations for visual recognition.

Learning visual feature representations by self-

supervised view prediction Recent methods learn neural

scene representations by predicting views of a scene under

known egomotion [6, 41, 14, 40]. View prediction, as

opposed to the related and very effective objective of

feature learning via triangulation [51], results in explicitly
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or implicitly amodal representations, i.e., representations

that can predict information missing from the input obser-

vations [27], as opposed to simply featurizing the visible

image pixels [7]. Different view prediction methods for

learning representations vary with respect to the amount

of their reasoning regarding geometry and the underlying

3D structure of the scene [44]. The generative query

network (GQN) of Eslami et al. [6] showed that it can

predict alternative views of toy simulated scenes without

explicit 3D structure inference, and demonstrated the

usefulness of the inferred representations as pre-training for

reinforcement behaviour learning tasks. Geometry-aware

recurrent networks of Tung et al. [47] use a latent 3D

feature map in their bottleneck for view prediction and

demonstrate superior generalization, granted from the 3D

convolutional inductive bias. Harley et al. [14] uses a

similar 3D latent feature grid but optimizes for contrastive

prediction as opposed to RGB regression, and demonstrate

its usefulness for 3D object tracking and 3D moving object

segmentation. Our work optimizes a contrastive view

prediction objective similar to [14] but uses a 3D grid of

implicit functions as its latent bottleneck. We empirically

show that the emergent 3D feature representations are more

accurate in 3D object tracking and visual correspondence

than the features obtained from existing state-of-the-art 3D

feature learning methods.

3. Continuous Contrastive 3D Networks (Co-

CoNets) for Learning Amodal Visual Rep-

resentations

We consider a mobile agent that can move about the

scene and has access to its egomotion. The agent has a color

camera with known intrinsics, and a depth sensor regis-

tered to the camera’s coordinate frame. We use groundtruth

depth provided by the simulation environment, and we will

show in Sec. 4 that the learned models generalize to the real

world, where (sparser) depth is provided by a LiDAR unit.

CoCoNets learn 3D visual feature representations by col-

lecting posed images in static scenes and doing contrastive

view prediction. We describe the architecture in Sec. 3.1.

We then evaluate the correspondability of the resulting 3D

feature representations in 3D object re-identification and

tracking in dynamic scenes (Section 4.1), as pre-training for

3D object detection (Section 4.2), and cross-object semantic

visual correspondence (Section 4.3).

3.1. Continuous Contrastive 3D Networks (Co
CoNets)

Our model’s architecture is illustrated in Figure 1. It

is a neural network with a three-dimensional neural bottle-

neck M ∈ R
w×h×d×c, which has three spatial dimensions

(width w, height h, and depth d) and a feature dimension (c

Figure 1: Continuous Convolutional Contrastive 3D

Networks (CoCoNets) are trained to lift 2.5D images to

3D feature function grids of the scene by optimizing for

view-contrastive prediction. (a) In the top-down path,

the model encodes RGB-D images into a 3D feature map

M ∈ R
w×h×d×c, and uses explicit 3D feature transforma-

tions (translation and 3D rotation) to account for changes

of viewpoint between the input and target views. (b) In

the bottom-up path, we encode the RGB-D of the tar-

get viewpoint into a 3D feature cloud. (c) Given contin-

uous 3D world coordinates (X,Y, Z) and its embedded

code v(X,Y,Z) inferred via trilinear interpolation, a fully

connected network maps the coordinates and the embed-

ded code, to the feature vector of the 3D point at location

(X,Y, Z). (d) Metric learning losses in 3D tie the two point

cloud representations together.

channels per grid location).

The latent state aims to capture an informative and

geometrically-consistent 3D deep feature map of the world

space. Therefore, the spatial extent corresponds to a large

cuboid of world space, defined with respect to the camera’s

position at the first timestep. Each voxel in the 3D feature

map M corresponds to a cuboid in the 3D scene depicted in

the RGB-D image.

To be able to generate features at infinite spatial resolu-

tion, i.e., to featurize continuous 3D physical points within

a voxel, we use implicit function parametrization. Our

model’s architecture of interpolating within a voxel grid re-

sembles that of Peng et al. [32]. Let (X,Y, Z) denote the

continuous world coordinate of a 3D point whose feature

we wish to infer. First, we trilinearly interpolate the fea-

ture grid to obtain a a c-dimensional feature vector at point

(X,Y, Z). Denoting this trilinearly interpolated feature

vector as p for input point (X,Y, Z), we further obtain a
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3d location conditioned feature vector using φ(p, x), where

φ is a small fully-connected network. Finally we obtain

our 32-dimensional embedding vector using fθ(p, φ(p, x)),
where fθ represents a multi-block fully connected ResNet.

Further details about the network architecture can be found

in the supplementary.

A similar fully-connected ResNet parametrization pro-

vides a point’s binary occupancy o(X,Y,Z), and its RGB

color value c(X,Y,Z). The three ResNets that predict fea-

tures, occupancy and RGB values of 3D points do not

share weights. During training, we use the point cloud

of the target viewpoint to query our model for features,

occupancies and colors in the corresponding visible 3D

point locations and propagate gradients in an end-to-end

manner to the same feature voxel 3D map M. We de-

note the operation of obtaining point features, occupan-

cies and colors by querying the feature map at continuous

locations by Ff (M, (X,Y, Z)) ,Fo (M, (X,Y, Z)) , and

Fc (M, (X,Y, Z)). At test time, we query the model in

both visible and non visible 3D point locations, to obtain an

amodal completed 3D point feature cloud.

CoCoNets is made up of differentiable modules that go

back and forth between 3D feature space and 2D image

space. It can take as input a variable number of RGB-D

images both at training time and test time. For simplicity, in

our experiments we encode only a single view input at both

train and test time. More details on each of the following

modules are included in the supplementary file.

2D-to-3D unprojection (Figure 1 (a, b)) This module

converts the input RGB image I ∈ R
w×h×3 and depth map

D ∈ R
n×3 where, n is the size of the pointcloud) into 3D

tensors using available camera intrinsics. The RGB is “un-

projected” into a 3D tensor U ∈ R
w×h×d×3 by filling each

3D grid location with the RGB value of its corresponding

subpixel. The pointcloud is converted to a 3D occupancy

grid O ∈ R
w×h×d×1, by assigning each voxel a value of

1 or 0, depending on whether or not a point lands in the

voxel. We then convert the concatenation of these tensors

into a 3D feature tensor M ∈ R
w×h×d×c, via a 3D con-

volutional encoder-decoder network with skip connections.

We L2-normalize the feature in each grid cell.

3D-to-2D projection This module first warps the 3D

feature map M to align it to the target viewpoint, yielding

M
V . It then generates a 3D feature point cloud by query-

ing the model at the 3D point locations visible from the tar-

get viewpoint, provided by the target depth map Dtarget.

It also generates a 2D feature map by computing for each

visible 3D point the corresponding 2D pixel location using

the camera intrinsics, (x, y) = f X
Z
, f Y

Z
, and copying the

3D point feature into that location in the 2D feature map.

Note that each 3D feature point is mapped independently

to 2D, in contrast to neural renderers that convolutionally

map feature maps to image views [40, 6]. This independent

point-by-point rendering is closer to the spirit of graphics

operations [41].

3D contrastive learning of point features Given

a pair of input RGB images (Iinp, Itarget), depth maps

(Dinp,Dtarget), and the camera pose change between input

and target views V , we consider two types of representa-

tions for the target view:

• a top-down one, M
V

inp (Figure 1 (a)) by encoding

the input RGB-D image (Iinp,Dinp) and orienting

the feature map to the target viewpoint, and predict-

ing the features for the target 3D points in Dtarget

by querying the functions in M
V

inp, obtaining the

feature cloud {
(

X,Y, Z,F(MV

inp, (X,Y, Z))
)

} for

(X,Y, Z) ∈ Dtarget (Figure 1 (c)).

• a bottom-up one, Mtarget (Figure 1 (b)) by sim-

ply encoding the target RGB-D image Itarget,Dtarget

and predicting the features for the target 3D

points in Dtarget, obtaining the feature cloud

{(X,Y, Z,F(Mtarget, (X,Y, Z)))} for (X,Y, Z) ∈
Dtarget (Figure 1 (c)).

We use a contrastive InfoNCE loss [49] (Figure 1 (d)) to pull

corresponding top-down and bottom-up point features close

together in embedding space and push non-corresponding

ones farther away:

L = − log
exp( q·k+

τ
)

∑K

i=0 exp
q·ki

τ

, (1)

where τ is a temperature hyper-parameter and the

sum in the denominator is over one positive and K

negative samples. In the numerator, q represents

Ff (Minp, (i, j, k)), and k+ is its corresponding positive

sample Ff (Mtarget, (m,n, o)). The dot product computes

a similarity. In practice, we randomly sample correspond-

ing points from the top-down or bottom-up feature clouds

at each training iteration. We also maintain a large pool of

negative pairs in a dictionary, using the approach proposed

by He et al. [15].

Our metric learning loss, if applied only on 3D points

visible from both input and target views, coincides with

the point contrastive metric learning of Xie et al. [51],

a state-of-the-art 3D point feature learning method. Co-

CoNets can handle input and target views that actually have

few or no points in common. We compare against Xie et

al.’s state-of-the-art 3D feature learning model in our ex-

periments, and demonstrate the importance of amodal com-

pletion for feature learning.

Occupancy prediction and RGB view regression We

train a separate CoCoNet model to predict occupancy and

RGB in novel viewpoints, which we denote CoCoNets-

OccRGB. We use a standard binary cross entropy loss
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Figure 2: 3D object tracking using CoCoNets. Given the cropped RGB-D image Iobj of the object to track at t = 0, our

model infers the 3D object feature map Mobj , and queries it using xyz0, the point cloud of the object, to obtain object point

features. Similarly, it obtains the point features of the entire scene at timestep t. Finally, it does cross correlation between

these features to get xyzN , where each ith point in xyzN is the point from the scene whose feature matched best with the

feature for ith point in xyz0. We then apply RANSAC on xyz0 and xyzN to obtain the location of the car at timestep t.

for the occupancy, and a regresion loss for RGB. The

model predicts point clouds in target viewpoints and infers

their occupancy and color from the implicit function grids

Fo,Fc. Specifically, to predict a target RGB view and its

occupancy given a source RGB-D image, after encoding

and orienting the 3D feature map M to the target viewpoint,

we predict the point occupancies of the target view, and pre-

dict the point RGB colors for the occupied points. These are

then projected to the image space in the target view.

Jointly training RGB and occupancy prediction with

contrastive view prediction did not improve discriminability

of our feature representations. The novelty of our paper is

in using voxel-implicit architectures for amodal contrastive

3D feature learning as opposed to 3D occupancy prediction

[33, 32], or in addition to it.

RGB view regression without depth input Additionally,

we also make use of NeRF’s volumetric renderer [26], with

features extracted from Minput as priors, to render novel

views using just a single RGB image (no depth information)

as input. We call this CoCoNetsNoDepthRGB and explain

the setup in the supplementary file. Qualitative results from

this model can be seen in Figure 5.

4. Experiments

Useful visual feature representations are expected to cor-

respond visual entities across variations in pose and appear-

ance, as well as across intra-category variability. We evalu-

ate the correspondability of our 3D scene representations in

3D object tracking and object re-identification, 3D pose es-

timation and cross-object correspondence. We further eval-

uate our features as pre-training for 3D object detector for

the state-of-the-art method of [34]. Our experiments aim to

answer the following questions:

1. Is amodal completion important for learning scene rep-

resentations useful for visual correspondence, across

time and across scenes? To this end, we compare 3D

feature representations learned by CoCoNets against

contrastive point clouds [51] that do not consider

amodal completion but share a similar contrastive ob-

jective for 3D points visible in both scenes.

2. Is our 3D function parameterization important for

learning discriminative visual representations? To this

end, we compare with 3D contrastive neural mapping

of Harley et al. [14] that does not consider continuous

functions, but rather uses discrete 3D feature maps as

the neural bottleneck.

3. Does the performance of 3D object detectors in point-

clouds improve when using CoCoNets as initialization

of the point features, and by how much? To this end,

we compare with VoteNet[34], a model that uses Point-

Net++ [35] as their feature extractor and deep Hough

voting for 3D object detection in point clouds.

4. Is the continous 3D convolutional bottleneck of Co-

CoNets useful for view prediction? To this end, we

compare image views rendered from our model in

novel scenes with images from GQN [6], which does

not consider 3D neural bottleneck, and GRNN [47],

which has a discrete 3D convolutional bottleneck.

We train and test CoCoNets in the simulated datasets of

CARLA [5], ShapeNet [2] and test them further—without

training—in the real-world KITTI dataset [8]. CARLA is

an open-source photorealistic simulator of urban driving

scenes, which permits moving the camera to any desired

viewpoint in the scene. ShapeNet is a large scale 3D object

repository which again permits camera placement at will.
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KITTI is an urban driving scene dataset collected from a

camera mounted on a car. More information on datasets is

available in the supplementary file.

4.1. Selfsupervised 3D object tracking and re
indentification

Setup We evaluate the 3D feature representations of Co-

CoNets in their ability to track a 3D object over time, as

well as across large frame gaps, a task known as object re-

identification. Given the 3D bounding box of an object in

the first frame, we are interested in tracking the object in

subsequent frames. We first infer 3D features for object

points visible in the first frame. For subsequent timesteps,

we predict the amodal complete 3D feature cloud of the

scene from a single view by querying our model in a set

of visible and invisible 3D point locations. We found this

uniform random sampling of query point set strategy to suf-

fice for our tasks, though more elaborate strategies that fo-

cus on querying points close to object surfaces can be used,

such as Marching Cubes [24], which has been used by pre-

vious 3D implicit shape function models for learning object

occupancy to obtain a watertight mesh [9, 32, 33]. Given

the object feature point cloud and the amodal scene feature

cloud, we obtain a rigid body transformation (3D rotation

and translation) by solving the orthogonal Procrustes prob-

lem [38], and use RANSAC to find the transformation that

satisfies most inliers as shown in Figure 2, where inlier point

matches are obtained by thresholding inner products at 0 be-

tween the object 3D point features and 3D point features of

the target scene. We find the object 3D box in the target

scene by warping the box b0 using the obtained transforma-

tion. Note that we do not restrict our model to search locally

only for a matching object, but search over the whole scene

which makes the task harder. Such object matching across

frame gaps is important for re-detecting an object after oc-

clusions. It is also a good test for the discriminability of the

features, since they are not assisted by temporal continuity

or local search regions.

Evaluation and comparison with baselines We compare

CoCoNets against the following baselines (we use names

indicative to the differences and characteristics): i) 3DVox-

Contrast of Harley et al. [13] , ii) 3DPointContrast of Xie

et al. [51] iii) 2.5DDenseObjectNets of Florence et al. [7],

which uses triangulation supervision to train 2D deep fea-

ture maps, then lifts them to 3D point feature clouds using

the available depth map.

We follow the experimental setup of Harley et al. [13],

which uses video sequences of 10 timesteps. For 3DVox-

Contrast, we first use multiview RGB-D data with known

egomotion to train a model using 3D contrastive losses.

Upon training, 3DVoxContrast maps a single RGB-D im-

age to a discrete 3D feature map. Then, 3DVoxContrast

uses this model for tracking by solving orthogonal pro-

crustes problem with RANSAC between voxel features as

opposed to point features. For 3DPointContrast, upon

training the model, we compute RANSAC on the cross-

correlation scores between point features from the visible

3D points on the object at frame 0 and the visible point

cloud at each subsequent frame. Our method also con-

siders amodal completed point cloud at each frame. For

2.5DDenseObjectNets, upon training the model, we apply

RANSAC much the same way as in the 3DPointContrast

model.

We show quantitative tracking results for our model and

baselines on the CARLA and KITTI datasets in Table 1.

Figure 3 visualizes 3D object trajectories over time from an

overhead view. Note that we do not use any locality search,

i.e., each model searches across the whole target frame for

the configuration of the object. Our model achieves superior

performance on 3D object tracking than all the baselines. It

dramatically outperforms 3DVoxContrast, which highlights

the importance of high spatial resolution for 3D feature

learning and correspondence. It also outperforms 3DPoint-

Contrast, which highlights the importance of amodal com-

pletion supported by our model. Lastly, all 3D methods out-

perform 2.5DDenseObjectNets which highlights the effec-

tiveness of learning features in a metric 3D feature space.

Input RGB

Input 


Occupancy Neural Map
Estimated 


trajectory
GT trajectory

Figure 3: Self-supervised 3D object tracking. In the 1st

and 2nd column we visualize the RGB and depth from the

first frame, which is given as input to our model, along with

a 3D box specifying the object to track. In the 3rd column

we visualize our inferred point features by projecting them

to the same RGB image and then doing PCA compression.

In the last 2 columns we show the estimated and ground

truth trajectories. The top three rows show our results on

CARLA; the bottom three rows show our KITTI results.
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Method CARLA KITTI

CoCoNets (ours) 0.61 0.54

3DPointContrast [51] 0.55 0.48

3DVoxContrast [13] 0.37 0.23

2.5DDenseObjectNets [7] 0.24 0.19

Table 1: 3D object tracking mean IOU across timesteps.

Method 0.25 0.30 0.40 0.50

VoteNet [34] 0.32 0.26 0.24 0.20

CoCoNets-VoteNet (Ours) 0.51 0.47 0.41 0.32

Table 2: Comparing VoteNet with CoCoNets-VoteNet on

mAP for different IOUs. Pre-training the 3D point cloud

features with CoCoNets significantly boosts performance.

4.2. Supervised 3D object detection in point clouds

Setup We test the 3D feature representations obtained by

CoCoNets in their ability to boost the performance of a

supervised 3D object detector when used as initialization.

We use VoteNet [34], a state-of-the-art 3D object detec-

tor that combines the classic ideas of Hough voting in a

deep neural network architecture that computes point fea-

tures, uses them to vote for locations and sizes of the 3D

object boxes, and aggregates the votes to propose 3D ob-

ject bounding boxes with associated confidence, in an end-

to-end differentiable framework. We modify VoteNet [34]

by replacing their point cloud feature extractor backbone

with a trained CoCoNet; we will refer to this as CoCoNets-

VoteNet. The original backbone in VoteNet uses Point-

Net++ [35] to compute point features. Both the VoteNet

backbone and CoCoNets-VoteNet backbone sample 1024

points from the dense point cloud using farthest point sam-

pling. The subsequent voting and proposal modules of

VoteNet then operate on these sampled point features to

make the final predictions. In both cases, upon initializa-

tion, the 3D point features are trained end-to-end supervised

for the 3D object detection task. We show below that our

pre-training gives a significant boost to 3D object detection

performance.

Evaluation and comparison with baselines We evalu-

ate both models on the CARLA dataset in the task of pre-

dicting 3D axis aligned car bounding boxes. We show the

mean average precision (mAP) scores for both the models

for different IoU thresholds in Table 2. CoCoNets-VoteNet

outperforms VoteNet across all IoU thresholds.

4.3. Crossview and crossobject 3D alignment

Setup We evaluate the correspondability of our 3D fea-

ture representations by testing how well they can align dif-

ferent views of the same instance, and different instances

that belong to the same object category. Given the amodal

3D feature point clouds extracted for two objects in random

viewpoints, we use orthogonal Procrustes problem with

RANSAC to estimate the 3D rigid body transformation that

aligns them, similar to tracking a car in Section 4.1. Esti-

mating fine grained correspondences between objects, once

their rigid alignment has been estimated, is obtained using

iterative closest point method [21], and we show such re-

sults in the supplementary file.

Evaluation and comparison with baselines We investi-

gate two different setups: i) Given two viewpoints of the

same object, our goal is to estimate the relative 3D rotation

between them. ii) Given two objects of the same category

in random viewpoints, our goal is to estimate a rigid 3d

alignment between them. We compare our model against

baselines 3DVoxContrast and 3DPointContrast, for which

we use RANSAC on voxel and point features, respectively,

to estimate a 3D rigid transformation for the two objects.

Method cross-object cross-view

3DVoxContrast [13] 0.18 0.21

3DPointContrast [51] 0.09 0.14

CoCoNets (Ours) 0.18 0.58

Table 3: Cross-object and cross-view 3D alignment ac-

curacies in Shapenet dataset (mean over 4 classes: Aero-

plane, Mug, Car, Chair).

The inferred 3D alignment is considered correct if each

of the yaw, roll, and pitch angles are within 10◦ of their re-

spective ground truth values. In Table 3 we show the cross-

view (same-object) and cross-object 3D alignment accuracy

for our model and the baselines. Our model performs the

same as 3DVoxContrast on cross-object alignment, and out-

performs both models on cross-view alignment. Note that

cross-object alignment is much harder than cross-view for

all three models.

4.4. Generalization in view prediction

We evaluate CoCoNets-OccRGB in its ability to predict

plausible images in scenes with novel number of objects,

novel object appearance, and novel arrangements. We com-

pare against state-of-the-art view prediction models. We

further evaluate its ability for 3D occupancy prediction and

completion. Extensive results of occupancy and RGB pre-

dictions on the ShapeNet dataset for our model can be found

in the supplementary file.

We compare CoCoNets in RGB prediction against gen-

erative query network (GQN) [6] and geometry-aware re-

current networks (GRNN) [47]. We adapted GQN code to
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use posed RGB-D images as input. GQN uses a 2D la-

tent feature space to encode the RGB-D input image, and

GRNN uses a discrete latent 3D feature map of the scene.

Our model uses a grid of functions and does not suffer from

resolution limitations of the 3D feature map.

CoCoNets predicts RGB images for target viewpoints as

described in Sec. 3.1. Figure 4 shows the view generation

results for CoCoNets, GQN, and GRNN. For qualitative re-

sults on RGB prediction and 3D occupancy prediction, de-

tails on the datasets used, architectural details and video re-

sults of our self-supervised tracking, please see our supple-

mentary file.

CoCoNets (Ours) GRNN Ground TruthGQN

Figure 4: Novel view prediction. We compare CoCoNets,

GQN [6], and GRNN [47] on the CLEVR [16] dataset.

Input View

Ground truth
target view

Predicted
target view

Figure 5: RGB view regression on the ShapeNet dataset

using CoCoNetsNoDepthRGB . See the supplementary file

for details on the experimental setup.

Limitations/Extensions CoCoNets can be extended to

operate without the availability of depth maps at either train

or test time using a differential rendering module [41], as

shown in Figure 5. Our supplementary material further con-

tains results from variations of our model that do not assume

depth available at test time, yet use it at training time.

5. Conclusion

We present a method for learning 3D visual feature

representations by self-supervised view and depth predic-

tion from posed RGB and RGB-D images. Our networks

lift input 2.5D images of objects and scenes into latent

thee-dimensional function grids, which can be decoded to

infinite-resolution 3D occupancy and 3D feature predictions

of the object or scene. Our networks are trained by pre-

dicting views using a contrastive mutual information max-

imization objective. We evaluate the emergent 3D visual

feature representations in 3D object tracking in dynamic

scenes and in cross-view and cross-object alignment esti-

mation. We empirically demonstrate that the features are se-

mantically meaningful and outperform popular point-based

supervision [51] which does not consider 3D completion,

and discrete voxel 3D latent feature maps of previous works

[14, 13] which are limited by the spatial resolution of the 3D

feature grid. Moreover, our models can better generalize to

novel scenes with unseen number and appearance of objects

than networks that do not encode 3D structure [6] or do not

incorporate 3D convolutional modules [41]. They make a

step towards self-supervised learning of amodal 3D feature

representations, which we show are useful for 3D object

tracking and correspondence. Avenues for future work in-

clude learning such representations directly from dynamic

videos, and relaxing the egomotion and depth supervision.
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