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Abstract

A practical low-light enhancement solution must be com-
putationally fast, memory-efficient, and achieve a visually
appealing restoration. Most of the existing methods tar-
get restoration quality and thus compromise on speed and
memory requirements, raising concerns about their real-
world deployability. We propose a new deep learning ar-
chitecture for extreme low-light single image restoration,
which despite its fast & lightweight inference, produces a
restoration that is perceptually at par with state-of-the-art
computationally intense models. To achieve this, we do
most of the processing in the higher scale-spaces, skipping
the intermediate-scales wherever possible. Also unique to
our model is the potential to process all the scale-spaces
concurrently, offering an additional 30% speedup without
compromising the restoration quality. Pre-amplification of
the dark raw-image is an important step in extreme low-
light image enhancement. Most of the existing state of the
art methods need GT exposure value to estimate the pre-
amplification factor, which is not practically feasible. Thus,
we propose an amplifier module that estimates the ampli-
fication factor using only the input raw image and can be
used “off-the-shelf” with pre-trained models without any
fine-tuning. We show that our model can restore an ultra-
high-definition 4K resolution image in just 1 sec. on a CPU
and at 32 fps on a GPU and yet maintain a competitive
restoration quality. We also show that our proposed model,
without any fine-tuning, generalizes well to cameras not
seen during training and to subsequent tasks such as object
detection.

1. Introduction

The Computer Vision community has witnessed excel-
lent methods in the last two decades for low-light enhance-
ment [32, 62, 20, 42, 10, 63, 61]. Especially noteworthy is
SID’s [10] recent success in restoring extreme low-light im-
ages captured in near zero lux conditions (0.1—5 lux). Since
then several deep learning architectures have been proposed
for enhancing dark images [44, 18, 34, 65].
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Dark input: 20 x amplified for visualization =~ Restored video + Object Detection
Figure 1. (One frame of the restored video) We can restore ultra-

high-definition 4K resolution night-time images at 32 fps on a
GPU. This enables real-time visualization and subsequent infer-
ence such as object detection.

In spite of these advances, such solutions may not be
appropriate for real-world deployment due to their pro-
hibitively high computational cost. In fact, a practical solu-
tion must have low network latency, less memory footprint,
fewer model parameters, smaller operations count and yet
maintain a pleasing restoration. Conventionally, however,
these qualities are mutually contradictory. This is especially
true for extreme low-light restoration where colors are hard
to recover and noise suppression is significantly challeng-
ing. Thus, the predominant trend is to forsake model speed
and computational efficiency for better restoration, raising
concerns for real-world deployment [9, 24, 26, 75, 60].
For example, two recent methods, SID [10] and SGN [18],
require 562 GMAC (Giga multiply-accumulate) and 2474
GMAC floating-point operations, respectively, to restore a
single 4K resolution raw image. This demands staggering
levels of computations, which is unlikely to be available
with the deployed edge devices and will cause enormous
network latency. This may be frustrating for a casual user
and impractical for critical tasks. Thus, our goal is to de-
sign a network which achieves similar restoration quality
but with drastically low operations.

We propose a deep learning architecture that extracts
most of the information required for restoration from higher
scale-spaces (which operate at lower resolution) and skip in-
termediate scales, as shown in Fig. 2. At the highest scale,
we use the widely used Residual Dense Block (RDB) [72],
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Figure 2. (a) Almost all methods rely on sequential processing.
(b) We propose a parallel architecture for high inference speed.

which uses non-linear rectification after each convolutional
layer. But the excessive use of non-linear rectification has
been criticized in recent works for decreasing the accu-
racy, and the naive approach of limiting their usage has
worked successfully [21, 56, 67, 71]. However, ours is al-
ready a lightweight model with comparatively less number
of convolutions and non-linear activations. Thus to throw
away some of the non-linearity from our design deprives it
to model complex functions and the restoration degrades.
Consequently, we modify the RDB to reduce the side ef-
fects of negative clipping while maintaining sufficient non-
linearity.

Most architectures rely on sequential data processing by
making the previous convolution block’s output as the input
to the current convolution block. By this approach, the only
way to limit network latency is to either accelerate hard-
ware operations — a technology that has started to plateau,
or reduce the network operations and compromise with the
restoration quality. To break this conundrum, we imbue our
design with architectural parallelism that allows concurrent
processing of various scale-spaces (see Fig. 2), offering an
additional 30% speedup but with no effect on the restoration
quality.

SID [10], a landmark work on extreme low-light restora-
tion, pre-amplified raw images for a successful recov-
ery. But, the pre-amplification required the knowledge of
Ground-Truth (GT) exposure even during inference (see
Eq. (3)). Although this is now a standard practice to re-
cover dark raw images [34, 18, 44, 64], areal-world solution
will be benefited if the amplification is computed using only
the input raw image during inference. To this end, we pro-
pose a new amplifier module that directly uses the intensity
values of the dark raw image to estimate the amplification.
Thus, our amplifier can automatically adapt to varying light
levels, allowing it sometimes to achieve a perceptual score
even better than the GT image. Finally, we show that our
amplifier can be augmented as-it-is to existing pre-trained
models without any fine-tuning for a successful restoration.

Our contributions. In summary, the contributions of this
work are: (1) A new deep learning architecture for extreme
low-light single image restoration, which compared to state-
of-the-art [10, 18, 65]is 5—100x faster, 6 —20x computa-

tionally cheaper, uses 3 — 11 x fewer model parameters and
has MAC operations lower by an order. (2) A systematic
strategy to enable architectural parallelism for additional
speedup with no effect on restoration. (3) A modification
to the popular Residual Dense Block for better restoration.
(4) A novel amplifier module useful in a real-world sce-
nario where the amplification factor is estimated only from
the input image. It can be used directly with pre-trained
models with no fine-tuning. (5) Our model generalizes well
to cameras not seen during training and also to subsequent
tasks such as object detection without any fine-tuning. Our
code is available at the mohitlamba94.github.io/Restoring-
Extremely-Dark-Images-In-Real-Time.

2. Related work

Low-light enhancement. Initial approaches used his-
togram equalization and its variants to increase the dynamic
range [31, 51, 59, 11, 27, 37]. Gradually, it was observed
that a prior decomposition into illumination and reflectance
components using the Retinex theory [36, 35] favored better
recovery [62, 14, 15, 39, 20, 30]. Recent works, however,
use neural networks and occasionally use the Retinex theory
for better results [19, 66, 61, 42, 63, 29, 38, 54, 73].

Extreme low-light restoration. Chen et al. [10] pro-
posed the SID dataset for restoring extremely dark night-
time images having very poor colors and a large amount of
noise. This work has since then spurred several works to
restore extreme low-light images [44, 18, 65, 4, 3]. Many
of them use the U-Net style encoder-decoder for restoration
and have a huge computational overhead. Recently, Wei et
al. [64], proposed a noise formation framework for CMOS
sensors to synthesize dark raw images. Complementing the
real data, these synthetic images can be calibrated to differ-
ent cameras and utilized to train existing networks. Previous
works have also used burst photography [22, 41, 46]. Burst
shots requires some treatment for proper alignment which
is difficult for dark noisy images. Thus, the restorations are
susceptible to ghosting artifacts [10, 64], and so we focus
on restoring single-frame images.

Lightweight models. DCE [19] and LLPackNet [34] are
two most recent works on lightweight low-light enhance-
ment. DCE does not use too many convolutional layers to
limit the MAC operations but still has considerable network
latency because much of the processing occurs at lower
scales. LLPacknet takes the exact opposite approach by
having only one scale-space operating at 16 x lower resolu-
tion but with significantly blurry results. We take a balanced
approach and carefully fuse the details from different scales
such that the network latency decreases, but the restoration
quality improves. Apart from this, architectural parallelism
for speedup, modifying RDB for superior results and an am-
plifier that can be augmented to pre-trained networks with-
out any fine-tuning are contributions exclusive to this work.
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Figure 3. Architectural details of the proposed model. Depth of convolutional layer is roughly proportional to number of o/p features.

3. Fast & lightweight dark image restoration
3.1. Network architecture

The success of a practical low-light enhancement so-
lution is not just limited to restoration quality but also
inference speed and computational feasibility. However,
most restoration networks use U-net style encoder-decoder
wherein processing at lower scales causes significant la-
tency and computational overhead. Thus, as shown in
Fig. 3, we jump over intermediate scales and operate at just
three scales — Lower Scale Encoder (LSE) at 1/2 resolu-
tion, Medium Scale Encoder (MSE) at 1/8 resolution, and
Higher Scale Encoder (HSE) at 1/32 resolution. As HSE
operates at the lowest resolution, most of the convolutional
layers are allocated to HSE. HSE’s basic building block is
the Residual Dense Block (RDB), to which we suggest a
simple modification for better restoration while maintaining
the same time-memory complexity. All the encoder scales
operate directly on the input image and do not have any
inter-dependencies. The execution of all scales can thus
be parallelized, offering additional speedup. Finally, Fuse
Block 1 (FB 1) and Fuse Block 2 (FB 2) fuses details from
all the scales to generate the restored image.

We provide an end-to-end solution by accepting a raw
image as input and generating a restored RGB image as out-
put. We choose to work on raw image because: (1) the noise
in raw image is much simpler to model and hence easier for
CNNs to remove [64, 1, 76], (2) the captured low-light data
has very small intensity values that would be irreversibly
lost if subjected to camera’s compression and quantization
routines, and (3) end-to-end solutions for raw image input
tend to be much more accurate and faster [10, 2, 76].

The raw image consists of a single channel with mosaic
colors that need to be decoupled into separate channels for
subsequent operations. This decoupling happens when we
downsample the raw image using the Pixel-Shuffle opera-
tion [58, 69]. The only condition is that the downsampling
factor must be a multiple of the mosaicing pattern’s size. As
almost all cameras use 2 x 2 Bayer pattern for mosaicing,

we choose a downsampling factor of 2,8 and 32 for LSE,
MSE and HSE, respectively. The details of LSE/MSE/HSE
are deferred until Sec. 3.1.2.

Fuse Block 1 fuses the low and medium frequency de-
tails. For this, the HSE output is upsampled by 4x using
Pixel-Shuffle and is depth-wise concatenated to MSE’s out-
put. To save downstream computations, we reduce the chan-
nel dimension using grouped convolution [28]. Grouped
convolution is a much lighter operation than normal convo-
lution because it does not consider the full feature depth.
Thus if we use grouped convolution after depth-wise con-
catenation, most of the kernels will be exposed to either
HSE’s or MSE’s output and fail to capture the interdepen-
dencies. To check this, we interleave the channels obtained
from MSE and HSE via a simple channel shuffling oper-
ation before performing grouped convolution. This is fol-
lowed by normal convolution for additional processing. Fi-
nally, the Fuse Block 1 output is 4 x upsampled and depth-
wise concatenated to LSE’s output. A convolutional layer
in the Fuse Block 2 then generates the restored RGB image.

To train the network, we compute L1 loss and MS-SSIM
loss [74] between the restored RGB image and the GT with
a weightage of 0.8 and 0.2, respectively. Also, as suggested
by SID [10], we use LeakyReLU non-linearity instead of
ReLU with a negative slope of 0.2.

3.1.1 Modifying RDB to RDB*

The canonical RDB [72] does non-linear rectification [23]
after each convolutional layer, see Fig. 3 b). But recent
works have objected the unconstrained use of non-linear
rectifiers such as ReLU [21, 56, 67, 71, 50]. Such rectifiers
clip the negative values of feature maps that are irreversibly
lost. Nevertheless, they are necessary to infuse the model
with sufficient non-linearity. We thus propose a modifica-
tion to RDB and call it RDB*, as shown in Fig. 3 ¢). Asin
the RDB, each convolutional layer in RDB* passes a recti-
fied output to subsequent convolutional layer, guaranteeing
sufficient non-linearity in RDB*. But different from RDB,
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the last pointwise 1 x 1 convolutional layer in RDB* sees
non-rectified output of all the previous layers. Thus unlike
RDB, our RDB* is simultaneously processing both rectified
and non-rectified output of each convolutional layer. Con-
sequently, RDB* avoids the problem of complete loss of
information due to non-linear rectification.

3.1.2 Achieving effective parallelism

LSE, MSE and HSE directly operate on the input image.
A partial motivation for this comes from better anti-aliasing
reported by Burt and Adelson on adopting a similar strategy
for their classical Laplacian pyramid [7, 8]. But our main
motivation is to enable concurrent processing of LSE, MSE
and HSE and thus achieve additional speedup.

Parallelism is best utilized if the concurrent tasks take
nearly the same time to execute so that the idle time is min-
imized. Thus an important question now is, how many con-
volutions to perform in LSE, MSE and HSE for them to
have the same execution speed? To answer this, we make a
simplifying assumption that this is equivalent to saying that
LSE, MSE and HSE should roughly have the same number
of floating-point operations. Limitations of this assumption
is that this does not account for shuffling operations and for
hardware specific requirements. Still, the following analy-
sis helps us in making an educated guess on the number of
convolutional layers to use.

Let the size of the raw image and the convolutional
kernels be H x W and ky x k., respectively, where
v € {LSE,MSE,HSE}. Also, let C! and C denote
the number of input and output channels, ., the number of
convolutional layers and r, the downsampling factor. For
all convolutions, the input and output have the same spatial
resolution. Thus, number of operations is given by:

ExyxkifoyxC;’xnw. €))
Ty Ty

LSE operates at the highest image resolution, and so is
computationally expensive. We thus use a single convolu-
tional layer, npsp = 1, for LSE that accepts Ctgp = 4
channels because of downsampling by a factor of rp g = 2
and outputs C7 ¢, = 12 channels. For MSE and HSE, we
use 3 X 3 convolutional kernels, but for LSE we use a larger
kernel to compensate for doing a single lightweight convo-
lution. Thus, we have kg = 7 and kysg = kgse = 3.

In MSE, we downsample the raw image using Pixel-
Shuffle by a factor of ;5 = 8, which results in 82 = 64
channels. We use residual block for MSE and thus, we set
Ctrsp = C%gp = 64. If we now equate the number of
operations in LSE and MSE, we get 1 < nj;sg < 2. Since
we are using residual block, we choose ny s = 2.

HSE can accommodate a lot of convolutional layers for
the same operations count of MSE. So we use nysg num-
ber of RDB*s, each having n = 5 convolutional layers and

a growth factor of C'y, = 32 [72]. Also, in HSE we down-
sample the raw image by a factor of rygg = 32, which re-
sults in 322 = 1024 channels. To minimize the downstream
computations, the channel width is reduced to C'; ¢, = 64
using grouped convolution. But as in Fuse Block 1, we first
shuffle the channels to ensure that each group sees chan-
nels corresponding to each Bayer color in equal proportion.
Thus, the net operations count is:

H W 9 L .
nHaSE kise Cor Z [Chse + (G — DCyr]
THSE THSE =

2

+nuselChsp +1- CorlChse + kirse TisE) ‘

If we now equate MSE’s and HSE’s floating-point opera-
tions count, we find that we can use ngsr = 3 RDB%*s.
More details about our network architecture can be found
in the supplementary.

3.2. Amplifier module

The captured extreme low-light raw images have very
small intensity-values. Thus, it is essential to pre-amplify
them for a good restoration. Recent methods [10, 64, 18,

] provide this necessary amplification using the GT ex-
posure setting as shown below,

. GT exposure
Amplification (Amp.) = 7 Imagepexposure' 3)

The GT exposure is, however, unlikely to be available in
real-world setting. We thus propose a very simple amplifier
that can be used when the GT exposure or any other image
meta-data is not available.

The raw images in the SID [10] dataset (normalized to
the range 0 — 1) have very low average intensity values <
10~2. A very simple pre-amplifier would be to multiply the
raw image by the factor:

—1
Amp. =m - (ZHJ ) @)

where x; ; is the intensity of the (¢, j)-th pixel ina H x W
low-light raw image and m is a hyperparameter that governs
the overall brightness of the final restoration. A suitable
value for m can be 0.5 because images are normalized in
the range 0 — 1. Alternatively, m can be adjusted to the
user’s subjective liking.

However, low-light images generally have saturated
highlights [13] which tend to introduce halo artifacts [13,

, 45]. These spurious light sources do not enhance the
scene visibility but cause Eq. (4) to wrongly estimate a
much lower amplification. Thus, instead of using Eq. (4),
we use weighted intensity average value for estimating the
amplification factor:

—1
2 Ti Wi w“) , (5)

Amp. =m -
< Zi,j Wi, 5
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SID [10] DID [44] SGN [18] LLPackNet[34] DCE[19] LDC [65] Ours
Parameters (in million |) 7.7 2.5 1.16 0.79 8.6 0.78
GMACs Bayer 562.06 >2000 >2000 83.46 361 >2000 59.8
(1) X-Trans 1118.8 >2000 >2000 166.12 719.26 >2000 119.03
Memory Bayer 6.184 10.72 2.23 3.58 24.40 1.16
(inGB ) X-Trans 11.27 19.12 18.21 4.94 8.13 >30 2.48
GPU inference Bayer 156.85 >1000 867.50 40.17 116.21 >1000 30.37
time (in ms |) X-Trans 303.64 >1000 >1000 78.94 225.13 >1000 59.42
CPU inference Bayer 9.35 110.29 35.20 2.75 6.20 >200 1.17
time (in sec. |) X-Trans 18.59 >200 68.94 4.79 12.32 >200 2.38
PSNR/SSIM  Bayer 28.88/0.787 28.41/0.780 28.91/0.789 27.83/0.75 26.53/0.73 29.56/0.799 28.66/0.790
(indB1/1) X-Trans 26.61/0.680 - 26.90/0.683 24.13/0.59 - 26.70/0.681 26.60/0.682
NIQE / Ma Bayer 4.39/6.93 4.52/6.85 4.40/6.92 5.12/5.98 4.64/6.09 4.40/691 4.41/6.92
/1) X-Trans 4.45/6.78 - 4.46/6.78 5.20/5.97 - 4471677 4.46/6.77

Table 1. Compared to state-of-the-art, we achieve a drastic improvement in inference speed and computational efficiency while maintaining
a competitive restoration. The best result is in bold and the second best is underlined. GT exposure has been used for pre-amplification.

where w; ; is the weight assigned to the (7, j)-th pixel.
We choose the weights such that w; ; ~ 1 for small inten-
sity values and it exponentially reduces to O for large inten-
sity values. To define these weights, we quantize the inten-
sity range 0—1 into n bins. Since most of the intensities x; ;
will be low valued, we allocate finer bins for lower intensi-
ties and coarser bins for larger intensities. We do this by
making the bin edges by, equidistant on a logarithmic scale:

be = 2% /22 k € [1,n] and by = 0. (6)

Here we choose 28 as the normalizing factor as most cam-
era sensors by default are 8-bit sensors. But even for other
cases, the quantization defined in Eq. (6) is valid as long as
the intensities are in the range 0 — 1. Finally, we choose the
weights w; ; as:

(n—k+1)-8

wig =2 n [2%if by <z < by (7

4. Experiments
4.1. Experimental settings

We used PyTorch [49], running on Intel Xeon ES5-
1620V4 CPU with 64GB RAM and GTX 1080Ti GPU
to implement our network. We trained the network using
ADAM optimizer [33] with default parameters for 1000 K
iterations. For the first 500K iterations the learning rate
was set to 10~ and thereupon reduced to 10~°. We initial-
ized all convolutional layers with MSRA [23] initialization.
For training, we used randomly cropped 512 x 512 patches
with horizontal and vertical flipping and a batch size of 8.
Additionally, we conditioned all convolutional layers with
weight normalization [55]. During testing, we used full im-
age resolution with no augmentation or weight normaliza-
tion. For our amplifier, we fix n = 128 in Eq. (5).

We use the extreme low-light SID dataset [10] contain-
ing short-exposure raw images with corresponding long-
exposure GT images for benchmarking. The dataset was

captured using two camera sensors: Sony «7S II Bayer
sensor with image resolution 4256 x 2848 and Fujifilm
X-Trans sensor with image resolution 6032 x 4032. We
report results for both sensors but, like most previous
works [64, 1, 2, 6, 17, 76], focus on the widely used Bayer
sensor. The training and testing split mentioned in the SID
dataset is used for all comparisons.

We compare with six recent low-light enhancement so-
lutions, namely, SID [10], DID [44], SGN [ 18], LLPackNet
[34], DCE [19] and LDC [65] with publicly available codes.
Of them, LLPackNet is especially lightweight. DCE is also
comparatively lightweight but was only tested for low-light
images with relatively negligible noise and good color rep-
resentation. Consequently, the pre-trained DCE performed
badly for extremely dark images in the SID dataset with less
than 15 dB PSNR. Therefore, we retrained it on the SID
dataset and got around 7 dB improvement for all images
and use this version in all comparisons.

4.2. Quantitative and perceptual comparisons

In Table 1 we assess methods on multiple criteria re-
lated to real-life deployability such as: number of model
parameters, MAC operations, peak RAM utilization, infer-
ence speed, and restoration quality. For peak RAM utiliza-
tion and inference speed, we report values averaged over a
hundred trials. For a fair comparison across all methods,
we use the knowledge of the GT exposure mentioned in the
SID dataset (Eq. (3)) for pre-amplification and disable par-
allelism in our network (i.e. LSE/HSE/MSE execute one af-
ter another) as existing methods use PyTorch’s serial sched-
uler. Most methods report evaluations on high-end GPUs
but in reality, the target device will be resource-constrained,
having limited computational capabilities. Thus, along with
GPU inference speed, we also report CPU inference speed
and GMACs consumed.

It is evident from Table 1, that we achieve notable im-
provement on several metrics. Specifically, we outperform
lightweight solutions DCE and LLPackNet in all respects.
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SID [10] DID [44] SGN [18] LLPackNet [34]

Figure 4. (Zoom-in for best view) Our model’s lightweight restorations are perceptually indistinguishable from those obtained by

DCE [19] LDC [65]

computationally-intense models. The existing lightweight solutions, DCE [19] and LLPackNet [34] do not exhibit good color restora-
tion (green arrows). LLPackNet also struggles to recover high-frequency details (red arrow where “zero water” is not readable).
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Figure 5. Images restored by our model using our amplifier. All the
restorations are perceptually as good as the GT, with sometimes
better perceptual scores (Ma values). Consequently, our model
gives the user the flexibility of choosing an appropriate brightness
for the restored image by controlling the amplifier hyperparameter
m (Eq. (5)). As our model is especially fast, it can generate multi-
ple outputs for the user to choose from in a very short interval.

No Amp. + Retrain

Figure 6. The MLP based amplifier [34], even if Jomtly retramed
with the SID restoration model, causes several artifacts. In com-
parison, our amplifier module helps achieve much superior restora-
tion without any retraining.

[34] Amp. +Retrain ~ Our Amp. + NO Retrain

Compared to the state-of-the-art resource intensive methods
[10, 18, 65], we are 5 — 100x faster, 6 — 20X computa-
tionally cheaper, use 3 — 11x fewer model parameters and
have MAC operations lower by at least an order. Compared
to them, our PSNR/SSIM values are lower by only a small
margin, which should be acceptable in the light of many
previous methods aimed at feasible real-time performance
[68, 16, 75, 25, 52, 24, 34, 9]. Moreover, in Sec. 4.4 we
shall demonstrate that our model exhibits the best general-
izability over the state-of-the-art.

PSNR/SSIM are known to correlate less with human vi-
sual perception [5] as compared to recent perceptual qual-
ity metrics Ma [43] and NIQE [47]. In fact a restora-
tion with high PSNR/SSIM can have very poor percep-
tual quality [70, 5]. Thus as far as the end goal of en-
hancement is concerned, which is to have a pleasing and
visually consistent image, we are at par with state-of-the-
art. This is substantiated by our having the same percep-
tual score, Ma/NIQE, as the top-performing models. Fig. 4
further confirms this wherein the restorations achieved by
our lightweight model are hard to distinguish from those
reached by heavy-duty models, which may overwhelm the
target devices.

4.3. Amplifier module

We augment our model trained on the SID Sony dataset
with the proposed amplifier, which automatically estimates
the amplification factor from the raw image. Fig. 5 shows
the restored images for different values of the amplifica-
tion hyperparameter m. We observe that all the restora-
tions are quite good with nearly the same perceptual score
(Ma score) as that of the GT. These restorations only differ
in overall brightness with no perceived distortions. Yet the
PSNR/SSIM vary a lot. In fact, in the first row, the restora-
tion having a PSNR of 34dB is perceptually no superior than
the restoration having just 16dB PSNR. This happens be-
cause PSNR/SSIM is measured with respect to a particular
GT. But for image enhancement, the choice of GT is quite
subjective. For example, for an image captured late in the
night, one can potentially select any image captured with
randomly higher exposure as the GT. Thus, no-reference
perceptual quality metrics such as Ma and NIQE are more
appropriate for benchmarking image enhancement. We also
note that amongst all restorations, the one with m = 0.5
generally has the highest Ma score, which is sometimes
even higher than the GT’s perceptual score. In fact, the vis-
ibility in the images restored with m = 0.5 is often better
than the GT. We thus fix m = 0.5 as the default.
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Our Amp. + Our Model + RCNN GT image + RCNN Our Amp. + Our Model + RCNN GT image + RCNN Our Amp. + Our Model + RCNN GT image + RCNN

Figure 7. Visualization of the objects detected by Faster RCNN from the dark images restored by our model. The proposed amplifier
enables better visibility and occasionally favors better localization.

Methods [ PSNR 7/SSIM T [Ma 1 /NIQE |
NR: No Retrain, R: Retrain [ GT [ GT-GC | No reference

LLPackNet + [34] amp. + R [23.27/0.69|23.43/0.71| 5.83/5.50
LLPackNet + Our amp. + NR|23.35/0.71|24.34/0.74| 5.97/5.12
SID + [34] amp. + R 22.98/0.71]23.17/0.72|  6.21/4.90

SID + Our amp. + NR 23.84/0.74)26.13/0.78| 6.94 / 4.39
Ours + [34] amp. + R 23.30/0.71]23.80/0.72| 6.11/4.62
Ours + Our amp. + NR  |23.85/0.75/26.08/0.79| 6.93/4.40
DID + Our amp. + NR  [23.29/0.71]25.64/0.74| 6.84/4.49
SGN + Our amp. + NR  [23.90/0.73|26.12/0.77| 6.94 /4.40
DCE + Our amp. + NR  [22.72/0.70[25.13/0.72|  6.08 / 4.65
LDC + Our amp. + NR  [23.86/0.75]26.10/0.79| 6.92/4.40

Table 2. Quantitative superiority of our amplifier module over the
MLP based amplifier [34].

SID [10] SGN [I8] LDC[65]  Ours
Canon PSNR/SSIM 24.80/0.51 23.75/0.45 22.65/0.40 24.90/0.53
EOS70D Ma/NIQE 6.84/4.32 6.70/4.35 6.07/4.93 6.85/4.31
GMACs 925.64 >3000 >3000 98.48
Canon PSNR/SSIM 25.32/0.51 25.09/0.48 24.21/0.41 25.33/0.52
EOS 700D Ma/NIQE 6.85/4.25 6.72/4.28 6.74/431 6.87/4.23
GMACs 830.77 >3000 >3000 88.38
Nikon PSNR/SSIM 26.01/0.60 25.88/0.57 25.18/0.51 26.27/0.63
D850 Ma/NIQE 6.88/4.61 6.85/4.63 6.79/4.68 6.90/4.60
GMACs 912.16 >3000 >3000 97.04

Table 3. Training on Sony 7S II camera and testing on images
captured using different cameras.

In Table 2, we compare the proposed amplifier with
an MLP based amplifier [34], which can also automati-
cally estimate the amplification using the raw image’s his-
togram. The MLP based amplifier had to be independently
re-trained with each restoration model, while our amplifier
was augmented without any fine-tuning. Because of this
difficulty with MLP based amplifier, we report results with
it for only three methods. We observe that for each restora-
tion model, our amplifier achieves better quantitative scores.
This is because the MLP based amplifier estimates quite low
amplification factors in the range 4 — 5 exhibiting poor sen-
sitivity. In contrast, our amplifier’s had estimates anywhere
from 20 — 300. The superiority of our amplifier is also sub-
stantiated by the visual results shown in Fig. 6, wherein we
compare both amplifiers using the SID model as the main
restoration method.

Given that there could be several acceptable GT for ex-
treme low-light images, we generate multiple GT images
by gamma correcting the reference images in a small win-
dow of 0.7 to 1.3 with a step size of 0.03. The maximum
PSNR/SSIM values are reported in the column ‘GT-GC’ of
Table. 2. We immediately note a 2 — 3dB improvement
for our amplifier. This confirms that our amplifier does not
introduce any artifacts in the restoration but only induces

Input (100 x amplified)

LDC Ours GT
Figure 8. Training on Sony o7S II camera and testing on Nikon
D850.

a different global brightness. However, a similar improve-
ment is not seen for the MLP based amplifier because it
actually causes several distortions in the restored image, as
exemplified in Fig. 6. More results can be found in the sup-
plementary.

4.4. Generalizability

From Sec. 4.2, it is evident that our network’s fast infer-
ence speed and computational efficiency is not at the cost
of restoration quality. To further substantiate this observa-
tion, we conducted additional experiments wherein we do
not assume the knowledge of GT exposure and augment our
amplifier to all the models.

Cameras of different make and model. The existing
state-of-the-art restoration models exert a high model and
computational complexity for a disproportionately small in-
crease in reconstruction quality. This makes them suscep-
tible to overfitting on a particular dataset, and the perfor-
mance may not translate to anonymous images. To investi-
gate this, we employed the models trained on the SID Sony
camera dataset to restore the test images captured by other
cameras present in the ELD dataset [64]. Table 3 reports the
average results. Our model achieves the best PSNR / SSIM
/ Ma / NIQE score with much less computation.

Object detection. We ran Faster RCNN [53] trained on
MS COCO [40] over the SID Sony dataset’s low-light im-
ages restored by different methods. To compute the mean
Average Precision (mAP) of the detected objects, we ac-
quired the GT objects by running Faster RCNN over the
GT images with confidence greater than 70%. A similar
strategy was adopted by Sasagawa and Nagahara [57]. The
results are shown in Table 4, wherein our model achieves
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Method mAP % 1 GMAC |
SID + Our amplifier + Faster RCNN 53.15 12.15 + 124.63
SGN + Our amplifier + Faster RCNN 54.57 53.51 + 124.63
Our model + Our amplifier + Faster RCNN 54.67 1.29 + 124.63

Table 4. mean Average Precision (mAP) with an IoU threshold of
50% for object detection on the SID Sony dataset.

Percentage of total time
Block CPU GPU

Lower Scale Encoder (LSE) 14.58 % 15.05 %
Medium Scale Encoder (MSE) 16.23 % 15.14 %
Higher Scale Encoder (HSE) 15.36 % 16.90 %
Fuse Block 1 (FB 1) 17.94 % 19.61 %
Fuse Block 2 (FB 2) 35.89 % 33.30 %

Table 5. Run-time for each block in our network. Parallelizing
LSE/MSE/HSE achieves ~ 30% speedup.

better mAP than the competing methods.

Table 4 also report GMACs for a 512 x 512 image. Our
method is at least 10x lighter, consuming less than 2% of
the total computation required for the joint task of enhance-
ment and detection. Our model can enhance 512 x 512 im-
ages on a GPU at 200 fps; but when Faster RCNN follows
our model, the speed reduces to 22 fps and with YOLO [52]
it is close to 38 fps.

Recently, [57] designed and trained a network specif-
ically for object detection (and not enhancement) on the
SID dataset. They achieved a 55% mAP@IoU=0.5. On
the other hand, we created our model with the sole inten-
tion of enhancement and still manage to achieve a 54%
mAP@IoU=0.5 without any fine-tuning. Note that this is
not a strict one-to-one comparison because we did not have
access to their exact dataset or code; still, we mention these
results just to put things in perspective. Lastly, it would
be best to have manually annotated labels because the low
contrast of the GT images sometimes causes improper lo-
calization. Interestingly, our amplifier offers better scene
visibility, which occasionally improves the localization, see
Fig. 7.

4.5. Architectural parallelism

Table 5 reports the run-time for each block in our
network. Coherent with our design objective discussed
in Sec. 3.1.2, LSE/MSE/HSE all took the same time to
execute, which is roughly 15% of the total execution
time. We then assigned three different computational nodes
(warps [12, 48] in GPU or threads in CPU) to process the
LSE, MSE and HSE blocks independently, and this reduced
the encoder’s net run-time roughly from 45% to 15% of the
total run-time. Note that this architectural parallelism was
possible because we explicitly designed our encoder such
that there are no dependencies amongst three scale-spaces.
In contrast, the higher scales in existing methods operate
on the output of previous scale-spaces, and so parallelizing
them is not straightforward, if not impossible.

Our architecture incurs only two additional communi-
cation overheads — one at the beginning of FB 1 and

w/o masking (Eq. (4)) proposed (Eq. (5)) GT
Figure 9. Ablation study on the proposed amplifier module.

the other at the start of FB 2. Moreover, the outputs of
LSE/MSE/HSE were only 30M B — 120M B at single pre-
cision, and so the communication overhead was small be-
cause modern CPUs and GPUs offer a data-bandwidth of
20 — 50 GB/s and 750 — 1000 GB/s, respectively [12, 48].
In our pre-preliminary experiment, architectural parallelism
boosted SID Sony images’ inference speed from 32 fps to
40 fps on our GPU. Given our limited experience in writing
CUDA codes, we are hopeful that efficient implementations
in the future can further raise it to 45 fps or more.

4.6. Ablation study

Model architecture. We retrained our network on the
SID Sony dataset after replacing the proposed RDB* with
the canonical RDB using GT exposure setting for pre-
amplification. Both used LeakyReLU non-linearity, as sug-
gested by SID. This caused the PSNR/SSIM to drop from
28.66dB/0.79 to 27.96dB/0.77.

Amplifier module. We disable masking highlights and
use Eq. (4) instead of the proposed Eq. (5) for amplifica-
tion. We then augmented it to our pre-trained Sony model
and observed that often the restoration had a greenish color
cast due to inappropriate amplification, as shown in Fig. 9.
Quantitatively, PSNR/SSIM reduced by 0.5dB/0.01.

5. Conclusion

We proposed a fast and lightweight deep learning based
solution for extreme low-light restoration. Specifically,
compared to top-performing methods, we were 5 — 100 x
faster while having similar qualitative results and quanti-
tative perceptual scores. We also devised a mechanism to
enable architectural parallelism to further boost the infer-
ence speed for a 4K resolution image from 32 fps to 40
fps on GPU. The proposed amplifier’s effectiveness was
also demonstrated by augmenting it to all seven restora-
tion methods without any fine-tuning and yet achieve good
restorations, having perceptual scores occasionally better
than GT images. Besides being fast, our method generalizes
better than the state-of-the-art in restoring images captured
from a camera not seen during training and for the task of
object detection. Finally, the ablation study confirmed the
efficacy of the proposed RDB* over the RDB in restricting
the negative impact of non-linear rectifications.
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