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Abstract

A practical low-light enhancement solution must be com-

putationally fast, memory-efficient, and achieve a visually

appealing restoration. Most of the existing methods tar-

get restoration quality and thus compromise on speed and

memory requirements, raising concerns about their real-

world deployability. We propose a new deep learning ar-

chitecture for extreme low-light single image restoration,

which despite its fast & lightweight inference, produces a

restoration that is perceptually at par with state-of-the-art

computationally intense models. To achieve this, we do

most of the processing in the higher scale-spaces, skipping

the intermediate-scales wherever possible. Also unique to

our model is the potential to process all the scale-spaces

concurrently, offering an additional 30% speedup without

compromising the restoration quality. Pre-amplification of

the dark raw-image is an important step in extreme low-

light image enhancement. Most of the existing state of the

art methods need GT exposure value to estimate the pre-

amplification factor, which is not practically feasible. Thus,

we propose an amplifier module that estimates the ampli-

fication factor using only the input raw image and can be

used “off-the-shelf” with pre-trained models without any

fine-tuning. We show that our model can restore an ultra-

high-definition 4K resolution image in just 1 sec. on a CPU

and at 32 fps on a GPU and yet maintain a competitive

restoration quality. We also show that our proposed model,

without any fine-tuning, generalizes well to cameras not

seen during training and to subsequent tasks such as object

detection.

1. Introduction

The Computer Vision community has witnessed excel-

lent methods in the last two decades for low-light enhance-

ment [32, 62, 20, 42, 10, 63, 61]. Especially noteworthy is

SID’s [10] recent success in restoring extreme low-light im-

ages captured in near zero lux conditions (0.1−5 lux). Since

then several deep learning architectures have been proposed

for enhancing dark images [44, 18, 34, 65].

Dark input: 20× amplified for visualization Restored video + Object Detection

Figure 1. (One frame of the restored video) We can restore ultra-

high-definition 4K resolution night-time images at 32 fps on a

GPU. This enables real-time visualization and subsequent infer-

ence such as object detection.

In spite of these advances, such solutions may not be

appropriate for real-world deployment due to their pro-

hibitively high computational cost. In fact, a practical solu-

tion must have low network latency, less memory footprint,

fewer model parameters, smaller operations count and yet

maintain a pleasing restoration. Conventionally, however,

these qualities are mutually contradictory. This is especially

true for extreme low-light restoration where colors are hard

to recover and noise suppression is significantly challeng-

ing. Thus, the predominant trend is to forsake model speed

and computational efficiency for better restoration, raising

concerns for real-world deployment [9, 24, 26, 75, 60].

For example, two recent methods, SID [10] and SGN [18],

require 562 GMAC (Giga multiply-accumulate) and 2474
GMAC floating-point operations, respectively, to restore a

single 4K resolution raw image. This demands staggering

levels of computations, which is unlikely to be available

with the deployed edge devices and will cause enormous

network latency. This may be frustrating for a casual user

and impractical for critical tasks. Thus, our goal is to de-

sign a network which achieves similar restoration quality

but with drastically low operations.

We propose a deep learning architecture that extracts

most of the information required for restoration from higher

scale-spaces (which operate at lower resolution) and skip in-

termediate scales, as shown in Fig. 2. At the highest scale,

we use the widely used Residual Dense Block (RDB) [72],
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Figure 2. (a) Almost all methods rely on sequential processing.

(b) We propose a parallel architecture for high inference speed.

which uses non-linear rectification after each convolutional

layer. But the excessive use of non-linear rectification has

been criticized in recent works for decreasing the accu-

racy, and the naive approach of limiting their usage has

worked successfully [21, 56, 67, 71]. However, ours is al-

ready a lightweight model with comparatively less number

of convolutions and non-linear activations. Thus to throw

away some of the non-linearity from our design deprives it

to model complex functions and the restoration degrades.

Consequently, we modify the RDB to reduce the side ef-

fects of negative clipping while maintaining sufficient non-

linearity.

Most architectures rely on sequential data processing by

making the previous convolution block’s output as the input

to the current convolution block. By this approach, the only

way to limit network latency is to either accelerate hard-

ware operations — a technology that has started to plateau,

or reduce the network operations and compromise with the

restoration quality. To break this conundrum, we imbue our

design with architectural parallelism that allows concurrent

processing of various scale-spaces (see Fig. 2), offering an

additional 30% speedup but with no effect on the restoration

quality.

SID [10], a landmark work on extreme low-light restora-

tion, pre-amplified raw images for a successful recov-

ery. But, the pre-amplification required the knowledge of

Ground-Truth (GT) exposure even during inference (see

Eq. (3)). Although this is now a standard practice to re-

cover dark raw images [34, 18, 44, 64], a real-world solution

will be benefited if the amplification is computed using only

the input raw image during inference. To this end, we pro-

pose a new amplifier module that directly uses the intensity

values of the dark raw image to estimate the amplification.

Thus, our amplifier can automatically adapt to varying light

levels, allowing it sometimes to achieve a perceptual score

even better than the GT image. Finally, we show that our

amplifier can be augmented as-it-is to existing pre-trained

models without any fine-tuning for a successful restoration.

Our contributions. In summary, the contributions of this

work are: (1) A new deep learning architecture for extreme

low-light single image restoration, which compared to state-

of-the-art [10, 18, 65] is 5−100× faster, 6−20× computa-

tionally cheaper, uses 3− 11× fewer model parameters and

has MAC operations lower by an order. (2) A systematic

strategy to enable architectural parallelism for additional

speedup with no effect on restoration. (3) A modification

to the popular Residual Dense Block for better restoration.

(4) A novel amplifier module useful in a real-world sce-

nario where the amplification factor is estimated only from

the input image. It can be used directly with pre-trained

models with no fine-tuning. (5) Our model generalizes well

to cameras not seen during training and also to subsequent

tasks such as object detection without any fine-tuning. Our

code is available at the mohitlamba94.github.io/Restoring-

Extremely-Dark-Images-In-Real-Time.

2. Related work

Low-light enhancement. Initial approaches used his-

togram equalization and its variants to increase the dynamic

range [31, 51, 59, 11, 27, 37]. Gradually, it was observed

that a prior decomposition into illumination and reflectance

components using the Retinex theory [36, 35] favored better

recovery [62, 14, 15, 39, 20, 30]. Recent works, however,

use neural networks and occasionally use the Retinex theory

for better results [19, 66, 61, 42, 63, 29, 38, 54, 73].

Extreme low-light restoration. Chen et al. [10] pro-

posed the SID dataset for restoring extremely dark night-

time images having very poor colors and a large amount of

noise. This work has since then spurred several works to

restore extreme low-light images [44, 18, 65, 4, 3]. Many

of them use the U-Net style encoder-decoder for restoration

and have a huge computational overhead. Recently, Wei et

al. [64], proposed a noise formation framework for CMOS

sensors to synthesize dark raw images. Complementing the

real data, these synthetic images can be calibrated to differ-

ent cameras and utilized to train existing networks. Previous

works have also used burst photography [22, 41, 46]. Burst

shots requires some treatment for proper alignment which

is difficult for dark noisy images. Thus, the restorations are

susceptible to ghosting artifacts [10, 64], and so we focus

on restoring single-frame images.

Lightweight models. DCE [19] and LLPackNet [34] are

two most recent works on lightweight low-light enhance-

ment. DCE does not use too many convolutional layers to

limit the MAC operations but still has considerable network

latency because much of the processing occurs at lower

scales. LLPacknet takes the exact opposite approach by

having only one scale-space operating at 16× lower resolu-

tion but with significantly blurry results. We take a balanced

approach and carefully fuse the details from different scales

such that the network latency decreases, but the restoration

quality improves. Apart from this, architectural parallelism

for speedup, modifying RDB for superior results and an am-

plifier that can be augmented to pre-trained networks with-

out any fine-tuning are contributions exclusive to this work.
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Figure 3. Architectural details of the proposed model. Depth of convolutional layer is roughly proportional to number of o/p features.

3. Fast & lightweight dark image restoration

3.1. Network architecture

The success of a practical low-light enhancement so-

lution is not just limited to restoration quality but also

inference speed and computational feasibility. However,

most restoration networks use U-net style encoder-decoder

wherein processing at lower scales causes significant la-

tency and computational overhead. Thus, as shown in

Fig. 3, we jump over intermediate scales and operate at just

three scales — Lower Scale Encoder (LSE) at 1/2 resolu-

tion, Medium Scale Encoder (MSE) at 1/8 resolution, and

Higher Scale Encoder (HSE) at 1/32 resolution. As HSE

operates at the lowest resolution, most of the convolutional

layers are allocated to HSE. HSE’s basic building block is

the Residual Dense Block (RDB), to which we suggest a

simple modification for better restoration while maintaining

the same time-memory complexity. All the encoder scales

operate directly on the input image and do not have any

inter-dependencies. The execution of all scales can thus

be parallelized, offering additional speedup. Finally, Fuse

Block 1 (FB 1) and Fuse Block 2 (FB 2) fuses details from

all the scales to generate the restored image.

We provide an end-to-end solution by accepting a raw

image as input and generating a restored RGB image as out-

put. We choose to work on raw image because: (1) the noise

in raw image is much simpler to model and hence easier for

CNNs to remove [64, 1, 76], (2) the captured low-light data

has very small intensity values that would be irreversibly

lost if subjected to camera’s compression and quantization

routines, and (3) end-to-end solutions for raw image input

tend to be much more accurate and faster [10, 2, 76].

The raw image consists of a single channel with mosaic

colors that need to be decoupled into separate channels for

subsequent operations. This decoupling happens when we

downsample the raw image using the Pixel-Shuffle opera-

tion [58, 69]. The only condition is that the downsampling

factor must be a multiple of the mosaicing pattern’s size. As

almost all cameras use 2 × 2 Bayer pattern for mosaicing,

we choose a downsampling factor of 2, 8 and 32 for LSE,

MSE and HSE, respectively. The details of LSE/MSE/HSE

are deferred until Sec. 3.1.2.

Fuse Block 1 fuses the low and medium frequency de-

tails. For this, the HSE output is upsampled by 4× using

Pixel-Shuffle and is depth-wise concatenated to MSE’s out-

put. To save downstream computations, we reduce the chan-

nel dimension using grouped convolution [28]. Grouped

convolution is a much lighter operation than normal convo-

lution because it does not consider the full feature depth.

Thus if we use grouped convolution after depth-wise con-

catenation, most of the kernels will be exposed to either

HSE’s or MSE’s output and fail to capture the interdepen-

dencies. To check this, we interleave the channels obtained

from MSE and HSE via a simple channel shuffling oper-

ation before performing grouped convolution. This is fol-

lowed by normal convolution for additional processing. Fi-

nally, the Fuse Block 1 output is 4× upsampled and depth-

wise concatenated to LSE’s output. A convolutional layer

in the Fuse Block 2 then generates the restored RGB image.

To train the network, we compute L1 loss and MS-SSIM

loss [74] between the restored RGB image and the GT with

a weightage of 0.8 and 0.2, respectively. Also, as suggested

by SID [10], we use LeakyReLU non-linearity instead of

ReLU with a negative slope of 0.2.

3.1.1 Modifying RDB to RDB*

The canonical RDB [72] does non-linear rectification [23]

after each convolutional layer, see Fig. 3 b). But recent

works have objected the unconstrained use of non-linear

rectifiers such as ReLU [21, 56, 67, 71, 50]. Such rectifiers

clip the negative values of feature maps that are irreversibly

lost. Nevertheless, they are necessary to infuse the model

with sufficient non-linearity. We thus propose a modifica-

tion to RDB and call it RDB*, as shown in Fig. 3 c). As in

the RDB, each convolutional layer in RDB* passes a recti-

fied output to subsequent convolutional layer, guaranteeing

sufficient non-linearity in RDB*. But different from RDB,
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the last pointwise 1 × 1 convolutional layer in RDB* sees

non-rectified output of all the previous layers. Thus unlike

RDB, our RDB* is simultaneously processing both rectified

and non-rectified output of each convolutional layer. Con-

sequently, RDB* avoids the problem of complete loss of

information due to non-linear rectification.

3.1.2 Achieving effective parallelism

LSE, MSE and HSE directly operate on the input image.

A partial motivation for this comes from better anti-aliasing

reported by Burt and Adelson on adopting a similar strategy

for their classical Laplacian pyramid [7, 8]. But our main

motivation is to enable concurrent processing of LSE, MSE

and HSE and thus achieve additional speedup.

Parallelism is best utilized if the concurrent tasks take

nearly the same time to execute so that the idle time is min-

imized. Thus an important question now is, how many con-

volutions to perform in LSE, MSE and HSE for them to

have the same execution speed? To answer this, we make a

simplifying assumption that this is equivalent to saying that

LSE, MSE and HSE should roughly have the same number

of floating-point operations. Limitations of this assumption

is that this does not account for shuffling operations and for

hardware specific requirements. Still, the following analy-

sis helps us in making an educated guess on the number of

convolutional layers to use.

Let the size of the raw image and the convolutional

kernels be H × W and kγ × kγ , respectively, where

γ ∈ {LSE,MSE,HSE}. Also, let Ci
γ and Co

γ denote

the number of input and output channels, nγ the number of

convolutional layers and rγ the downsampling factor. For

all convolutions, the input and output have the same spatial

resolution. Thus, number of operations is given by:

H

rγ
×

W

rγ
× k

2

γ × C
i
γ × C

o
γ × nγ . (1)

LSE operates at the highest image resolution, and so is

computationally expensive. We thus use a single convolu-

tional layer, nLSE = 1, for LSE that accepts Ci
LSE = 4

channels because of downsampling by a factor of rLSE = 2
and outputs Co

LSE = 12 channels. For MSE and HSE, we

use 3×3 convolutional kernels, but for LSE we use a larger

kernel to compensate for doing a single lightweight convo-

lution. Thus, we have kLSE = 7 and kMSE = kHSE = 3.

In MSE, we downsample the raw image using Pixel-

Shuffle by a factor of rMSE = 8, which results in 82 = 64
channels. We use residual block for MSE and thus, we set

Ci
MSE = Co

MSE = 64. If we now equate the number of

operations in LSE and MSE, we get 1 < nMSE < 2. Since

we are using residual block, we choose nMSE = 2.

HSE can accommodate a lot of convolutional layers for

the same operations count of MSE. So we use nHSE num-

ber of RDB*s, each having η = 5 convolutional layers and

a growth factor of Cgr = 32 [72]. Also, in HSE we down-

sample the raw image by a factor of rHSE = 32, which re-

sults in 322 = 1024 channels. To minimize the downstream

computations, the channel width is reduced to Ci
HSE = 64

using grouped convolution. But as in Fuse Block 1, we first

shuffle the channels to ensure that each group sees chan-

nels corresponding to each Bayer color in equal proportion.

Thus, the net operations count is:

H

rHSE

W

rHSE

(

nHSE k2HSE Cgr

η
∑

j=1

[

Ci
HSE + (j − 1)Cgr

]

+ nHSE [Ci
HSE + η · Cgr]C

i
HSE + k2HSE r2HSE

)

.

(2)

If we now equate MSE’s and HSE’s floating-point opera-

tions count, we find that we can use nHSE = 3 RDB*s.

More details about our network architecture can be found

in the supplementary.

3.2. Amplifier module

The captured extreme low-light raw images have very

small intensity-values. Thus, it is essential to pre-amplify

them for a good restoration. Recent methods [10, 64, 18,

34] provide this necessary amplification using the GT ex-

posure setting as shown below,

Amplification (Amp.) =
GT exposure

i/p Image exposure
. (3)

The GT exposure is, however, unlikely to be available in

real-world setting. We thus propose a very simple amplifier

that can be used when the GT exposure or any other image

meta-data is not available.

The raw images in the SID [10] dataset (normalized to

the range 0 − 1) have very low average intensity values <
10−2. A very simple pre-amplifier would be to multiply the

raw image by the factor:

Amp. = m ·

(

∑

i,j xi,j

H ·W

)−1

, (4)

where xi,j is the intensity of the (i, j)-th pixel in a H ×W
low-light raw image and m is a hyperparameter that governs

the overall brightness of the final restoration. A suitable

value for m can be 0.5 because images are normalized in

the range 0 − 1. Alternatively, m can be adjusted to the

user’s subjective liking.

However, low-light images generally have saturated

highlights [13] which tend to introduce halo artifacts [13,

62, 45]. These spurious light sources do not enhance the

scene visibility but cause Eq. (4) to wrongly estimate a

much lower amplification. Thus, instead of using Eq. (4),

we use weighted intensity average value for estimating the

amplification factor:

Amp. = m ·

(

∑

i,j xi,j · wi,j
∑

i,j wi,j

)−1

, (5)
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SID [10] DID [44] SGN [18] LLPackNet [34] DCE [19] LDC [65] Ours

Parameters (in million ↓) 7.7 2.5 3.5 1.16 0.79 8.6 0.78

GMACs Bayer 562.06 >2000 >2000 83.46 361 >2000 59.8

( ↓ ) X-Trans 1118.8 >2000 >2000 166.12 719.26 >2000 119.03

Memory Bayer 6.184 10.72 9.3 2.23 3.58 24.40 1.16

(in GB ↓) X-Trans 11.27 19.12 18.21 4.94 8.13 >30 2.48

GPU inference Bayer 156.85 >1000 867.50 40.17 116.21 >1000 30.37

time (in ms ↓) X-Trans 303.64 >1000 >1000 78.94 225.13 >1000 59.42

CPU inference Bayer 9.35 110.29 35.20 2.75 6.20 >200 1.17

time (in sec. ↓) X-Trans 18.59 >200 68.94 4.79 12.32 >200 2.38

PSNR / SSIM Bayer 28.88/0.787 28.41/0.780 28.91/0.789 27.83/0.75 26.53/0.73 29.56/0.799 28.66/0.790

(in dB ↑ / ↑) X-Trans 26.61/0.680 – 26.90/0.683 24.13/0.59 – 26.70/0.681 26.60/0.682

NIQE / Ma Bayer 4.39 / 6.93 4.52/ 6.85 4.40 / 6.92 5.12/ 5.98 4.64 /6.09 4.40 / 6.91 4.41/6.92

(↓ / ↑) X-Trans 4.45 / 6.78 – 4.46 / 6.78 5.20 / 5.97 – 4.47 / 6.77 4.46 / 6.77

Table 1. Compared to state-of-the-art, we achieve a drastic improvement in inference speed and computational efficiency while maintaining

a competitive restoration. The best result is in bold and the second best is underlined. GT exposure has been used for pre-amplification.

where wi,j is the weight assigned to the (i, j)-th pixel.

We choose the weights such that wi,j ≈ 1 for small inten-

sity values and it exponentially reduces to 0 for large inten-

sity values. To define these weights, we quantize the inten-

sity range 0−1 into n bins. Since most of the intensities xi,j

will be low valued, we allocate finer bins for lower intensi-

ties and coarser bins for larger intensities. We do this by

making the bin edges bk equidistant on a logarithmic scale:

bk = 2
k·8
n /28 ∀ k ∈ [1, n] and b0 = 0. (6)

Here we choose 28 as the normalizing factor as most cam-

era sensors by default are 8-bit sensors. But even for other

cases, the quantization defined in Eq. (6) is valid as long as

the intensities are in the range 0− 1. Finally, we choose the

weights wi,j as:

wi,j = 2
(n−k+1)·8

n /28 if bk−1 < xi,j ≤ bk. (7)

4. Experiments

4.1. Experimental settings

We used PyTorch [49], running on Intel Xeon E5-

1620V4 CPU with 64GB RAM and GTX 1080Ti GPU

to implement our network. We trained the network using

ADAM optimizer [33] with default parameters for 1000K
iterations. For the first 500K iterations the learning rate

was set to 10−4 and thereupon reduced to 10−5. We initial-

ized all convolutional layers with MSRA [23] initialization.

For training, we used randomly cropped 512× 512 patches

with horizontal and vertical flipping and a batch size of 8.

Additionally, we conditioned all convolutional layers with

weight normalization [55]. During testing, we used full im-

age resolution with no augmentation or weight normaliza-

tion. For our amplifier, we fix n = 128 in Eq. (5).

We use the extreme low-light SID dataset [10] contain-

ing short-exposure raw images with corresponding long-

exposure GT images for benchmarking. The dataset was

captured using two camera sensors: Sony α7S II Bayer

sensor with image resolution 4256 × 2848 and Fujifilm

X-Trans sensor with image resolution 6032 × 4032. We

report results for both sensors but, like most previous

works [64, 1, 2, 6, 17, 76], focus on the widely used Bayer

sensor. The training and testing split mentioned in the SID

dataset is used for all comparisons.

We compare with six recent low-light enhancement so-

lutions, namely, SID [10], DID [44], SGN [18], LLPackNet

[34], DCE [19] and LDC [65] with publicly available codes.

Of them, LLPackNet is especially lightweight. DCE is also

comparatively lightweight but was only tested for low-light

images with relatively negligible noise and good color rep-

resentation. Consequently, the pre-trained DCE performed

badly for extremely dark images in the SID dataset with less

than 15 dB PSNR. Therefore, we retrained it on the SID

dataset and got around 7 dB improvement for all images

and use this version in all comparisons.

4.2. Quantitative and perceptual comparisons

In Table 1 we assess methods on multiple criteria re-

lated to real-life deployability such as: number of model

parameters, MAC operations, peak RAM utilization, infer-

ence speed, and restoration quality. For peak RAM utiliza-

tion and inference speed, we report values averaged over a

hundred trials. For a fair comparison across all methods,

we use the knowledge of the GT exposure mentioned in the

SID dataset (Eq. (3)) for pre-amplification and disable par-

allelism in our network (i.e. LSE/HSE/MSE execute one af-

ter another) as existing methods use PyTorch’s serial sched-

uler. Most methods report evaluations on high-end GPUs

but in reality, the target device will be resource-constrained,

having limited computational capabilities. Thus, along with

GPU inference speed, we also report CPU inference speed

and GMACs consumed.

It is evident from Table 1, that we achieve notable im-

provement on several metrics. Specifically, we outperform

lightweight solutions DCE and LLPackNet in all respects.
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SID [10] DID [44] SGN [18] LLPackNet [34] DCE [19] LDC [65] Ours GT

Figure 4. (Zoom-in for best view) Our model’s lightweight restorations are perceptually indistinguishable from those obtained by

computationally-intense models. The existing lightweight solutions, DCE [19] and LLPackNet [34] do not exhibit good color restora-

tion (green arrows). LLPackNet also struggles to recover high-frequency details (red arrow where “zero water” is not readable).

m = 0.2 m = 0.5 m = 0.8 GT

34/0.8, Ma=7.8 16/0.6, Ma=8.8 13/0.5, Ma=8.1 PSNR/SSIM,Ma=8.7

21/0.8, Ma=7.4 29/0.8, Ma=8.59 16/0.7, Ma=8.1 PSNR/SSIM,Ma=8.57

21/0.7, Ma=6.3 15/0.7, Ma=6.9 12/0.5, Ma=6.3 PSNR/SSIM,Ma=6.5

Figure 5. Images restored by our model using our amplifier. All the

restorations are perceptually as good as the GT, with sometimes

better perceptual scores (Ma values). Consequently, our model

gives the user the flexibility of choosing an appropriate brightness

for the restored image by controlling the amplifier hyperparameter

m (Eq. (5)). As our model is especially fast, it can generate multi-

ple outputs for the user to choose from in a very short interval.

No Amp. + Retrain [34] Amp. + Retrain Our Amp. + NO Retrain GT

Figure 6. The MLP based amplifier [34], even if jointly retrained

with the SID restoration model, causes several artifacts. In com-

parison, our amplifier module helps achieve much superior restora-

tion without any retraining.

Compared to the state-of-the-art resource intensive methods

[10, 18, 65], we are 5 − 100× faster, 6 − 20× computa-

tionally cheaper, use 3 − 11× fewer model parameters and

have MAC operations lower by at least an order. Compared

to them, our PSNR/SSIM values are lower by only a small

margin, which should be acceptable in the light of many

previous methods aimed at feasible real-time performance

[68, 16, 75, 25, 52, 24, 34, 9]. Moreover, in Sec. 4.4 we

shall demonstrate that our model exhibits the best general-

izability over the state-of-the-art.

PSNR/SSIM are known to correlate less with human vi-

sual perception [5] as compared to recent perceptual qual-

ity metrics Ma [43] and NIQE [47]. In fact a restora-

tion with high PSNR/SSIM can have very poor percep-

tual quality [70, 5]. Thus as far as the end goal of en-

hancement is concerned, which is to have a pleasing and

visually consistent image, we are at par with state-of-the-

art. This is substantiated by our having the same percep-

tual score, Ma/NIQE, as the top-performing models. Fig. 4

further confirms this wherein the restorations achieved by

our lightweight model are hard to distinguish from those

reached by heavy-duty models, which may overwhelm the

target devices.

4.3. Amplifier module

We augment our model trained on the SID Sony dataset

with the proposed amplifier, which automatically estimates

the amplification factor from the raw image. Fig. 5 shows

the restored images for different values of the amplifica-

tion hyperparameter m. We observe that all the restora-

tions are quite good with nearly the same perceptual score

(Ma score) as that of the GT. These restorations only differ

in overall brightness with no perceived distortions. Yet the

PSNR/SSIM vary a lot. In fact, in the first row, the restora-

tion having a PSNR of 34dB is perceptually no superior than

the restoration having just 16dB PSNR. This happens be-

cause PSNR/SSIM is measured with respect to a particular

GT. But for image enhancement, the choice of GT is quite

subjective. For example, for an image captured late in the

night, one can potentially select any image captured with

randomly higher exposure as the GT. Thus, no-reference

perceptual quality metrics such as Ma and NIQE are more

appropriate for benchmarking image enhancement. We also

note that amongst all restorations, the one with m = 0.5
generally has the highest Ma score, which is sometimes

even higher than the GT’s perceptual score. In fact, the vis-

ibility in the images restored with m = 0.5 is often better

than the GT. We thus fix m = 0.5 as the default.
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Figure 7. Visualization of the objects detected by Faster RCNN from the dark images restored by our model. The proposed amplifier

enables better visibility and occasionally favors better localization.

Methods PSNR ↑ / SSIM ↑ Ma ↑ / NIQE ↓

NR: No Retrain, R: Retrain GT GT-GC No reference

LLPackNet + [34] amp. + R 23.27/0.69 23.43/0.71 5.83 / 5.50

LLPackNet + Our amp. + NR 23.35/0.71 24.34/0.74 5.97 / 5.12

SID + [34] amp. + R 22.98/0.71 23.17/0.72 6.21 / 4.90

SID + Our amp. + NR 23.84/0.74 26.13/0.78 6.94 / 4.39

Ours + [34] amp. + R 23.30/0.71 23.80/0.72 6.11 / 4.62

Ours + Our amp. + NR 23.85/0.75 26.08/0.79 6.93 / 4.40

DID + Our amp. + NR 23.29/0.71 25.64/0.74 6.84 / 4.49

SGN + Our amp. + NR 23.90/0.73 26.12/0.77 6.94 / 4.40

DCE + Our amp. + NR 22.72/0.70 25.13/0.72 6.08 / 4.65

LDC + Our amp. + NR 23.86/0.75 26.10/0.79 6.92 / 4.40

Table 2. Quantitative superiority of our amplifier module over the

MLP based amplifier [34].

SID [10] SGN [18] LDC [65] Ours

Canon PSNR/SSIM 24.80/0.51 23.75/0.45 22.65/0.40 24.90/0.53

EOS 70D Ma/NIQE 6.84/4.32 6.70/4.35 6.07/4.93 6.85/4.31

GMACs 925.64 >3000 >3000 98.48

Canon PSNR/SSIM 25.32/0.51 25.09/0.48 24.21/0.41 25.33/0.52

EOS 700D Ma/NIQE 6.85/4.25 6.72/4.28 6.74/4.31 6.87/4.23

GMACs 830.77 >3000 >3000 88.38

Nikon PSNR/SSIM 26.01/0.60 25.88/0.57 25.18/0.51 26.27/0.63

D850 Ma/NIQE 6.88/4.61 6.85/4.63 6.79/4.68 6.90/4.60

GMACs 912.16 >3000 >3000 97.04

Table 3. Training on Sony α7S II camera and testing on images

captured using different cameras.

In Table 2, we compare the proposed amplifier with

an MLP based amplifier [34], which can also automati-

cally estimate the amplification using the raw image’s his-

togram. The MLP based amplifier had to be independently

re-trained with each restoration model, while our amplifier

was augmented without any fine-tuning. Because of this

difficulty with MLP based amplifier, we report results with

it for only three methods. We observe that for each restora-

tion model, our amplifier achieves better quantitative scores.

This is because the MLP based amplifier estimates quite low

amplification factors in the range 4− 5 exhibiting poor sen-

sitivity. In contrast, our amplifier’s had estimates anywhere

from 20− 300. The superiority of our amplifier is also sub-

stantiated by the visual results shown in Fig. 6, wherein we

compare both amplifiers using the SID model as the main

restoration method.

Given that there could be several acceptable GT for ex-

treme low-light images, we generate multiple GT images

by gamma correcting the reference images in a small win-

dow of 0.7 to 1.3 with a step size of 0.03. The maximum

PSNR/SSIM values are reported in the column ‘GT-GC’ of

Table. 2. We immediately note a 2 − 3dB improvement

for our amplifier. This confirms that our amplifier does not

introduce any artifacts in the restoration but only induces

Input (100× amplified) SID SGN

LDC Ours GT

Figure 8. Training on Sony α7S II camera and testing on Nikon

D850.

a different global brightness. However, a similar improve-

ment is not seen for the MLP based amplifier because it

actually causes several distortions in the restored image, as

exemplified in Fig. 6. More results can be found in the sup-

plementary.

4.4. Generalizability

From Sec. 4.2, it is evident that our network’s fast infer-

ence speed and computational efficiency is not at the cost

of restoration quality. To further substantiate this observa-

tion, we conducted additional experiments wherein we do

not assume the knowledge of GT exposure and augment our

amplifier to all the models.

Cameras of different make and model. The existing

state-of-the-art restoration models exert a high model and

computational complexity for a disproportionately small in-

crease in reconstruction quality. This makes them suscep-

tible to overfitting on a particular dataset, and the perfor-

mance may not translate to anonymous images. To investi-

gate this, we employed the models trained on the SID Sony

camera dataset to restore the test images captured by other

cameras present in the ELD dataset [64]. Table 3 reports the

average results. Our model achieves the best PSNR / SSIM

/ Ma / NIQE score with much less computation.

Object detection. We ran Faster RCNN [53] trained on

MS COCO [40] over the SID Sony dataset’s low-light im-

ages restored by different methods. To compute the mean

Average Precision (mAP) of the detected objects, we ac-

quired the GT objects by running Faster RCNN over the

GT images with confidence greater than 70%. A similar

strategy was adopted by Sasagawa and Nagahara [57]. The

results are shown in Table 4, wherein our model achieves
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Method mAP % ↑ GMAC ↓

SID + Our amplifier + Faster RCNN 53.15 12.15 + 124.63

SGN + Our amplifier + Faster RCNN 54.57 53.51 + 124.63

Our model + Our amplifier + Faster RCNN 54.67 1.29 + 124.63

Table 4. mean Average Precision (mAP) with an IoU threshold of

50% for object detection on the SID Sony dataset.

Percentage of total time

Block CPU GPU

Lower Scale Encoder (LSE) 14.58 % 15.05 %

Medium Scale Encoder (MSE) 16.23 % 15.14 %

Higher Scale Encoder (HSE) 15.36 % 16.90 %

Fuse Block 1 (FB 1) 17.94 % 19.61 %

Fuse Block 2 (FB 2) 35.89 % 33.30 %

Table 5. Run-time for each block in our network. Parallelizing

LSE/MSE/HSE achieves ≈ 30% speedup.

better mAP than the competing methods.

Table 4 also report GMACs for a 512× 512 image. Our

method is at least 10× lighter, consuming less than 2% of

the total computation required for the joint task of enhance-

ment and detection. Our model can enhance 512× 512 im-

ages on a GPU at 200 fps; but when Faster RCNN follows

our model, the speed reduces to 22 fps and with YOLO [52]

it is close to 38 fps.

Recently, [57] designed and trained a network specif-

ically for object detection (and not enhancement) on the

SID dataset. They achieved a 55% mAP@IoU=0.5. On

the other hand, we created our model with the sole inten-

tion of enhancement and still manage to achieve a 54%
mAP@IoU=0.5 without any fine-tuning. Note that this is

not a strict one-to-one comparison because we did not have

access to their exact dataset or code; still, we mention these

results just to put things in perspective. Lastly, it would

be best to have manually annotated labels because the low

contrast of the GT images sometimes causes improper lo-

calization. Interestingly, our amplifier offers better scene

visibility, which occasionally improves the localization, see

Fig. 7.

4.5. Architectural parallelism

Table 5 reports the run-time for each block in our

network. Coherent with our design objective discussed

in Sec. 3.1.2, LSE/MSE/HSE all took the same time to

execute, which is roughly 15% of the total execution

time. We then assigned three different computational nodes

(warps [12, 48] in GPU or threads in CPU) to process the

LSE, MSE and HSE blocks independently, and this reduced

the encoder’s net run-time roughly from 45% to 15% of the

total run-time. Note that this architectural parallelism was

possible because we explicitly designed our encoder such

that there are no dependencies amongst three scale-spaces.

In contrast, the higher scales in existing methods operate

on the output of previous scale-spaces, and so parallelizing

them is not straightforward, if not impossible.

Our architecture incurs only two additional communi-

cation overheads — one at the beginning of FB 1 and

w/o masking (Eq. (4)) proposed (Eq. (5)) GT

Figure 9. Ablation study on the proposed amplifier module.

the other at the start of FB 2. Moreover, the outputs of

LSE/MSE/HSE were only 30MB − 120MB at single pre-

cision, and so the communication overhead was small be-

cause modern CPUs and GPUs offer a data-bandwidth of

20 − 50 GB/s and 750 − 1000 GB/s, respectively [12, 48].

In our pre-preliminary experiment, architectural parallelism

boosted SID Sony images’ inference speed from 32 fps to

40 fps on our GPU. Given our limited experience in writing

CUDA codes, we are hopeful that efficient implementations

in the future can further raise it to 45 fps or more.

4.6. Ablation study

Model architecture. We retrained our network on the

SID Sony dataset after replacing the proposed RDB* with

the canonical RDB using GT exposure setting for pre-

amplification. Both used LeakyReLU non-linearity, as sug-

gested by SID. This caused the PSNR/SSIM to drop from

28.66dB/0.79 to 27.96dB/0.77.

Amplifier module. We disable masking highlights and

use Eq. (4) instead of the proposed Eq. (5) for amplifica-

tion. We then augmented it to our pre-trained Sony model

and observed that often the restoration had a greenish color

cast due to inappropriate amplification, as shown in Fig. 9.

Quantitatively, PSNR/SSIM reduced by 0.5dB/0.01.

5. Conclusion

We proposed a fast and lightweight deep learning based

solution for extreme low-light restoration. Specifically,

compared to top-performing methods, we were 5 − 100×
faster while having similar qualitative results and quanti-

tative perceptual scores. We also devised a mechanism to

enable architectural parallelism to further boost the infer-

ence speed for a 4K resolution image from 32 fps to 40
fps on GPU. The proposed amplifier’s effectiveness was

also demonstrated by augmenting it to all seven restora-

tion methods without any fine-tuning and yet achieve good

restorations, having perceptual scores occasionally better

than GT images. Besides being fast, our method generalizes

better than the state-of-the-art in restoring images captured

from a camera not seen during training and for the task of

object detection. Finally, the ablation study confirmed the

efficacy of the proposed RDB* over the RDB in restricting

the negative impact of non-linear rectifications.
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