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Abstract

Boundary representation (B-rep) models are the stan-

dard way 3D shapes are described in Computer-Aided De-

sign (CAD) applications. They combine lightweight para-

metric curves and surfaces with topological information

which connects the geometric entities to describe mani-

folds. In this paper we introduce BRepNet, a neural net-

work architecture designed to operate directly on B-rep

data structures, avoiding the need to approximate the model

as meshes or point clouds. BRepNet defines convolutional

kernels with respect to oriented coedges in the data struc-

ture. In the neighborhood of each coedge, a small col-

lection of faces, edges and coedges can be identified and

patterns in the feature vectors from these entities detected

by specific learnable parameters. In addition, to encour-

age further deep learning research with B-reps, we pub-

lish the Fusion 360 Gallery segmentation dataset. A col-

lection of over 35,000 B-rep models annotated with infor-

mation about the modeling operations which created each

face. We demonstrate that BRepNet can segment these mod-

els with higher accuracy than methods working on meshes,

and point clouds.

1. Introduction

Boundary representation (B-rep) models are the de facto

standard for describing 3D objects in commercial Computer

Aided Design (CAD) software. They consist of collections

of trimmed parametric surfaces along with the adjacency

relationships between them [44]. Prismatic shapes can be

represented using lightweight primitive curves and surfaces

while free-form objects can be defined using NURBS [33].

Although this makes the representation both compact and

expressive, the complexity of the data structures and limited

availability of labelled datasets has presented a high barrier

to entry for researchers.

The problem of segmenting B-rep models, based on
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Figure 1: BRepNet convolutional kernels are defined with

respect to topological entities called coedges (dashed ar-

rows). Feature vectors from a small collection of faces

(grey), edges (black) and coedges (blue) adjacent to each

coedge (red) are multiplied by the learnable parameters in

the kernel. The hidden states arising from the convolution

can then be pooled to perform face segmentation.

learned patterns, is of particular interest as it allows the au-

tomation of many laborious manual tasks in CAD, Com-

puter Aided Engineering (CAE) and Computer Aided Pro-

cess Planning (CAPP) [6, 45, 1, 38]. Currently these require

a user to repeatedly select groups of faces and/or edges as

input for the modeling or manufacturing operation. Exam-

ples include model simplification in preparation for finite

element analysis [12] and segmenting a model according to

the manufacturing process or machining toolpath strategy

required to make the object [1, 45].

In addition, parametric feature history is often lost when

models are exchanged between different CAD applications

[23] and many commercial CAD systems use segmentation

algorithms to recover this information [5, 13].
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Although attempts were made in the 90s to apply neural

networks to the task of B-rep segmentation [19, 11, 30, 14,

41, 38], the absence of machine learning frameworks and

large labelled datasets caused progress to stall until very re-

cently [20, 10]. In this paper we introduce BRepNet, a novel

neural network architecture designed specifically to operate

directly on the faces and edges of B-rep data structures and

take full advantage of the topological relationships between

them. In addition, we hope to revitalize interest in the prob-

lem of B-rep segmentation with the publication of the Fu-

sion 360 Gallery segmentation dataset. For the first time we

provide a collection of over 35,000 3D models, in multiple

representations, annotated with segmentation labels reveal-

ing the modeling operations used to create them.

The BRepNet approach is motivated by the observation

that in convolutional neural networks for image processing,

the weights operate on pixels with known locations within

the filter window. A similar arrangement can be achieved

with B-reps, where a small collection of faces, edges and

coedges can be identified at well defined locations relative

to each coedge in the data structure (see Figure 1). Feature

vectors can be extracted from these neighbouring entities

and concatenated in a known order, allowing convolution to

take place as a matrix/vector multiplication [18, 21]. As in

image convolution, specific entities relative to each coedge

map to specific learnable parameters in our convolutional

kernels, allowing patterns in the input data to be easily rec-

ognized [32, 9]. The key contributions are as follows:

• We introduce BRepNet, a network architecture using

a novel convolution technique which takes full advan-

tage of the topological information the B-rep stores.

• We publish the Fusion 360 Gallery segmentation

dataset that contains over 35,000 segmented 3D mod-

els in B-rep, mesh, and point cloud format.

• We provide experimental results on the Fusion 360

Gallery segmentation task, including ablation studies

and comparisons to other representations and methods.

Our results demonstrate that direct use of B-rep data solves

the Fusion 360 Gallery segmentation problem with higher

performance and parameter efficiency than other techniques

based on point cloud and mesh representations.

2. Related work

Historically, the task of B-rep segmentation has focused

on the detection of form features (connected regions of a

model with a characteristic shape or pattern with some sig-

nificance [38]). Feature detection has been an active area of

research since the mid 1970s [19], with a range of different

heuristic approaches investigated [25, 40, 3, 22, 37, 29].

Early neural networks. Neural networks were first em-

ployed by Prabhakar et al. [34] with a number of extensions

and refinements made over the years [31, 14, 41]. In these

early works the B-rep structure is first converted to a face

adjacency graph with node features extracted from the B-

rep faces and attributes for the arcs extracted from the B-rep

edges. Heuristics are then used to break the graph into small

connected components which are passed to the networks in-

dividually. These techniques were limited by the computer

power of the time and so the networks see only a small part

of the B-rep at once.

Voxels. Feature detection methods based on voxels [7, 46]

offer some advantages for manufacturability analysis, how-

ever the cubic storage complexity puts severe limitations

on the size of geometric features which can be detected.

As CAD models often contain small but important features,

the applicability of these techniques with current GPU hard-

ware is quite limited.

Point clouds. Point cloud segmentation has shown excel-

lent results in recent years [35, 36, 43], but typically re-

quires a large number of points to be uniformly sampled

from the (B-rep) objects’ surface. Faces with small areas

can easily be under-sampled and incorrectly classified.

Meshes. Triangle meshes are another important repre-

sentation for 3D objects, and a number of authors have

proposed convolution strategies which operate on them

[42, 18, 9, 28]. MeshCNN [18] operates on the edges of

a triangle mesh with convolution carried out by aggregating

information from the five edges of two adjacent triangles

onto the central edge. Liu et al. [28] introduce a convolution

scheme which operates on directed triangle edges and use

it to generate neural network conditioned subdivision sur-

faces. Although the data structures for triangle meshes are

simple, converting B-reps to high quality manifold meshes

requires special meshing procedures. By working directly

on the original B-rep topology we can avoid the require-

ment to generate good quality meshes and operate directly

on a more compact representation.

Graphs. B-rep model segmentation can also be viewed

as a node classification problem on graphs. Two concur-

rent unpublished works have applied graph convolution ap-

proaches to B-rep segmentation [20, 10]. Jayaraman et al.

[20] uses convolution layers to create input features from

grids of 3D points and normal vectors, while Cao et al.

[10] uses only planar faces which can be directly repre-

sented as feature vectors of length 4. In both cases the B-

rep data structure is translated to a face adjacency graph

which causes some information about relative topological

locations of nearby entities to lost.
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Figure 2: A) B-rep topology comprises faces, edges, loops, coedges and vertices. B) Starting from a given coedge (red), the

topology can be traversed by following a sequence of instructions which indicate which entity to move to in the next hop.

The instruction sequence {mate, next, mate, face} is illustrated. C) The walks from the red coedge to some neighbouring

entities are described in terms of products of the incidence matrices N, P, M, F and E.

3. Method

3.1. B­rep data structures

Industrial CAD packages have internal data structures

which are similar to the partial entity structure described

by Lee et al. [27]. These structures support the modeling of

2-dimensional manifolds, 3-dimensional volumes and even

non-manifold complexes which can arise as intermediate

states in boolean operations [44].

A B-rep comprises of faces, edges, loops, coedges and

vertices (Figure 2a). A face is a connected region of the

model’s surface which may have internal holes [15]. An

edge defines the curve where two faces meet and a vertex

defines the point where edges meet. Faces have an under-

lying parametric surface which is divided into visible and

hidden regions by a series of boundary loops.

Each loop consists of a doubly linked list of directed

edges called coedges, topological entities which are used

to represent the adjacency relationships in the B-rep [27].

A coedge stores pointers to the next and previous coedge

in the loop, its adjacent or “mating” coedge, its parent face

and parent edge. In this work we consider only closed and

manifold B-reps where each coedge has exactly one mating

coedge, providing sufficient information for the edges in the

structure to be traversed in the same way as in the winged

edge [8] and QuadEdge [17] data structures.

3.2. Topological walks

By following the pointers which the coedges store, we

can walk from a given coedge on the B-rep to entities in

its neighborhood. The choice of which pointer to follow at

each hop can be thought of as a sequence of instructions

which will take us from some starting coedge to a destina-

tion coedge. From there we can optionally make one final

jump to its owner edge or face. This sequence of instruc-

tions defines a topological walk.

An example of a simple topological walk for the instruc-

tion sequence: {mate, next, mate, face} is shown in Fig-

ure 2b. The starting coedge is shown in red and the coedges

traversed during the walk are shown in blue.

For a set of B-rep faces f = {f1, f2, ..., f|f |}, edges

e = {e1, e2, ..., e|e|}, and coedges c = {c1, c2, ..., c|c|}, ge-

ometric information can be extracted and used to build

three input feature matrices Xf ∈ R
|f |×p, Xe ∈ R

|e|×q and

X
c ∈ R

|c|×r for the face features, edge features and coedge

features respectively as described in Section 3.3.

The next, previous and mating adjacency relationships

between coedges can be written as three matrices:

N,P,M ∈ {0, 1}|c|×|c| (1)

Here Nij = 1 indicates that cj is the next coedge in the

loop from ci and Mij = 1 when coedge cj is the mate of

coedge ci. As each coedge has exactly one next, previous

and mating coedge, these matrices simply define permuta-

tions on the list of coedges in the B-rep. Also we can see

that P = N
−1 = N

T . A matrix defining a topological

walk between two coedges can then be built by multiplying

N, P and M in the sequence in which the next, previous
and mate instructions appear in the walk (Figure 2c).

The relationships between a coedge and its parent face

and parent edge can also be represented using incidence

matrices F ∈ {0, 1}|c|×|f | and E ∈ {0, 1}|c|×|e|. Here

Fij = 1 indicates that coedge ci is in a loop around face fj
and Eij = 1 indicates that coedge ci belongs to edge ej .

The transform Ψ = FX
f allow us to construct a matrix

Ψ ∈ R
|c|×p by copying the ith row of the matrix of face

features X
f to the jth row of Ψ for each coedge cj with

parent face fi. The matrix E works in a similar way for

edges. Topological walks which terminate on faces or edges

can then be represented in matrix form by multiplying the

matrix for the walk over the coedges by E or F.

3.3. Input feature extraction

Geometric feature information from the faces, edges and

coedges of the B-rep are passed into the network in the fea-

ture matrices X
f , Xe and X

c. One approach to the ex-

traction of geometric features from B-rep faces is given by

[20], where grids of points and normal vectors are sampled
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from the parametric surface geometry and compressed into

feature vectors using a CNN. In this work we investigate

whether the Fusion 360 Gallery segmentation problem can

be solved without providing the network with any coordi-

nate information, instead using only a small amount of ex-

tremely concise information from the B-rep data structure.

Using coordinate free input features has the advantage that

they are invariant to translation and rotation and protects the

intellectual property of CAD operators by not reveling the

model geometry, while still allowing the network to perform

useful tasks.

For face features, the network is given a one-hot vec-

tor encoding of the possible surface types (plane, cylinder,

cone, sphere, torus). One additional value is used to indicate

a rational NURBS surface [33]. In the case of non-rational

B-splines all these values will be zero. We also provide

the network with the area of each face. For edge features

we provide a one-hot vector encoding of the possible kinds

of edge geometry (line, circle, ellipse, helix, intersection

curve). We encode edge convexity in three one-hot values

(concave edge, convex edge, smooth edge). One additional

flag indicates if an edge forms a closed loop. Finally the

edge length is added. For coedges, the network is passed

a single flag indicating whether the direction of the coedge

is the same as the direction of the parametric curve of the

edge. The input features are standardized over the training

set and the same scaling applied to the validation and test

sets. More detail is in the supplementary material.

3.4. Convolution

Convolutional kernels in BRepNet are defined relative to

the coedges of the B-rep. As noted by Lui et al. [28], be-

cause coedges are directed this removes the ambiguity be-

tween the faces to the left and right of a coedge and avoids

the need to aggregate features using symmetric functions as

in [18]. The relative topological locations between a start-

ing coedge and the faces, edges and coedges which will

take part in a convolution are defined by topological walks.

Each walk can be expressed in matrix form by multiply-

ing the matrices N, P, M, F and E in the order in which

the next, previous, mate, face or edge instructions must be

executed. An example of a collection of faces, edges and

coedges which can be used in a BRepNet kernel is shown

in Figure 2c. The products of the matrices required to reach

each of the destination entities are marked. The matrices en-

coding the walks to faces, edges and coedges are arranged

in three lists Kf , Ke and Kc receptively.

A forward pass through the network proceeds as fol-

lows. We start by initialising the matrices H
(0)
f

= X
f ,

H
(0)
e = X

e and H
(0)
c = X

c. These three matrices are then

passed through a number of the convolution units as shown

in Figure 3. Following convolution unit t, the hidden state

matrices H
(t)
f

, H
(t)
e and H

(t)
c are generated. The width of

|𝐟| ×u Per-face 

segmentation 

scores

𝐗𝑓|𝐟| × 𝑝
𝐗𝑒|𝐞| × 𝑞
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Figure 3: The BRepNet network architecture. Input feature

vectors from faces, edges and coedges are passed through a

stack of T convolution units to generate hidden states H
(t)
f

,

H
(t)
e and H

(t)
c . A final convolution unit generates only the

segmentation scores for faces.

these hidden states is defined by a hyper-parameter s. For

face classification tasks a final convolution unit generates

only matrix H
(T+1)
f

∈ R
|f |×u which are the per-face seg-

mentation scores for each of the u classes.

Inside each convolution unit three processes take place.

First we build up a matrix Ψ where

Ψ
f
=

|Kf |n

i=1

Kf
i H

(t)
f

Ψ
e
=

|Ke|n

i=1

Ke
i H

(t)
e

Ψ
c
=

|Kc|n

i=1

Kc
iH

(t)
c Ψ = Ψ

f ||Ψe||Ψc

(2)

This procedure populates the ith row of Ψ with the con-

catenated hidden state vectors of the entities defined by the

kernel with starting coedge ci.
Each row of Ψ is then passed through a multi-layer

perceptron (MLP) with parameters Θ(t) and ReLU non-

linearities. The input to the first layer of the MLP depends

on the number of columns of Ψ while all other MLP layers

have a size 3 times the width of the hidden states s.

Following the MLP, we generate a matrix Z ∈ R
|c|×3s.

The rows of Z are associated with coedges in the B-rep. A

simple architecture would pass the single matrix Z to the

subsequent convolution units, however we observe that this

simple approach gives poor performance on B-rep models

where faces have multiple loops (e.g. a face with a hole). In

this case the edges of the B-rep do not form a connected

graph and information cannot flow between the loops of
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Figure 4: An overview of 3D models from the Fusion 360 Gallery segmentation dataset (left). Each 3D model is labeled

according to the CAD modeling operations used to create it (right).

multi-loop faces. The performance of the network is greatly

enhanced by pooling information from the coedges onto

their parent faces and edges in each convolution unit. This

allows information to flow from the coedges in one loop

onto the parent face, making it accessible to coedges in an-

other loop in subsequent layers. To apply this pooling the

matrix Z is first split into 3 sub-matrices of size |c| × s.

Z =

[

H
(t+1)
c Z

f
Z

e

]

(3)

H
(t+1)
c is the matrix of hidden states for the coedges in the

next layer, which requires no further processing. To build

the ith row of the matrix H
(t+1)
f

we apply element wise

max pooling over the rows of Zf corresponding to the co-

edges with parent face fi. The matrix H
(t+1)
e is built in a

similar way by max pooling the pairs of rows of Ze corre-

sponding to coedges with the same parent edge.

A diagram showing the matrices and operations per-

formed in each convolution unit are shown in Figure 3.

3.5. Face classifications

The per-face segmentation scores for each class ui can

then be calculated as follows. In the final convolution unit,

the last layer of the MLP has just |u| neurons and produces

only the matrix Z
f ∈ R

|c|×|u|. The matrix of segmenta-

tion scores, H
(T+1)
f ∈ R

|f |×|u|, is then built by pooling the

coedge feature vectors onto their parent faces as before. A

cross-entropy loss can then be used to train the network.

4. Fusion 360 Gallery segmentation dataset

In this section we introduce, to our knowledge for the

first time, a dataset containing segmentation information

for B-rep models and the corresponding triangle meshes

and point clouds. The Fusion 360 Gallery segmentation

dataset is produced from designs submitted by users of the

CAD package Autodesk Fusion 360 and is segmented based

on the CAD modeling operations used to create each face.

This modeling history information is not available in exist-

ing datasets [24, 47, 2] and goes beyond what was designed,

providing insights into how people design 3D models.

The segmentation dataset contains a total of 35,858 3D

models with per-face, per-triangle, and per-point segment

labels provided for the B-rep, mesh and point cloud repre-

sentations (Figure 4, left). For segmentation we use a small

subset of the most common CAD modeling operations: ex-

trude, chamfer, fillet, and revolve. In order to create a seg-

mentation which contains as much information as possible

about the CAD modeling operations, we subdivide extrude

operations into additive (i.e. adding) and subtractive (i.e.

cutting) extrusion operations, and further divide the faces

created by extrude and revolve into side and end faces. This

gives a set of eight labels for each face: ExtrudeSide, Ex-

trudeEnd, CutSide, CutEnd, Fillet, Chamfer, RevolveSide,

and RevolveEnd (Figure 4, right). Further details on the

dataset are provided in the supplementary material.

5. Experiments

In this section we perform experiments to examine the

following important network capabilities. First we show

that loop ordering information is useful for solving a B-rep

segmentation problem. We study how performance is af-

fected when the incidence relations in the matrices N and

P are withheld from our architecture and explore a range of

kernel configurations to find which one is optimal. We ana-
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Winged edge++Winged edge+Winged edge

Asymmetric++Asymmetric+AsymmetricSimple Edge

Kernel s |Θ| Accuracy % IoU %

Simple edge 120 359k 91.02 ± 0.20 74.03 ± 0.55

Asymmetric 120 359k 91.66 ± 0.17 75.01 ± 0.54

Asymmetric+ 113 358k 91.82 ± 0.13 75.06 ± 0.71

Asymmetric++ 107 359k 92.05 ± 0.07 75.69 ± 0.38

Winged edge 84 359k 92.52 ± 0.15 77.10 ± 0.54

Winged edge+ 75 357k 92.50 ± 0.15 76.86 ± 0.47

Winged edge++ 63 358k 92.50 ± 0.12 77.14 ± 0.44

ECC 153 360k 90.36 ± 0.23 72.08 ± 0.50

Figure 5: Different BRepNet kernel configurations (left) for which the accuracy and IoU are compared (right). The accuracy

and IoU for the Edge-Conditioned Convolution (ECC) graph network [39] discussed in Section 5.5 is also shown. MLP width

s is adjusted to keep the total number of parameters |Θ| in the network to around 360k.

lyze the features passed to the network, identify the key in-

formation used to generate the segmentation and provide in-

sights on why these features are important. To demonstrate

the advantages of learning based approaches we compare

with a traditional rule-based feature recognition algorithm.

Next, we compare BRepNet performance against an Edge-

Conditioned Convolution (ECC) graph network [39, 16].

This architecture is chosen as it can ingest the same input

features as BRepNet, but employs no special techniques to

exploit the manifold nature of the B-rep. As such this com-

parison shows the gains which can be made when specific

kernel weights operate on specific neighbouring nodes.

Finally, as B-rep models can be converted to meshes and

point clouds we compare against networks using these rep-

resentations. We investigate the advantages of working di-

rectly with the B-rep data structure and challenges of using

approximations to the true geometry.

The data is divided into a 70/15/15% train/validation/test

split. In each of the experiments above the networks are

trained for 50 epochs and the weights with the smallest val-

idation loss are recorded. The performance of these trained

models on the test set is then evaluated. The reported val-

ues are the average over 10 runs with different random seeds

and the error bars are computed as the standard deviation.

5.1. Evaluation metrics

We use accuracy and intersection over union (IoU) to

evaluate network performance. Due to data imbalance in the

Fusion 360 Gallery segmentation dataset, the IoU metric

is useful for providing insight into the performance on the

rarer classes. Rather than computing IoU values for individ-

ual B-rep models and then averaging as in [35], we consider

the entire collection of all faces in the test set at once. This

methodology is referred to as “part IoU” in [26] and avoids

the special case when a B-rep model has no faces, either

predicted or in the ground truth, for a given class.

5.2. Choice of kernel

The BRepNet architecture provides a flexible framework

for defining the relative topological locations of the entities

which make up a convolutional kernel. Here we study how

the choice of these entities affects network performance.

Figure 5, left shows the range of different kernel configura-

tions used in the experiments. The corresponding topologi-

cal walks are included in the supplementary material. As the

number of parameters in the MLP is dependent on the num-

ber of entities in the kernel, we adjust the hyper-parameter s
to keep the total number of network parameters as close as

possible to 360k. This decouples the effect of aggregating

information from a wider region of the B-rep and the effects

of increasing network capacity. For each kernel configura-

tion we train a network with two convolutional units, each

with a two layer MLP. Figure 5, right shows the accuracy

and IoU for each kernel configuration along with the values

of s and the corresponding number of parameters.

The ability of the network to exploit loop ordering in-

formation can now be evaluated. The “simple edge” and

“asymmetric” kernels are carefully chosen to have the same

number of faces, edges and coedges, allowing them to be

compared directly without any adjustments in the MLP

width. The “simple edge” arrangement contains only an

edge and its two adjacent faces and coedges, giving it in-

formation similar to a face adjacency graph, but withhold-

ing information regarding the order in which coedges are

arranged around the loop. The “asymmetric” kernel in-

cludes the next coedge in the loop in place of the mating

coedge, allowing the kernel to observe patterns like con-

tiguous smooth edges. We observe 0.98% improvement in

IoU when moving from the “simple edge” to “asymmetric”

kernels. While this improvement is less than 2 standard de-

viations, a Welch’s unequal variances t-test gives a P value

of 0.0012 for this result, indicating that the coedge ordering

information is useful for the segmentation task.

The “winged edge” kernel configuration is similar to the

half-flaps described by Liu et al. [28]. It achieves an ac-

curacy of 92.52% and an IoU of 77.10%, over 5 standard
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deviations above the IoU value achieved by the “simple

edge” kernel. Adding additional entities to the kernel re-

sults in only very marginal gains as shown in the table at

the right of Figure 5. This can be understood intuitively as

the “winged edge” kernel includes a compact set of topolog-

ical entities immediately adjacent to a given edge. When the

kernel is expanded beyond this size, the locations at which

the topological walks terminate become dependent on the

B-rep topology in the vicinity of the edge. For example the

“winged edge++” kernel configuration includes walks like

NMN and MPM which will evaluate to the same entity

when walking around vertices of valance 3 but distinct en-

tities when the vertex has valance 4 or higher. The “winged

edge” kernel lies at a sweet spot containing enough entities

to allows patterns in local regions of the B-rep topology to

be recognized, while being small enough not to be adversely

affected by differences in the topology.

5.3. Ablation studies on input features

Here we identify which of the input features described

in Section 3.3 play an important role in the results for the

segmentation. The network is trained with groups of input

features removed and the resulting IoU values are shown

in Figure 6. The “winged edge+” kernel configuration is

employed in these experiments and the hyper parameters

are as described in Section 5.2. We see that removing the

one-hot encodings for surface type reduces IoU by 3.7%
and removing curve type information reduces the IoU by

3.9%. These large reductions in performance are expected

as the surface and curve type information is the primary way

geometric information is fed to the network.

We also observe a 4.6% reduction in IoU when edge con-

vexity is removed. Edge convexity is well known to be use-

ful for the detection of form features and was used in a large

number of early neural networks [34, 31, 41, 38]. Joshi et

al. [22] offers an insight into how edge convexity could be

useful with the observation that a face with all convex edges

cannot be a part of a concave feature (CutSide or CutEnd).

Removing other input features have much smaller ef-

fects. Without the edge length feature the IoU only de-

creases by 0.7% and removing the face area feature causes

just a 0.4% IoU decrease. Hence we conclude that edge

convexity, curve type and surface type are the primary

pieces of information used by the network in segmentation.

5.4. Heuristic method comparison

Many CAD modeling packages use rule-based algo-

rithms for the detection of form features. Here we com-

pare against the feature recognition capabilities of Autodesk

Shape Manager (ASM) [4], an industry standard CAD ker-

nel used in numerous commercial products.

As ASM cannot detect the RevolveEnd segment type,

we omit this when computing the ASM average IoU result.
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Figure 6: Effect on IoU of removing groups of input fea-

tures from the network.

ASM does not identify any modeling feature type for 13%

of the faces in the dataset and we consider these faces to be

incorrectly classified.

The results for ASM feature recognition on the Fusion

360 Gallery segmentation task are shown in Table 1. While

BRepNet achieves an IoU value 27% higher than ASM,

this does not reflect the results qualitatively. When features

are recognized by the ASM algorithm, the faces identified

are always geometrically consistent with the type of feature

found. The confusion is between classes where the actual

modeling technique used is ambiguous. For example, a de-

signer may choose to create a cylinder with an extruded cir-

cle or a revolved rectangle. The higher accuracy achieved

on the classification task by BRepNet shows the network

is capable of learning the most likely modeling technique a

designer will employ rather than simply identifying one of

the possible solutions.

5.5. Edge­conditioned convolution graph network

In this section we compare BRepNet performance with

an Edge-Conditioned Convolution (ECC) graph network as

described in [39]. As discussed in Section 5.3, an important

indicator for the class of a face is the convexity of its sur-

rounding edges. As this architecture allows edge attributes

to affect the messages passed between faces it is well suited

to Fusion 360 Gallery segmentation task. The B-rep topol-

ogy is translated into a face adjacency graph with the faces

represented as nodes connected by pairs of directed arcs

with opposite orientations. We use the face features Xf as

input node features. As the directed arcs map 1:1 with the

coedges in the B-rep, we create the attribute vectors for each

directed arc by concatenating the corresponding coedge fea-

tures with the features of its parent B-rep edge.

We match the hyper-parameters of the network to those

of BRepNet as closely as possible. Two edge-conditioned

convolution layers are used, with the edge specific weight

matrices computed by two-layer MLPs. The width of the

first MLP input is defined by the number of face features

and all subsequent widths were set to 153. This gave the

12779



Per-face accuracy Per-face IoU Per-entity accuracy Per-entity IoU |Θ|

BRepNet 92.52 ± 0.15 77.10 ± 0.54 - - 359,100

ECC 90.36 ± 0.23 72.08 ± 0.50 - - 359,558

ASM 64.57 49.53 - - -

PointNet++ 74.00 ± 0.84 34.78 ± 2.23 82.78 ± 0.30 36.49 ± 1.67 1,403,784

MeshCNN 62.99 ± 0.37 20.59 ± 0.41 73.81 ± 0.51 24.07 ± 0.42 2,279,720

Table 1: Accuracy, IoU and number of model parameters, |Θ|, for a variety of different networks. The BRepNet results are

for the “winged edge” kernel configuration. The per-entity accuracy and IoU columns refer to per-edge accuracy in the case

of MeshCNN and per-point accuracy in the case of PointNet++.

ECC network a total of 359, 558 parameters which is the

closest possible match to BRepNet. The accuracy and IoU

of the ECC network are shown in Figure 5 and Table 1.

The IoU value is more than 5% below what BRepNet can

achieve using the ‘winged edge” kernel. This is expected as

this graph network architecture is not specifically designed

for convolution on manifolds and does not map specific

learnable parameters to specific entities in the convolution.

We would expect to see IoU values approximately equal to

what BRepNet achieves with the “simple edge” kernel, but

on the test set the ECC gives a 2% lower IoU value. We

noticed that BRepNet is more stable than the ECC during

training, and we believe the poor performance of the ECC

on the test set may be partially due to the choice of epoch for

which the trained model was recorded for use at test time.

In all experiments the model with the lowest validation loss

is used for evaluation on the test set.

5.6. Comparison with geometry based methods

In this section we investigate the advantages of work-

ing directly with B-rep models rather than converting the

geometry to meshes or point clouds. We generate closed

and manifold meshes from the B-rep geometry with close to

3000 triangles edges each. Computing meshes which meet

this criteria is itself a difficult task requiring specialized

meshing algorithms. For 13% of B-rep models the mesh-

ing algorithm failed entirely and the B-rep representations

of these models were removed from the dataset. Avoiding

the requirement to generate these high quality meshes is a

major advantage of working directly on B-rep data.

Point cloud data is then generated by random uniform

sampling of 2048 points over the surface of each mesh. As

the number of points sampled from each face is determined

by area, small faces generate a low number of points. The

potential to under-sample some faces is a disadvantage for

point cloud techniques as small holes and grooves, which

can be critical for the function of the part, may be missed.

Two well-known architectures, PointNet++ [36], and

MeshCNN [18] are adapted for the face segmentation task.

To compare performance between multiple representations

we use per-face classification accuracy and IoU as our pri-

mary evaluation metrics. The triangles generated from each

B-rep face inherit the label of that face and points inherit the

labels of the triangles from which they were sampled. Tri-

angle edges are considered to be owned by the first of the

two triangles sharing the edge and edge labels are derived

from the faces which generated the triangles. The per-face

accuracy and IoU is then evaluated by averaging the seg-

mentation scores for the points or edges derived from each

face. This gives a prediction of the class for each face, from

which the accuracy and mean IoU can be evaluated as de-

scribed in Section 5.1. In addition to the per-face metrics

we also report the per-point and per-edge accuracy and IoU

for PointNet++ and MeshCNN respectively. As for the per-

face metrics, the IoU values are computed by considering

the points or edges from all bodies together.

Table 1 details the accuracy and IoU results of the seg-

mentation task along with the number of model parameters.

Both BRepNet and the ECC easily outperform the geometry

based methods by more than 16% accuracy and 37% in IoU

with just under 1/4 the number of parameters. This demon-

strates the advantages of working directly with the compact

B-rep data rather than derived representations.

6. Conclusions

We have presented BRepNet, a neural network architec-

ture which can operate directly on B-rep models. We also

introduced the Fusion 360 Gallery segmentation dataset

and provide benchmark results on the segmentation prob-

lem. Our results show that by using the concise surface and

edge type information from the B-rep data structure the net-

work can easily outperform existing techniques using point

clouds and meshes on the Fusion 360 Gallery dataset seg-

mentation task. In addition we demonstrate that by defining

convolutional kernels relative to the coedges of the B-rep,

the architecture can make use of information about the next

and previous coedges in the loops around faces, giving bet-

ter performance than an edge conditioned convolution net-

work with the same number of parameters. In future work

we plan to apply this convolution scheme to other problems

where graphs are embedded in 2D manifolds such as poly-

hedral models, subdivision surfaces, super-pixel segmenta-

tions of image data, region growing algorithms on triangle

meshes and for learning tasks on Voronoi diagrams.
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