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Abstract

Multi-label image classification is the task of predicting

a set of labels corresponding to objects, attributes or other

entities present in an image. In this work we propose the

Classification Transformer (C-Tran), a general framework

for multi-label image classification that leverages Trans-

formers to exploit the complex dependencies among visual

features and labels. Our approach consists of a Trans-

former encoder trained to predict a set of target labels

given an input set of masked labels, and visual features

from a convolutional neural network. A key ingredient of

our method is a label mask training objective that uses a

ternary encoding scheme to represent the state of the la-

bels as positive, negative, or unknown during training. Our

model shows state-of-the-art performance on challenging

datasets such as COCO and Visual Genome. Moreover, be-

cause our model explicitly represents the label state during

training, it is more general by allowing us to produce im-

proved results for images with partial or extra label anno-

tations during inference. We demonstrate this additional ca-

pability in the COCO, Visual Genome, News-500, and CUB

image datasets.

1. Introduction

Images in real-world applications generally portray many

objects and complex situations. Multi-label image clas-

sification is a visual recognition task that aims to predict

a set of labels corresponding to objects, attributes, or ac-

tions given an input image [18, 48, 50, 52, 6, 31, 10]. This

task goes beyond the more thoroughly studied problem of

single-label multi-class classification where the objective is

to extract and associate image features with a single concept

per image. In the multi-label setting, the output set of labels

has some structure that reflect the structure of the world. For

example, dolphin is unlikely to co-occur with grass, while

knife is more likely to appear next to a fork. Effective mod-

els for multi-label classification aim to extract good visual

features that are predictive of image labels, but also exploit

the complex relations and dependencies between visual fea-

tures and labels, and among labels themselves.
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Figure 1. We propose a transformer-based model for multi-label

image classification that exploits dependencies among a target set

of labels using an encoder transformer. During training, the model

learns to reconstruct a partial set of labels given randomly masked

input label embeddings and image features. During inference, our

model can be conditioned only on visual input or a combination of

visual input and partial labels, leading to superior results.

To this end, we present the Classification Transformer

(C-Tran), a multi-label classification framework that lever-

ages a Transformer encoder [49]. Transformers have

demonstrated a remarkable capability of being able to ex-

ploit dependencies among sets of inputs using multi-headed

self-attention layers. In our approach, a Transformer en-

coder is trained to reconstruct a set of target labels given

an input set of masked label embeddings and a set of fea-

tures obtained from a convolutional neural network. C-Tran

uses label masking during training to represent the state of

the labels as positive, negative, or unknown – analogous to

how language models are trained with masked tokens [15].

At test time, C-Tran is able to predict a set of target labels

using only input visual features by masking all the input

labels as unknown. Figure 1 gives an overview of this strat-

egy. We demonstrate that this approach leads to superior re-

sults on a number of benchmarks compared to other recent

approaches that exploit label relations using graph convolu-

tional networks and other recently proposed strategies.

Beyond obtaining state-of-the-art results on standard

multi-label classification, C-Tran is a more general model

for reasoning under prior label observations. Because our

approach explicitly models the label state (positive, nega-
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Figure 2. Different inference settings for general multi-label image classification: (a) Standard multi-label classification takes only image

features as input. All labels are unknown yu.; (b) Classification under partial labels takes as input image features as well as a subset of the

target labels that are known. The labels rain coat and truck are known labels yk, and all others are unknown labels yu; (c) Classification

under extra labels takes as input image features and some related extra information. The labels city and rain are known extra labels y
e

k,

and all others are unknown target labels yt

u.

tive, or unknown) during training, it can also be used at

test time with partial or extra label annotations by setting

the state of some of the labels as either positive or nega-

tive instead of masking them out as unknown. For instance,

consider the example shown in Figure 2(a) where a model

is able to predict person and umbrella with relatively high

accuracies, but is not confident for categories such as rain

coat, or car that are clearly present. Suppose we know some

labels and set them to their true positive (for rain coat) or

true negative (for truck) values. Provided with this new

information, the model is able to predict car with a high

confidence as it moves mass probability from truck to car,

and predicts other objects such as umbrella with even higher

confidence than in the original predictions (Figure 2(b)). In

general, we consider this setting as realistic since many im-

ages also have metadata in the form of extra labels such as

location or weather information (Figure 2(c)). This type

of conditional inference is a much less studied problem.

C-Tran is able to naturally handle all these scenarios un-

der a unified framework. We compare our results with a

competing method relying on iterative inference [51], and

against sensitive baselines, demonstrating superior results

under variable amounts of partial or extra labels.

The benefits of C-Tran can be summarized as follows:

• Flexibility: It is the first model that can be de-

ployed in multi-label image classification under arbi-

trary amounts of extra or partial labels. We use a uni-

fied model architecture and training method that lets

users to apply our model easily in any setting.

• Accuracy: We evaluate our model on six datasets

across three inference settings and achieve state-of-

the-art results on all six. The label mask training strat-

egy enhances the correlations between visual concepts

leading to more accurate predictions.

• Interactivity: The use of state embeddings enables

users to easily interact with the model and test any

counterfactuals. C-Tran can take human interventions

as partial evidence and provides more interpretable and

accurate predictions.

2. Problem Setup

We consider three multi-label image classification sce-

narios as follows:

Regular Multi-label Classification. In this setting the goal

is to predict a set of labels for an input image. Let x be

an image, and y be a ground truth set of ℓ binary labels

{y1, y2, ..., yℓ}, yi ∈ {0, 1}. The goal of multi-label clas-

sification is to construct a classifier, f , to predict a set of

labels given an image so that: ŷ = f(x).

Inference with Partial Labels. While regular classifica-

tion methods aim to predict the full set of ℓ labels given

only an input image, some subset of labels yk ⊆ y may

be observed, or known, at test time. This is also known

as having partial labels available. For example, many im-

ages on the web are labeled with text such as captions or

comments on social media. In this reformulated setting,

the goal is to predict the unknown labels (yu = y \ yk)

given both the image and the known labels during infer-

ence: ŷu = f(x,yk). Note that we assume that all labels

are available during training. This setting is specifically for

inference with partially annotated labels, and it differs from

other works that tackle the problem of training models from

partially annotated data [54, 17, 28].

Inference with Extra Labels. Similar to partially labeled

images, there are many cases where we observe extra labels

that describe an image, but are not part of the target label

set. For example, we may know that an image was taken in

a city. While city might not be one of the target labels, it can

still alter our expectations about what else might be present

in the image. In this setting, we append any extra labels ye

to the target label set yt. If there are ℓt target labels, and ℓe

extra labels, we have a set of ℓt + ℓe total labels that we use

to train the model. Variable y now represents the concate-

nation of all target and extra labels. During inference, the

known labels, ye
k, come from the set of extra labels, but we

are only interested in evaluating the unknown target labels

yt
u. In other words, during inference, we want to compute

the following: ŷt
u = f(x,ye

k).
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Figure 3. C-Tran architecture and illustration of label mask training for general multi-label image classification. In this training image,

the labels person, umbrella, and sunglasses were randomly masked out and used as the unknown labels, yu. The labels rain coat and

truck are used as the known labels, yk. Each unknown label is added the unknown state embedding U, and each known label is added its

corresponding state embedding: negative (N) , or positive (P). The loss function is only computed on the unknown label predictions ŷu.

3. Method: C-Tran

We propose Classification Transformers (C-Tran), a gen-

eral multi-label classification framework that works in all

three previously described settings. During inference, our

method predicts a set of unknown labels yu given an input

image x and a set of known labels yk. In regular inference

no labels are known, in partial label inference some labels

are known, and in extra label inference some labels external

to the target set are known. In Sections 3.1-3.3, we intro-

duce the C-Tran architecture, and in Section 3.4, we explain

our label mask training procedure.

3.1. Feature, Label, and State Embeddings

Image Feature Embeddings Z: Given input image x ∈
R

H×W×3, the feature extractor outputs a tensor Z ∈
R

h×w×d, where h,w, and d are the output height, width,

and channel, respectively. We can then consider each vec-

tor zi ∈ R
d from Z, with i ranging from 1 to P (where

P = h × w), to be representative of a subregion that maps

back to patches in the original image space.

Label Embeddings L: For every image, we retrieve a set

of label embeddings L = {l1, l2, ..., lℓ}, li ∈ R
d, which are

representative of the ℓ possible labels in y. Label embed-

dings are learned from an embedding layer of size d× ℓ.

Adding Label Knowledge via State Embeddings S: In

traditional architectures, there is no mechanism to encode

partially known or extra labels as input to the model. To

address this drawback, we propose a technique to easily in-

corporate such information. Given label embedding li, we

simply add a “state” embedding vector, si ∈ R
d:

l̃i = li + si, (1)

where the si takes on one of three possible states: unknown

(U), negative (N), or positive (P). For instance, if label yi
is a known positive value prior to inference (meaning that

we have prior knowledge that the label is present in the im-

age), si is the positive embedding, P. The state embeddings

are retrieved from a learned embedding layer of size d× 3,

where the unknown state vector (U) is fixed with all zeros.

State embeddings enable a user to (1) not use any prior in-

formation by adding the unknown embedding, (2), use par-

tially labeled or extra information by adding the negative

and positive embeddings to those labels, and (3) easily test

interventions in the model by asking “how does the predic-

tion change if a label is changed to either positive or nega-

tive?”. We note that using prior information is completely

optional as input to our model during testing, enabling it to

also flexibly handle the regular inference setting.

3.2. Modeling Feature and Label Interactions with
a Transformer Encoder

To model interactions between image features and label

embeddings we leverage Transformers [49], as these are

effective models for capturing dependencies between vari-

ables. Our formulation allows us to easily input image fea-

tures and label embeddings jointly into a Transformer en-

coder. Transformer encoders are suitable because they are

order invariant, allowing for any type of dependencies be-

tween all features and labels to be learned.

Let H = {z1, ..., zh×w, l̃1, ..., l̃ℓ} be the set of embed-

dings that are input to the Transformer encoder. In Trans-

formers, the importance, or weight, of embedding hj ∈ H
with respect to hi ∈ H is learned through self-attention.

The attention weight, αt
ij between embedding i and j is

computed in the following manner. First, we compute a

normalized scalar attention coefficient αij between embed-

dings i and j. After computing αij for all i and j pairs, we

update each embedding hi to h
′

i using a weighted sum of
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all embeddings followed by a nonlinear ReLU layer:

αij = softmax
(

(Wq
hi)

⊤(Wk
hj)/

√
d
)

, (2)

h̄i =

M
∑

j=1

αijW
v
hj , (3)

h
′

i = ReLU(h̄iW
r + b1)W

o + b2, (4)

where Wk is the key weight matrix, Wq is the query weight

matrix, Wv is the value weight matrix, Wr and Wo are

transformation matrices, and b1 and b2 are bias vectors.

This update procedure can be repeated for L layers where

the updated embeddings h
′

i are fed as input to the succes-

sive Transformer encoder layer. The learned weight matri-

ces {Wk,Wq,Wv,Wr,Wo} ∈ R
d×d are not shared be-

tween layers. We denote the final output of the Transformer

encoder after L layers as H ′ = {z′
1, ..., z

′

h×w, l
′
1, ..., l

′

ℓ}.

3.3. Label Inference Classifier

Lastly, after feature and label dependencies are modeled

via the Transformer encoder, a classifier makes the final la-

bel predictions. We use an independent feedforward net-

work (FFNi) for final label embedding l
′

i. FFNi contains a

single linear layer, where weight wc
i for label i is a 1 × d

vector, and σ is a simoid function:

ŷi = FFNi(l
′

i) = σ
(

(wc
i · l′i) + bi

)

(5)

3.4. Label Mask Training (LMT)

State embeddings (Eq. 1) let us easily incorporate known

labels as input to C-Tran. However, we want our model to

be flexible enough to handle any amount of known labels

during inference. To solve this problem, we introduce a

novel training procedure called Label Mask Training (LMT)

that forces the model to learn label correlations, and allows

C-Tran to generalize to any inference setting.

Inspired by the Cloze task [46] and BERT’s masked lan-

guage model training [15] which works by predicting miss-

ing words from their context, we implement a similar proce-

dure. During training, we randomly mask a certain amount

of labels, and use the ground truth of the other labels (via

state embeddings) to predict the masked labels. This dif-

fers from masked language model training in that we have

a fixed set of inputs (all possible labels) and we randomly

mask a subset of them for each sample.

Given that there are ℓ possible labels, the number of “un-

known” (i.e. masked) labels for a particular sample, n, is

chosen at random between 0.25ℓ and ℓ. Then, n unknown

labels, denoted yu, are sampled randomly from all possible

labels y. The unknown state embedding is added to each

unknown label. The rest are “known” labels, denoted yk

and the corresponding ground truth state embedding (pos-

itive or negative) is added to each. We call these known

labels because the ground truth value is used as input to

C-Tran alongside the image. Our model predicts the un-

known labels yu, and binary cross entropy is used to up-

date the model parameters. By masking random amounts

of unknown labels (and therefore using random amounts of

known labels) during training, the model learns many pos-

sible known label combinations, and adapts the model to be

used with arbitrary amounts of known information.

We mask out at least 0.25ℓ labels for each training sam-

ples for several reasons. First, most masked language model

training methods mask out around 15% of the words [15, 4].

Second, we want our model to be able to incorporate any-

where from 0 to 0.75ℓ known labels during inference. We

assume that knowing more than 75% of the labels is an

unrealistic inference scenario. Our label mask training

pipeline thus aims to minimize the following loss:

L =

Ntr
∑

n=1

Ep(yk){CE(ŷ(n)
u ,y(n)

u )|yk}, (6)

where CE represents the cross entropy loss function.

Ep(yk)(·|yk) denotes to calculate the expectation regarding

the probability distribution of known labels: yk. We pro-

vide an explanation of the LMT algorithm in the Appendix.

3.5. Implementation Details

Image Feature Extractor. For fair comparisons, we use

the same image size and pretrained feature extractor as the

previous state-of-the-art in each setting. For all datasets ex-

cept CUB, we use the ResNet-101 [21] pretrained on Im-

ageNet [14] as the feature extractor (for CUB, we use the

same as [25]). Since the output dimension of ResNet-101

is 2048, we set our embedding size d as 2048. Follow-

ing [8, 7], images are resized to 640 × 640 and randomly

cropped to 576 × 576 with random horizontal flips during

training. Testing images are center cropped instead. The

output of ResNet-101 is an 18×18×d tensor, so there are a

total of 324 feature embedding vectors, zi ∈ R
d.

Transformer Encoder. In order to allow a particular em-

bedding to attend to multiple other embeddings (or multiple

groups), C-Tran uses 4 attention heads [49]. We use a L=3

layer Transformer with a residual layer [21] around each

embedding update and layer norm [1].

Optimization. Our model, including the pretrained feature

extractor, is trained end-to-end. We use Adam [24] for the

optimizer with betas=(0.9, 0.999) and weight decay=0. We

train the models with a batch size of 16 and a learning rate

of 10−5. We use dropout with p = 0.1 for regularization.

4. Experimental Setup and Results

In the following subsections, we explain the datasets,

baselines, and results for the three multi-label classification

inference settings.
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All Top 3

mAP CP CR CF1 OP OR OF1 CP CR CF1 OP OR OF1

CNN-RNN [50] 61.2 - - - - - - 66.0 55.6 60.4 69.2 66.4 67.8

RNN-Attention [52] - - - - - - - 79.1 58.7 67.4 84.0 63.0 72.0

Order-Free RNN [6] - - - - - - - 79.1 58.7 67.4 84.0 63.0 72.0

ML-ZSL [31] - - - - - - - 74.1 64.5 69.0 - - -

SRN [58] 77.1 81.6 65.4 71.2 82.7 69.9 75.8 85.2 58.8 67.4 87.4 62.5 72.9

ResNet101 [21] 77.3 80.2 66.7 72.8 83.9 70.8 76.8 84.1 59.4 69.7 89.1 62.8 73.6

Multi-Evidence [19] - 80.4 70.2 74.9 85.2 72.5 78.4 84.5 62.2 70.6 89.1 64.3 74.7

ML-GCN [10] 83.0 85.1 72.0 78.0 85.8 75.4 80.3 89.2 64.1 74.6 90.5 66.5 76.7

SSGRL [8] 83.8 89.9 68.5 76.8 91.3 70.8 79.7 91.9 62.5 72.7 93.8 64.1 76.2

KGGR [7] 84.3 85.6 72.7 78.6 87.1 75.6 80.9 89.4 64.6 75.0 91.3 66.6 77.0

C-Tran 85.1 86.3 74.3 79.9 87.7 76.5 81.7 90.1 65.7 76.0 92.1 71.4 77.6

Table 1. Results of regular inference on COCO-80 dataset. The threshold is set to 0.5 to compute precision, recall and F1 scores (%). Our

method consistently outperforms previous methods across multiple metrics under the settings of all and top-3 predicted labels. Best results

are shown in bold. “-” denotes that the metric was not reported.

All Top 3

mAP CP CR CF1 OP OR OF1 CP CR CF1 OP OR OF1

ResNet101[21] 30.9 39.1 25.6 31.0 61.4 35.9 45.4 39.2 11.7 18.0 75.1 16.3 26.8

ML-GCN [10] 32.6 42.8 20.2 27.5 66.9 31.5 42.8 39.4 10.6 16.8 77.1 16.4 27.1

SSGRL [8] 36.6 - - - - - - - - - - - -

KGGR [7] 37.4 47.4 24.7 32.5 66.9 36.5 47.2 48.7 12.1 19.4 78.6 17.1 28.1

C-Tran 38.4 49.8 27.2 35.2 66.9 39.2 49.5 51.1 12.5 20.1 80.2 17.5 28.7

Table 2. Results of regular inference on VG-500 dataset. All metrics and setups are the same as Table 1. Our method achieves notable

improvement over previous methods.

4.1. Regular Inference

Datasets. We use two large-scale regular multi-label clas-

sification datasets: COCO-80 and VG-500. COCO [34], is

a commonly used large scale dataset for multi-label classi-

fication, segmentation, and captioning. It contains 122, 218
images containing common objects in their natural context.

The standard multi-label formulation for COCO, which we

call COCO-80, includes 80 object class annotations for each

image. We use 82, 081 images as training data and evaluate

all methods on a test set consisting of 40, 137 images. The

Visual Genome dataset [27], contains 108, 077 images with

object annotations covering thousands of categories. Since

the label distribution is very sparse, we only consider the

500 most frequent objects and use the VG-500 subset intro-

duced in [7]. VG-500 consists of 98, 249 training images

and 10, 000 test images.

Baselines and Metrics. For COCO-80, we compare to ten

well known multi-label classification methods. For VG-500

we compare to four previous methods that used this dataset.

Referencing previous works [10, 8, 7], we employ several

metrics to evaluate the proposed method and existing meth-

ods. Concretely, we report the average per-class precision

(CP), recall (CR), F1 (CF1) and the average overall preci-

sion (OP), recall (OR), F1 (OF1), under the setting that a

predicted label is positive if the output probability is greater

than 0.5. We also report the mean average precision (mAP).

A detailed explanation of the metrics are shown in the Ap-

pendix. For fair comparisons to previous works [19, 58], we

also consider the setting where we evaluate the Top-3 pre-

dicted labels following. In general, mAP, OF1, and CF1

are the most important metrics [10].

Results. C-Tran achieves state-of-the-art performance al-

most across all metrics on both datasets, as shown in Ta-

ble 1 and Table 2. Considering that COCO-80 and VG-500

are two widely studied multi-label datasets, absolute mAP

increases of 0.8 and 1.0, respectively, can be considered no-

table improvements. Importantly, we do not use any pre-

defined feature and label relationship information (e.g. pre-

trained word embeddings). This signals that our method can

effectively learn the relationships.

4.2. Inference with Partial Labels

Datasets. We use four datasets to validate our approach

in the partial label setting. In all four datasets, we simu-

late four amounts of partial labels during inference. More

specifically, for each testing image, we select ǫ percent of

labels as known. ǫ is set to 0% / 25% / 50% / 75% in our

experiments. ǫ=0% denotes no known labels, and is equiv-

alent to the regular inference setting.
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COCO-80 VG-500 NEWS-500 COCO-1000

Partial Labels Known (ǫ) 0% 25% 50% 75% 0% 25% 50% 75% 0% 25% 50% 75% 0% 25% 50% 75%

Feedbackprop [51] 80.1 80.6 80.8 80.9 29.6 30.1 30.8 31.6 14.7 21.1 23.7 25.9 29.2 30.1 31.5 33.0

C-Tran 85.1 85.2 85.6 86.0 38.4 39.3 40.4 41.5 18.1 29.7 35.5 39.4 34.3 35.9 37.4 39.1

Table 3. Results of inference with partial labels on four multi-label image classification datasets. Mean average precision score (%) is

reported. Across four simulated settings where different amounts of partial labels are available (ǫ), our method significantly outperforms

the competing method. With more partial labels available, we achieve larger improvement.

Extra Label Groups Known (ǫ) 0% 36% 54% 71%

Standard [25] 82.7 82.7 82.7 82.7

Multi-task [25] 83.8 83.8 83.8 83.8

ConceptBottleneck [25] 80.1 87.0 93.0 97.5

C-Tran 83.8 90.0 97.0 98.0

Table 4. Results of inference with extra labels on CUB-312

dataset. We report the accuracy score (%) for the 200 multi-class

target labels. We achieve similar or greater accuracy than the base-

lines across all amounts of known extra label groups.

In addition to COCO-80 and VG-500, we benchmark

our method on two more multi-label image classification

datasets. Wang et al. [51] derived the top 1000 frequent

words from the accompanying captions of COCO images

to use as target labels, which we call COCO-1000. There

are 82, 081 images for training, and 5, 000 images for val-

idation and testing, respectively. We expect that COCO-

1000 provides more and stronger dependencies compared to

COCO-80. We also use the NEWS-500 dataset [51], which

was collected from the BBC News. Similar to COCO-1000,

the target label set consists of 500 most frequent nouns de-

rived from image captions. There are 151, 873 images for

training, 10, 304 for validation and 10, 451 for testing.

Baselines and Metrics. Feedback-prop [51] is an inference

method introduced for partial label inference that make use

of arbitrary amount of known labels. This method back-

propagates the loss on the known labels to update the in-

termediate image representations during inference. We use

the LF method on ResNet-101 Convolutional Layer 13 as

in [51]. We compute the mean average precision (mAP)

score of predictions on unknown labels.

Results. As shown in Table 3, C-Tran outperforms Feed-

backprop, in all ǫ percentages of partially known labels on

all datasets. In addition, as the percentage of partial labels

increases, the improvement of C-Tran over Feedbackprop

also increases. These results demonstrate that our method

can effectively leverage known labels and is very flexible

with the amount of known labels. Feedbackprop updates

image features which implicitly encode some notion of la-

bel correlation. C-Tran, instead, explicitly models the corre-

lations between labels and features, leading to improved re-

sults especially when partial labels are known. On the other

hand, Feedback-prop requires careful hyperparameter tun-

ing on a separate validation set and needs time-consuming

iterative feature updates. Our method does not require any

hyperparameter tuning and just needs a standard one-pass

inference. Further comparisons and qualitative examples

are included in the Appendix.

4.3. Inference with Extra Labels

Datasets. For the extra label setting, we use the Caltech-

UCSD Birds-200-2011 (CUB) dataset [53]. It contains

9,430 training samples and 2,358 testing samples. We con-

duct a multi-classification task with 200 bird species on this

dataset. Multi-class classification is a specific instantiation

of multi-label classification, where the target classes are

mutually exclusive. In other words, each image has only

one correct label. We use the processed CUB dataset from

Koh et al. [25] where they include 112 extra labels related

to bird species. We call this dataset CUB-312. They further

cluster extra labels into 28 groups and use varying amounts

of known groups at inference time. To make a fair com-

parison, we consider four different amounts of extra label

groups for inference: 0 group (0%), 10 groups (36%), 15

groups (54%), and 20 groups (71%).

Baselines and Metrics. Concept Bottleneck Models [25]

incorporate the extra labels as intermediate labels ( “con-

cepts” in the original paper). These models use a bottleneck

layer to first predict the extra labels, and then use those pre-

dictions to predict bird species. I.e., if we let ye be the extra

information labels, [25] predicts the target class labels yt

using the following computation graph: x → ye → yt. As

in [25], we also consider two baselines: A standard multi-

layer perceptron, and a multi-task learning model that pre-

dicts the target and concept labels jointly. For fair com-

parison, we use the same feature extraction method for all

experiments, Inception-v3 [44]. We evaluate target predic-

tions using multi-class accuracy scores.

Results. Table 4 shows that C-Tran achieves an improved

accuracy over Concept Bottleneck models on the CUB-312

task when using any amount of extra label groups. Notably,

the multi-task learning model produces the best perform-

ing results when ǫ=0. However, it is not able to incorporate

known extra labels (i.e., ǫ >0). C-Tran instead, consistently

achieves the best performance. Additionally, we can test in-

terventions, or counterfactuals, using C-Tran. For example,

“grey beak” is one of the extra labels, and we can set the
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state embedding of “grey beak” to be positive or negative

and observe the change in bird class predictions. We pro-

vide samples of extra label interventions in the Appendix.

4.4. Ablation and Model Analysis

We conduct ablation studies to analyze the contributions

of each C-Tran component. We examine two settings: reg-

ular inference (equivalent to 0% known partial labels) and

50% known partial label inference. We evaluate on four

datasets: COCO-80, VG-500, NEWS-500, and COCO-

1000. First, we remove the image features Z and predict

unknown labels given only known labels. This experiment,

C-Tran (no image), tells us how much information model

can learn just from labels. Table 5 shows that we get rela-

tively high mean average precision scores on some datasets

(NEWS-500 and COCO-1000). This indicates that even

without image features, C-Tran is able to effectively learn

rich dependencies from label annotations .

Second, we remove the label mask training procedure to

test the effectiveness of this technique. More specifically,

we remove all label state embeddings, S; thus all labels are

unknown during training. Table 5 shows that for both set-

tings, regular (0%) and 50% partial labels known, the per-

formance drops without label mask training. This signifies

two critical findings of label mask training: (1) it helps with

dependency learning as we see improvement when no par-

tial labels are available during inference. This is particularly

true for datasets that have strong label co-occurrences, such

as NEWS-500 and COCO-1000. (2) given partial labels, it

can significantly improve prediction accuracy. We provide

a t-SNE plot [36] of the label embeddings learned with and

without label mask training. As shown in Figure 4, em-

beddings learned with label mask training exhibit a more

meaningful semantic topology; i.e. objects belonging to the

same group are clustered together.

We also analyze the importance of the number of Trans-

former layers, L, for regular inference in COCO-80. Mean

average precision scores for 2, 3, and 4 layers were 85.0,

85.1, and 84.3, respectively. This indicates : (1) our method

is fairly robust to the number of Transformer layers, (2)

multi-label classification does not seem to require a very

large number of layers as in some NLP tasks [4]. While

we show C-Tran is a powerful method in many multi-label

classification settings, we recognize that Transformer lay-

ers are memory-intensive for a large number of inputs. This

limits the number of possible labels ℓ in our model. Using

four NVIDIA Titan X GPUs, the upper bound of ℓ is around

2000 labels. However, it is possible to increase the number

of labels. We currently use the ResNet-101 output channel

size (d = 2048) for our Transformer hidden layer size. This

can be linearly mapped to a smaller number. Additionally,

we could apply one of the Transformer variations that have

been proposed to model very large input sizes [11, 43].

Partial Labels

Known (ǫ)

COCO-80 VG-500 NEWS-500 COCO-1000

0% 50% 0% 50% 0% 50% 0% 50%

C-Tran (no image) 3.60 21.7 2.70 24.6 6.50 33.3 1.50 27.8

C-Tran (no LMT) 84.8 85.0 38.3 38.8 16.9 17.1 33.1 34.0

C-Tran 85.1 85.6 38.4 40.4 18.1 35.5 34.3 37.4

Table 5. C-Tran component ablation results. Mean average pre-

cision score (%) is reported. Our proposed Label Mask Training

technique (LMT) improves the performance, especially when par-

tial labels are available.

5. Related Work

Our work relates to the prior literature in image cate-

gorization. While a lot of work focuses on single-label

classification [14], there is also an ample body of work on

both multi-label prediction and exploiting label dependen-

cies [13, 39, 35, 22]. There is also an increasing recognition

of the importance of being able to handle partial labels both

during training and inference. We review some of this work

in this section as follows:

Multi-label Image Classification. Multi-label classifica-

tion (MLC) is gaining popularity due to its relevance in real

world applications. Recently, Stock et al [42] showed that

the remaining error in ImageNet is not due to the feature

extraction, but rather that ImageNet is annotated with single

labels even when some images depict more than one object.

Recent literature addressing multi-label classification

roughly fall into four groups. (1) Conditional Prediction:

The first type, autoregressive models [12, 41, 50, 37] es-

timate the true joint probability of output labels given the

input by using the chain rule, predicting one label at a time.

(2) Shared Embedding Space: The second group learns to

project input features and output labels into a shared latent

embedding space [57, 3]. (3) Structured Output: The third

kind describes label dependencies using structured output

inference formulation [29, 47, 2, 20, 32, 33, 56, 38]. (4)

Label Graph Formulation: Several recent studies [10, 30,

8, 7] used graph neural networks to model label depen-

dency an obtained state-of-the-art results. All methods re-

lied on knowledge-based graphs being built from label co-

occurrence statistics. Our proposed model is most similar

to (4), but it does not need extra knowledge to build a graph

and can automatically learn label dependencies.

Inference with Partial Labels, Wang et al. proposed

feedback propagation to handle any set of partial labels

at test time [51]. The idea is to optimize intermediate

image representations according to known labels and then

predict unknown labels based on updated representations.

Yang et al [55] use this type of approach to pivot informa-

tion across captions in different languages. Huang et al [23]

use feedback consistency to improve adversarial robustness.

However, these methods require many iterations at infer-
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No LMT LMT

Figure 4. Comparison of the learned label embeddings for COCO-80 using t-SNE. The left figure shows the embedding projections without

using label mask training (LMT), and the right shows with LMT. Labels are colored using the COCO object categorization. We can see

that using label mask training produces much semantically stronger label representations.

ence time, and particularly the model in [51] is not exposed

to partial evidence during training, which limits potential

gains. Several methods [26, 22] utilize partial labels using a

fixed set of labels. In realistic settings, however there could

be an arbitrary set of known labels available during infer-

ence. If there are ℓ total labels, then the number of known

labels, n=|yk| ranges from 0 to ℓ-1. The number of possi-

ble known label sets is then
(

ℓ
n

)

. C-Tran, integrates a novel

representation indicating each label state as positive, nega-

tive or unknown. This representation enables us to leverage

partial signals during training, and make our model compat-

ible with any known label set during inference. Notably, C-

Tran can exploit arbitrary amounts of partial evidence dur-

ing both training and inference.

Many prominent works also tackle the problem of train-

ing models with partial label annotations [54, 17, 28].

While this might seem similar to our setting, the key dis-

tinction is that these methods assume that images have in-

complete or partial labels only during training. However,

partial label training methods make no assumptions about

the inference settings and thus cannot be easily extended to

the scenario where partial labels are available at test time.

We consider our line of work complementary to these ef-

forts as these are not mutually exclusive.

Inference with Extra Labels, Koh et al [25] introduces

Concept Bottleneck Models which incorporate intermedi-

ate concept labels as a bottleneck layer for the target label

classification. Similar to [26], this model assumes that the

concept labels are a fixed set. Our model goes further by re-

laxing the need for a fixed set and uses state embeddings in-

stead of a concept bottleneck layer to represent each concept

as known (positive or negative) or unknown. This represen-

tation enables C-Tran to leverage partial labels (concepts)

during training, and make our model compatible with any

known labels (concepts) during inference.

Transformers for Computer Vision Several recent works

have used Transformers in computer vision applications

[5, 9, 40, 16, 45]. Some of these models replace a signif-

icant part of the visual recognition pipeline with a trans-

former [16, 40, 5] while others use a transformer on top

of features computed by a convolutional neural network [9,

45]. Our model is architecturally similar to the latter, with

a focus on using arbitrary amounts of output labels as input

to the model.

6. Conclusion

We propose C-Tran, a novel and flexible deep learning

model for multi-label image classification. Our approach

is easy to implement and can effectively leverage an ar-

bitrary set of partial or extra labels during inference. C-

Tran learns sample-adaptive interactions through attention

and discovers how labels attend to different parts of an im-

age. We show the effectiveness of our approach in regular

multi-label classification and multi-label classification with

partially observed or extra labels. C-Tran outperforms state-

of-the-art methods in a wide range of scenarios. We further

provide a quantitative and qualitative analysis showing that

C-Tran obtains gains by explicitly modeling interactions be-

tween target labels and between image features and target

labels. Further work could extend C-Tran for hierarchical

scene categorization, and explore training strategies to make

C-Tran generalize to settings where some labels have never

been observed during training.
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