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Abstract

Despite the recent progress of generative adversarial

networks (GANs) at synthesizing photo-realistic images,

producing complex urban scenes remains a challenging

problem. Previous works break down scene generation into

two consecutive phases: unconditional semantic layout syn-

thesis and image synthesis conditioned on layouts. In this

work, we propose to condition layout generation as well for

higher semantic control: given a vector of class propor-

tions, we generate layouts with matching composition. To

this end, we introduce a conditional framework with novel

architecture designs and learning objectives, which effec-

tively accommodates class proportions to guide the scene

generation process. The proposed architecture also allows

partial layout editing with interesting applications. Thanks

to the semantic control, we can produce layouts close to the

real distribution, helping enhance the whole scene genera-

tion process. On different metrics and urban scene bench-

marks, our models outperform existing baselines. More-

over, we demonstrate the merit of our approach for data

augmentation: semantic segmenters trained on real layout-

image pairs along with additional ones generated by our

approach outperform models only trained on real pairs.

1. Introduction

Generative Adversarial Networks (GANs) [1, 8, 13, 21]

have become powerful tools to generate photo-realistic im-

ages based on a collection of examples. When trained on

real photo portraits in particular, they can produce stunning

results [14, 15]. However, for complex structured images

like urban scenes, they still struggle to produce satisfactory

results: not only do generated scenes exhibit various types

of artifacts, but they are also difficult to use for downstream

tasks. In automotive applications for instance, generating a

wide range of synthetic driving scenes to replace or comple-

ment limited amounts of real annotated data is expected to

help training better models in the future, for critical-safety

tasks such as object detection and segmentation. This is not
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Figure 1: Scene generation guided by semantic proportions.

The proposed approach, “Semantic Palette”, allows a tight control

of class proportions when generating semantic layouts and, condi-

tioned on the latter, photo-realistic scenes such as urban scenes.

yet the case, and our work is motivated by this goal.

Our target application here is image semantic segmen-

tation, the task of predicting semantic layouts, that is, a

class label (or a set of class probabilities) for each pixel of

a picture. State-of-the-art models being fully supervised,

their training requires scene examples with corresponding

semantic layouts. Hence, generating this type of data with

a GAN amounts to producing matching image-layout pairs.

To this end, recent works advocate decoupling the synthe-

sis process into two consecutive phases: first generating se-

mantic layouts with plausible object arrangements [2, 11],

then translating these layouts into realistic images [24, 33].

To improve the usability of such a pipeline, we mostly

focus here on the first layout generation step. Existing

works [2, 11] cast it as a standard generative process that

turns a random input code into a semantic map. While

simple to use, this approach offers no real control on the

modes of the output distribution [22], which is a limitation

for complex scenes. In contrast, we propose to control the

generation of layouts with a target distribution of semantic

classes in the scene. Depending on applications, this class

histogram can be manually defined, automatically derived

from a true one, or sampled from a suitable distribution.

To this end, we introduce a conditional layout GAN that

takes a class histogram (the semantic code or palette) as in-

put beside the standard random noise. As a result, our full

image-layout generation pipeline (Figure 1) offers a sim-

ple yet powerful control over the scene composition. This

ability brings benefits in various applications, ranging from
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real image editing to data augmentation for improved model

training of a downstream task.

Using a progressive GAN [13] as base architecture to

generate semantic layouts, we propose novel architecture

designs and learning objectives to achieve our goal. First,

we inject the semantic code throughout the progressive

pipeline, i.e., at multiple intermediate scales. To explicitly

enforce the targeted class distribution while avoiding degen-

erate soft class assignments, we propose: a semantically-

assisted activation (SAA) module along with two new learn-

ing objectives, as well as a novel residual conditional fusion

module to ease the progressive propagation of the semantic

target through the scales. Lastly, we introduce a variant of

the proposed framework that allows partial editing of sub-

regions in existing semantic layouts.

Our main experiments are conducted on different urban

scene datasets. Using suitable direct metrics, we first as-

sess the quality of the generated layouts and of the images

derived from them. We also assess thoroughly the merit of

our approach in the light of semantic segmentation down-

stream task. To this end, we train segmentation models on

synthesized (resp. real) data and measure their performance

on real (resp. synthesized) data, as a way to compare our

method with the baselines. We finally assess the ability of

several approaches to improve model training through aug-

mentation of a real-data training set. In all experiments, Se-

mantic Palette outperforms baselines and produces scenes

that follow better the distribution of real ones. More im-

portantly, for real-world applications, using it to extend real

datasets boosts performance in semantic segmentation.

In summary, our main contributions are:

• A novel layout generative model that allows control of

the distribution of semantic classes. This benefits both

the quality of the images that are subsequently gen-

erated and the practical use of these images. To fur-

ther enhance the quality of the generated scene-layout

pairs, our method allows end-to-end training of both

layout and image generators.

• A variant of our framework for partial editing of se-

mantic layouts. This further benefits downstream task

training and opens up interesting applications like se-

mantic editing of real images.

• Extensive evaluations on three different driving bench-

marks. The proposed framework significantly outper-

forms several baseline approaches.

2. Related work

Scene layout generation. SB-GAN [2] and PGAN-

CGAN [11] were the first GAN-based approaches proposed

for this task. The SB-GAN pipeline combines an uncon-

ditional model based on ProGAN [13] for generating the

semantic masks and GauGAN [24] for transforming these

masks into photo-realistic images. PGAN-CGAN [11] is

similar but uses Pix2PixHD [33] instead as the image gen-

erator. In the same spirit, [31] uses DCGAN [25] as the

layout generator and Pix2Pix [12] as the image generator.

Conditional generative adversarial network. Vanilla

GANs offer little control over the generation process. In

contrast, conditional GANs [22] (cGANs) are designed to

guide the generation with conditioning input features, that

is, target attributes of the generated data. Gradually deviat-

ing from the traditional GAN framework, alternative learn-

ing setups [23] and methods to better fuse the conditioning

features with the generation pipeline [6, 7, 19, 24] have been

proposed. An emerging trend is to infer some generator’s

parameters from the conditioning input, e.g., normalization

parameters [6, 7, 24], convolutional kernels [19], either uni-

formly [6, 7] or on class-specific regions [19, 24], to better

take into account the scene structure.

Image generation conditioned on semantic layout.

Pix2pix, a general-purpose image-to-image translation net-

work [12], was among the first to produce compelling re-

sults for this conditional generation task. Later works [19,

24, 33] have produced more realistic images at higher reso-

lution by using a multi-scale generator, adding a feature-

matching loss within the discriminator, or using instance

boundary map information. Recently, EdgeGAN [28] pro-

posed to generate structure and texture in parallel and blend

the two together thanks to an edge transfer module.

3. Proposed approach

The central goal of this work is to learn to generate plau-

sible semantic layouts (e.g., of urban scenes), conditioned

on given class proportions. We describe our network archi-

tecture and objective functions for conditional layout gen-

eration in Sections 3.1 and 3.2. Section 3.3 discusses the

image generation phase and how the complete pipeline with

both layout and image generation can be trained end-to-end.

3.1. Conditional layout generative network

We wish to build a generative model that produces new

layouts while controlling their semantic composition. The

proposed architecture builds upon ProGAN [13], with new

architecture designs and learning objectives to achieve our

goal. It is thus a cascade of convolutional sub-networks han-

dling information at multiple scales, and trained in a pro-

gressive way (Figure 2). At each scale, intermediate fea-

tures are mapped into soft semantic maps (one per class)

of the corresponding resolution via the TO MASK block.

Only at the active resolution, the soft semantic layout is

transformed through the FROM MASK block into input fea-

tures used for adversarial training. The largest-scale output

serves as the final generated outcome.

The network accepts as inputs not just a random noise
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Figure 2: Conditional synthesis of semantic layouts. Snapshot

at a certain resolution of the progressive generation (16×32 here).

H × W : two 3×3 convolutional layers with ReLU activations ap-

plied to feature maps of size H×W ; TO MASK : turns intermediate

features into soft semantic maps; FROM MASK : turns soft seman-

tic maps into input features for the discriminator; CONV : 1×1

convolutional layers with ReLU activation; “ up” and “down”: up-

and down-sampling by a factor 2.
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Figure 3: Semantically-assisted activation. In TO MASK mod-

ules (Figure 2), which produce soft semantic maps m from fea-

tures ϕ, channel softmax combined with semantic modulation

forces ω to comply with the target proportions. Spread and en-

tropy losses encourage the output mask m to retain these propor-

tions from ω.

vector but also a conditioning code specifying the target

class distribution, i.e., the proportion of image surface that

each class should occupy, for instance 50% of “sky”, 30%
of “road” and 20% of “pedestrian”. At intermediate scales,

we explicitly enforce conditioning constraints via a new

semantically-assisted activation (SAA) module operating

inside TO MASK blocks. To propagate the conditioning in-

formation from previous scales onto the next, we propose

to insert a residual conditional fusion between adjacent sub-

networks. We explain the technical details next.

Conditioning input. We provide our model with the nec-

essary information for conditional generation by concate-

nating an input noise vector z in R
Z (Z samples from stan-

dard Gaussian distribution) with a target normalized class

histogram t ∈ R
C
+, with

∑C

c=1 tc = 1 and C the number of

semantic classes. We also use this target explicitly through-

out the generation scales, as shown in the following.

Semantically-assisted activation. We focus here on the

design of the TO MASK module, which converts deep fea-

tures into soft semantic maps while respecting the pre-

scribed class distribution. A common choice is to use a 1×1
convolutional layer to map the number of channels of the

deep features to the number of semantic classes, followed

by a spatial softmax activation. We stand out from this ap-

proach by introducing SAA, which makes again explicit use

of the semantic code on top of the generation process. This

way, we expect to enforce the respect of the class propor-

tions in the generated maps. SAA (Figure 3) acts in three

steps upon the C-channel feature maps f ∈ R
C×H×W pro-

duced by the last convolutional layer, where H ×W is the

output resolution. First, a channel-wise spatial softmax is

applied to f to obtain a density map ρ in [0, 1]C×H×W

with:

ρc,i,j =
exp(fc,i,j)

∑

(k,ℓ)∈Ω exp(fc,k,ℓ)
, (1)

for each class c ∈ J1, CK and each pixel location (i, j) ∈
Ω = J1, HK× J1,W K. Its slice ρc,:,: is a normalized spatial

map for class c.
The next step is to use the semantic code to guide the out-

put layout toward the target class distribution. To this end,

the channels of the density map are weighted by their cor-

responding target proportions to define a new map ωc,i,j =
tc · ρc,i,j . This new weighted density verifies for each class

c,
∑

(i,j)∈Ω ωc,i,j = tc. Thus, each class receives a “bud-

get” amounting to its contribution in the semantic palette,

e.g., a class with the target proportion set to zero will not be

represented in the final scene.

Finally, the semantic soft map output m in [0, 1]C×H×W

is obtained by L1 normalization of ω, applied indepen-

dently at every spatial location,

mc,i,j =
ωc,i,j

∑

k∈J1,CK ωk,i,j

, (2)

which can be interpreted as defining at each pixel a prob-

ability distribution over all classes. As done classically,

the final semantic map is obtained at each pixel by select-

ing the label with maximum score, i.e., argmaxc mi,j,c =
argmaxc ωi,j,c. There is no guarantee that this hard label-

ing complies exactly with the target distribution, but it is

tightly guided by it, as experiments will confirm. SAA can

be seen as a mechanism that transports a well-proportioned

but spatially-uniform semantic map (with slice c set to tc
everywhere) into a plausible spatial arrangement of the se-

mantic content m.1

In Section 3.2, we will detail the two losses attached to

SAA at train time, which make use of this formalization to

help m better follow the target semantic code.

Residual conditional fusion. With the SAA design

above, the output m at an intermediate scale is already con-

1More formally, SAA can be interpreted as the first iteration of a

Sinkhorn-type algorithm [27] in optimal transport, see Supp. Material.
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ditioned by the semantic code. Such conditioned masks,

though at lower resolutions, follow the target semantic code

with realistic scene layout. It thus makes sense to pass those

signals through the generation process of higher resolutions.

This way, the TO MASK layers are still of use when mov-

ing to higher resolutions, and having access to intermediate

masks produced with semantic assistance can help the net-

work better comply with the target proportions.

To that end, we propose to include a residual conditional

fusion block before each upsampling layer (in blue in Fig-

ure 2). Via a 1×1 convolutional layer, the soft mask output

by the current SAA module is mapped back to features of

the same size as original features ϕ and added to them.

3.2. Learning objectives for layout generation

We train the conditional layout synthesis network with

two objectives in mind: (1) a conditional objective to help

generated layouts respect the target semantic proportions

and (2) an adversarial objective to ensure realism. Both

could be handled simultaneously by a conditional adversar-

ial loss [22]. Here, we advocate a method that decouples

the two, improving the layout quality by letting the discrim-

inator focus on realism, as experiments will confirm.

Conditional objective. The conditional layout generator

G maps noise and target proportions pairs (z, t) to semantic

probability masks m. To make m follow as well as possible

the target distribution, a matching loss could be used, e.g.,

KL-divergence between the targeted and generated class

distributions. But such a direct objective requires the non-

differentiable counting of final max-score labels. While

spatial aggregation of soft class maps, 1
HW

∑

i,j mc,i,j ,

is a natural proxy for these label frequencies (coinciding

with them in case of one-hot maps), its use can lead to

undesirable solutions. For instance, a class could well be

completely absent from the final layout (never being max-

scoring at any location), while its soft map average matches

exactly a non-zero target probability.2 To this end, we in-

troduce an alternative method which makes use of the pro-

posed semantically-assisted activation.

Our novel conditional training loss has two parts: one to

favor a peaky class distribution at each pixel (soft maps m

close to one-hot), and one to favor an even spatial semantic

coverage (uniform spread of activations in ω over pixels).

Intuitively, let the semantic palette be paint of different col-

ors in various quantities. A sufficient condition to respect

proportions from the palette in the final painting is to not

mix colors too much in one spot (only dominant colors will

be seen) while having all the paint from the palette evenly

covering the frame (no accumulation or empty spot). The

first part is translated into a loss that penalizes pixel-wise

2Details on the direct matching loss objective can be found in the Sup-

plementary Material.

entropy of the soft masks m generated from (z, t) pairs:

LENT =
1

HW
E(z, t)

[

∑

(i,j)∈Ω

ei,j

]

, (3)

where ei,j = −
∑

c∈J1,CK mc,i,j ln(mc,i,j). The second

part is a spread loss on the weighted density map ω.

It encourages its activations to spread evenly across the

image (hence to be close to 1
H W

at each pixel since
∑

c,i,j ωc,i,j = 1):

LSPR =
1

HW
E(z,t)

[

∑

(i,j)∈Ω

si,j

]

, (4)

where si,j = (1 − HW
∑

c∈J1,CK ωc,i,j)
2 . Intuitively, ω

defines a joint distribution over channels and pixel locations

whose marginal over channels is defined by t. The spread

loss encourages the marginal over pixel locations to become

uniform. This way, pixels should contribute evenly to the

output semantic proportions.

The proposed conditional loss finally reads LCOND =
LENT + LSPR. Taking advantage of the progressive struc-

ture of the generator, supervision via LCOND is possible

at each resolution. The simultaneous action of SAA and

of the two losses encourages the generated layouts to re-

spect the target semantic code. Conditional to a palette

t, if LSPR is low, in average (over z), each spatial loca-

tion receives an overall ω contribution close to (HW )−1,

hence m ≈ HWω. We get: Ez[
∑

i,j mc,i,j |t] ≈
HWEz[

∑

i,j ωc,i,j |t] = HW tc since
∑

i,j ωc,i,j = tc by

construction. Hence, the proportions of the generated soft

maps are close to the target palette in average. If LENT is

low as well, these generated soft maps will be, in addition,

close to one-hot distributions at each pixel, and this aver-

age compliance with the target palette extends from the soft

maps to the final layouts.

Adversarial objective. We train our generator to pro-

duce realistic layouts by trying to make it fool a discrimi-

nator which is jointly trained to distinguish real and gener-

ated layouts. We use the Improved WGAN loss [9] as the

adversarial objective. Note however that real layouts are

hard masks (one-hot) while generated ones are soft (even if

LENT promotes, to some extent, layouts to be close to one-

hot). This discrepancy may harm the training as the gener-

ator will put lots of efforts trying to output discrete masks

as well. The solution adopted by SB-GAN [2] is to apply a

Gumbel-softmax [17] function to the generated soft masks.

At each spatial location during forward pass, it samples one

semantic class out of the multinomial distribution given by

the semantic probabilities. During the backward pass, it be-

haves as a differentiable approximator of this operator.

In practice, we observed that this solution results in noisy

sampled masks and using an approximator is not ideal for

efficiency of training. We propose instead to tackle this is-

sue the other way around, i.e., by softening the real layouts.
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We apply a Gaussian filter to them, with a variance adapted

to the image resolution. To ensure that the prevailing class

at each pixel location remains the true one, we use soft se-

mantic masks which are a weighted sum of blurred masks

and original ones. We will show the merit of our soft-layout

approach compared to Gumbel-softmax in the experiments.

3.3. Image generation and endtoend training

We want to take advantage of our controllable layout

generator in a complete pipeline where photo-realistic im-

ages are generated from produced layouts. To this end, we

use GauGAN [24], a state-of-the-art layout-to-image trans-

lation network.3 The layout generator and the image gener-

ator are first trained individually using the default training

procedure presented respectively in ProGAN [13] and Gau-

GAN [24]. Both can then be fine-tuned in an end-to-end

fashion. By doing this, the layout generator benefits from

additional supervision, while the image generator grows ac-

customed to being fed synthetic layouts which, in turn, im-

proves the overall image quality. We use the end-to-end

setup from SB-GAN [2] where an additional discriminator

is trained to tell apart real images from synthetic ones gen-

erated from synthetic layouts.

4. Semantic Palette in action

4.1. Generating semantic codes

SB-GAN [2] directly maps noise vectors to layout-image

pairs, whereas our conditional model also requires target se-

mantic codes in inputs. To use it for systematic data gener-

ation, we thus need a means to sample suitable semantic

codes: To this end, we propose a palette generator in the

form of a Gaussian mixture model (GMM) fitted to a set

of true semantic layouts, from which the GMM can cap-

ture multiple meaningful modes. Vectors sampled from this

GMM are then projected onto the probability C−simplex so

as to amount to proper semantic codes. Because the exact

projection is slow to compute, in practice, we simply resort

to the clipping of the sampled vectors to [0, 1]C followed by

L1 normalization.

4.2. Partial editing of semantic layouts

We extend our conditional layout generation method to

layout editing, with the aim to plausibly modify an input

“real” layout by simply manipulating its semantic palette.

To this end, the generator is now conditioned on both an in-

put layout and the target proportions. Its output is a partially

edited version of the input layout guided by the target pro-

portions. To condition the generation on this additional in-

3The choice of the base generative framework is orthogonal to our con-

tributions and any improvement on it should increase the performance of

our approach and the considered baselines.

Generated Mask (1 + C) x H x W

Input Mask C x H x W

SPADE
16 X 32

bg

*

+

TO MASK

Output Mask C x H x W

+

fg

Real Mask C x H x W

CONV
up

+Noise Cond Input Mask

PART 4 X 8

PART 8 X 16

PART 32 X 64

PART 16 X 32

Figure 4: Partial layout editing. SPADE H × W replaces H × W

from Figure 2. It is a SPADE [24] residual fusion block made of

two convolutional layers with conditional batchnorm and ReLU

activations. The generated partial layout is merged with the input

one thanks to the extra background class (‘bg’).

put, we replace the ProGAN [13] convolutional blocks with

the SPADE residual blocks from GauGAN [24].

Partial editing combined with conditional generation is a

powerful tool as it facilitates data augmentation with higher

fidelity to real data. It also provides controlled image edit-

ing capabilities as we will see in the Experiments section.

More specifically, we consider the task of replacing an

arbitrary area of the input layout. During training, we ran-

domly choose a rectangular patch to be replaced. The cho-

sen patch is marked by setting all the class probabilities

to 1/C at each pixel, while keeping the rest of the in-

put layout as it is (C is the number of semantic classes).

The “cropped” input mask is then passed to the generator

through the SPADE [24] residual blocks, see Figure 4. The

generator synthesizes an edited version of the input mask

with the “cropped” part filled following the given target pro-

portions for the crop. To this end, the generated mask has an

additional background class whose proportion is also set by

the semantic code so as to fill the “uncropped” part. We

produce a coherent output mask by relying on this extra

class to merge smoothly the generated mask to the input

one. Specifically, the final output is computed as the sum

of the generated mask (without background) and the input

mask weighted by the background probabilities. The con-

ditional loss LCOND is applied to the generated mask while

the adversarial loss is used on the output mask.

5. Experiments

Datasets. Evaluation is done on three urban datasets:

– Cityscapes [5] is composed of 2,975 training and 500 val-

idation scenes taken in German suburbs. All images are

annotated with 33 semantic classes.

– Cityscapes-25k [29] extends Cityscapes with 19,998 ex-

tra training scenes annotated by a pretrained state-of-the-art

model. Note that only 19 classes out of the 35 original ones

are effectively annotated in these additional 20K scenes.

– Indian Driving Dataset (IDD) [30] contains 6,993 training
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Method
Layout Image GAN-test GAN-train

KL ↓ FID ↓ mIoU∗ mIoU mIoU∗ mIoU

Baseline 1 1.17 69.2 33.7 42.8 29.6 38.5

Baseline 2 0.32 69.0 35.3 46.9 30.2 39.4

Sem. Palette 0.07 60.7 34.6 45.7 30.6 40.1

Sem. Palette e2e 0.08 51.0 36.8 48.6 33.3 44.5

Oracle - 28.2 - - 36.9 48.1

Table 1: Conditional layout synthesis on Cityscapes. “Oracle”:

real data for FID and for training segmentator in GAN-train met-

ric; “e2e”: end-to-end fine-tuning; “↓”: smaller is better.

and 981 validation scenes, with 35 semantic classes.

Metrics. We use the following metrics:

– Kullback–Leibler (KL) divergence between target class

proportions and generated ones: It measures how well the

generator respects the semantic codes.

– Fréchet Segmentation Distance (FSD) [3]: It assesses

how the overall statistics of real and synthetic layouts differ;

We use real layouts from the training set.

– Fréchet Inception Distance (FID) [10]: It is an approxi-

mate measure of generated image quality; We compute FID

w.r.t. real images from the validation set.

– GAN-test [26]: We use a segmenter pretrained on real

data to yield predictions for generated images. We then re-

port the mean Intersection-over-Union both on standard of-

ficial classes (mIoU) and on all classes (mIoU∗).

– GAN-train [26], the opposite of GAN-test: the segmenter

is trained on generated data and tested on the real validation

set. Though all metrics are interesting, GAN-train better

assesses the overall utility of the generated data.

Implementation details. Generators are trained using

ADAM [16]. For segmentation, we train a DeeplabV3 [4]

model with Stochastic Gradient Descent, 0.01 initial lr, 0.9
momentum, 5 × 10−4 weight decay, in 300 epochs with

batch-size 16. In all experiments, we generate layouts and

images up to resolution 128×256. Please see the Supple-

mentary Material for details of the palette generator.

5.1. Conditional layout generation

Comparison to conditional baselines. We compare Se-

mantic Palette with two straightforward conditional layout

generation baselines, baseline 1 and baseline 2. Both accept

semantic code as input. To get layout predictions respecting

target class proportions, baseline 1 directly penalizes unsat-

isfying outputs via a matching loss, and baseline 2 leverages

a conditional discriminator similar to cGAN [22]. Note that

the same fixed pretrained image synthesizer is used for all.

Results are reported in Table 1 on the Cityscapes dataset

using the 4 metrics previously introduced. The direct

matching method, baseline 1, fails to reconstruct the seman-

tic code: the KL value of 1.17 is nearly as bad as of ran-

dom guesses made on the ground-truth semantic distribu-

tion (1.25). Though better on KL, baseline 2 produces im-

ages with FID comparable to baseline 1. Semantic Palette
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(b) Diverse samples from one semantic code

Figure 5: Conditional layout-and-scene generation. (a) For

two semantic codes (left-/right-most) and interpolations between

them; Class histograms in generated scenes (solid) closely follow

target ones (dashed). (b) Two examples (top/bottom) of various

layout-scene pairs sampled from the same semantic code (left).

improves on all metrics. Especially, we observe significant

drops in KL and FID values, meaning that our conditional

framework not only better respects the input semantic code,

but also produces more realistic layouts.4 While we see a

slight drop compared to baseline 2 on GAN-test, more im-

portantly, the GAN-train performance improves along with

KL and FID. The best performance is reached for Semantic

Palettee2e after fine-tuning the layout generator and the im-

age generator end-to-end. By doing this, the image genera-

tor grows accustomed to synthetic layouts while the layout

generator benefits from additional supervision. Figure 5-(a)

illustrates some qualitative results. Our layout generator

clearly follows input semantic codes. We provide additional

ablation studies on architecture choices in Section 5.3

Comparison to unconditional baselines. We follow [2]

and report performance on both Cityscapes and Cityscapes-

25k datasets. We additionally evaluate our method on the

IDD dataset, to account for a very different urban landscape.

On Cityscapes-25k, missing labels in the 20K extra images

deteriorate performance of the 16 missing classes, resulting

in lower mIoU∗ as compared to Cityscapes-trained models.

We compare Semantic Palette to unconditional baselines

on image-layout pairs generation (Table 2). We note that

SB-GAN [2] does better than PGAN-CGAN [11] thanks

to the improved image generator. We train these base-

4We note that, because the same fixed image synthesizer is used in all

experiments, a low FID score is a proxy indicator of layout quality. Indeed,

the image synthesizer is pretrained on real layout-scene pairs; the model is

thus used to real layout inputs. The closer generated layouts are to the real

distribution, the better the synthesized images are.
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(a) Cityscapes (b) Cityscapes-25k (c) IDD

Method
Layout Image GAN-test GAN-train Layout Image GAN-test GAN-train Layout Image GAN-test GAN-train

FSD ↓ FID ↓ mIoU∗ mIoU mIoU∗ mIoU FSD ↓ FID ↓ mIoU∗ mIoU mIoU∗ mIoU FSD ↓ FID ↓ mIoU∗ mIoU mIoU∗ mIoU

PCGAN [11] 63.8 85.7 30.4 39.0 28.2 35.7 161.7 62.6 20.3 34.9 16.7 31.7 104.5 53.7 30.8 39.7 25.0 32.4

SB-GAN [2] 63.8 71.0 31.8 41.2 28.8 37.2 161.7 59.9 20.7 36.8 17.6 34.1 104.5 46.7 32.1 41.5 26.0 33.7

Sem. Palette 25.3 60.7 34.6 45.7 30.6 40.1 37.8 56.3 26.8 46.3 22.4 43.7 60.0 43.5 31.1 40.2 27.0 35.0

SB-GAN e2e [2] 20.4 61.8 34.5 44.7 29.6 37.0 148.5 55.1 28.1 42.9 24.3 41.8 116.0 44.8 31.7 41.0 27.4 35.6

Sem. Palette e2e 11.8 51.0 36.8 48.6 33.3 44.5 61.3 52.8 27.1 43.9 24.7 45.1 40.2 43.2 32.3 41.7 27.7 35.9

Oracle - 28.2 - - 36.9 48.1 - 30.9 - - 36.5 53.0 - 26.3 - - 33.8 43.8

Table 2: Comparison to unconditional GANs. Same notations as in Table 1.

(a) Cityscapes (b) Cityscapes-25k (c) IDD

Data Method mIoU∗ mIoU mIoU∗ mIoU mIoU∗ mIoU

Real Baseline 36.9 48.1 36.5 53.0 33.8 43.8

Real + Semi-Syn GauGAN [24] 37.2 ↑0.3 48.2 ↑0.1 43.0 ↑6.5 58.0 ↑5.0 33.6 ↓0.2 43.5 ↓0.3

Real + Syn

SB-GAN [2] 34.6 ↓2.3 45.5 ↓2.6 35.5 ↓1.0 51.4 ↓1.6 33.5 ↓0.3 43.4 ↓0.4

Sem. Palette 38.0 ↑1.1 49.4 ↑1.3 36.9 ↑0.4 54.4 ↑1.4 33.8− 43.8−

Sem. Palette (DA) 38.6 ↑1.7 51.6 ↑3.5 38.6 ↑2.1 57.3 ↑4.3 34.5 ↑0.7 44.7 ↑0.9

Sem. Palette (Part.) 40.7 ↑3.8 51.9 ↑3.8 42.4 ↑5.9 59.1 ↑6.1 35.6 ↑1.8 46.1 ↑2.3

Sem. Palette (Part. + DA) 40.7 ↑3.8 52.6 ↑4.5 42.5 ↑6.0 60.5 ↑7.5 35.3 ↑1.5 45.8 ↑2.0

Table 3: Data-augmentation grouped by training data regime, tested on real data. “DA”: domain adaptation; “Part.”: partial editing.

lines from scratch, nonetheless, results for SB-GAN [2] on

Cityscapes are in line with the ones from the original paper.

Our method outperforms the baselines in both diversity

of semantic content and image quality with a clear gap in

FSD, FID and GAN-train. We facilitate the layout synthe-

sis task by guiding explicitly the generation with semantic

proportions, partially lifting the burden of figuring out the

scene composition. We show pairs synthesized from a sin-

gle target histogram on IDD in Figure 5-(b). Though shar-

ing the same semantic palette, diverse scenes are produced.

5.2. Data augmentation

Once trained, the image and layout generators can be

used to sample new pairs, hence augmenting the real train-

ing data. Different from standard data augmentation tech-

niques, which only modify existing data points, synthetic

models create new data points, which allows not only alter-

ing the visual appearance in the image space, but also ap-

plying structural changes in the layout space. We consider

two different data augmentation setups: (i) “Semi-Syn”,

which only relies on the pretrained image generator to syn-

thesize images from ground-truth layouts, and (ii) “Syn”,

which uses both generators to synthesize new data pairs.

Table 3 shows test performance of segmenters trained only

on “Real”, “Real + Semi-Syn”, or “’Real + Syn” data.

Real + Semi-Syn. A pretrained GauGAN [24] is used as

image generator. On Cityscapes and IDD datasets, we only

observe marginal changes in performance compared to the

baseline. However, when having more layouts to feed the

image generator in Cityscapes-25k, the segmenter trained

on augmented data significantly outperforms the baseline.

We conjecture that there is a trade-off between the quality of

synthesized images and the diversity of semantic layouts: if

(a) GT (b) Cropped regions (c) Generated regions (d) Merged layout

Figure 6: Partial editing of layouts. The procedure consists in

cropping ground-truth layouts and then synthesizing new objects

within the cropped area, guided by the initial semantic proportions.

layouts cannot provide enough diversity to counter-balance

the loss of image quality, this may harm the performance.

Real + Syn. To further highlight the benefit of layout

generators, we do not use the end-to-end models. The same

pretrained GauGAN is used as in the “Real + Semi-Syn”

setup. On the three benchmarks, with SB-GAN [2] as lay-

out generator, we observe drops in mIoU as compared to the

baseline. The unconditional model shows its limitations in

the data augmentation context where it fails to complement

real data with more diverse samples, resulting in negative

results. In contrast, Semantic Palette consistently improves

upon baselines, except for IDD dataset where the perfor-

mance is unchanged. These results demonstrate the merits

of our pipeline for data augmentation.

We propose several variants of our method to further

push its performance. First, to alleviate distribution gaps

between synthetic and real data, we adopt AdvEnt [32], a

domain adaptation technique for semantic segmentation.5

This strategy is used to ensure synthetic and real supervi-

sions are consistent. This domain adaptation (DA) tech-

nique boosts further the performance of our approach (Ta-

ble 3). Second, we test a variant using the partial layout edit-

ing method presented in Section 4.2 and illustrated in Fig-

5See the Supplementary Material for implementation details.
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Residual

Fusion

Multi

Scale

Soft GT

Masks

Palette

Gen.

Layout Image

KL ↓ FSD ↓ FID ↓

0.32 33.9 70.6

X 0.13 23.4 65.5

X X 0.11 37.1 63.3

X X X 0.03 24.1 64.3

X X X X 0.07 25.3 60.7

Table 4: Semantic Palette ablation on Cityscapes. First row:

model with only SAA; In models with “Soft GT Masks” un-

marked, Gumbel-softmax is used; If “Palette Gen.” is unmarked,

ground-truth codes are used instead of generated ones.

ure 6. The ensuing performance (Table 3) demonstrates the

clear benefit of leveraging extra real information in the gen-

eration process, i.e., partial areas and semantic proportions.

A straightforward combination of the two proposed strate-

gies achieves the best performance on two benchmarks.

In the Supplementary Material, we provide further re-

sults and discuss the additional use of standard data aug-

mentation during training.

5.3. Ablation studies

We report the results of an ablation study in Table 4. Us-

ing residual fusion significantly decreases KL, FSD, and

FID values, highlighting the benefit of leveraging lower-

scale information. We then achieve further improvements

in KL and FID with multi-scale training. Using a strategy

based on soft ground-truth masks, as detailed in Section 3.2,

instead of Gumbel-softmax improves KL score by a large

margin while preserving comparable FID scores. Our final

model using the palette generator presented in Section 4.1

achieves the best FID, with a slightly worse KL score com-

pared to the model using ground-truth semantic codes.

5.4. Face editing

We showcase the new editing capabilities offered by the

combination of conditional and partial layout generation

on face images, using the CelebAMask-HQ dataset [13,

18, 20]. For the image synthesis, we use a pretrained

SEAN [34] model, an upgrade of GauGAN [24] where

one can fix independently the style of individual semantic

classes. We use it to maintain the content while editing the

semantic structure. Our method, illustrated in Figure 7, al-

lows one to adjust semantic attributes by a chosen amount

with realistic details. This is achieved by simply modifying

class proportions, avoiding the tedious task of direct man-

ual editing of the original face layout. For this task, we do

not crop the original layouts but allocate some budget for

semantic additions. When target content is already present

in the original layout, the generator will be inclined to repli-

cate the original content as it fully satisfies both conditional

and adversarial objectives; e.g., to increase the amount of

hair, it will copy the existing hair as long as the proportion

matches since it is the definition of realism for the discrim-

inator. To counter this undesired behaviour, we introduce a

(a) Hair manipulation.

0

0,1

0,2

0,3

target
generated

Ground-truth Interpolation to target proportions

(b) Diverse semantic attributes manipulation.

0

0,1

0,2

0,3

target
generated

0

0,02

0,04

0,06

0

0,005

0,01

Ground-truth Generated Ground-truth Generated Ground-truth Generated

Figure 7: Application of Semantic Palette to face editing at res-

olution 256×256. In (a), we illustrate the fine-controlled editing

of layouts by gradually increasing the budget for the hair. Edits

are convincing both in the layout and image spaces. Thanks to the

novelty loss, there is little overlap between original and additional

hair. In (b), we show the editing of diverse semantic attributes.

Although we have a unique layout generator, we can perform very

different edits. Moreover, one can play with latent codes to gener-

ate various edits for the same proportion of semantic attributes.

novelty loss that encourages edits to be different from orig-

inal semantic classes (details in Supplementary Material).

6. Conclusion

We have proposed the Semantic Palette, a new frame-

work for scene generation, and editing, guided by seman-

tic proportions. Using novel architecture designs and learn-

ing objectives – semantically assisted activation and resid-

ual conditional fusion coupled with novel conditional losses

–, it generates plausible scene layouts with class propor-

tions close to target ones, which then translate into real-

istic images. Experiments assess the superior quality of

the generated layout-image pairs as well as their utility for

downstream-task training: used in particular to augment

original real-data set, they deliver performance gain in se-

mantic segmentation.
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