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Figure 1: Discretization of a mesh by a point cloud. Left: MongeNet discretization. Right: Classical random uniform

discretization. The resulting Voronoi Tessellations spawn on the triangles of the mesh are shown in red.

Abstract

Recent advances in geometric deep-learning introduce

complex computational challenges for evaluating the dis-

tance between meshes. From a mesh model, point clouds

are necessary along with a robust distance metric to as-

sess surface quality or as part of the loss function for train-

ing models. Current methods often rely on a uniform ran-

dom mesh discretization, which yields irregular sampling

and noisy distance estimation. In this paper we introduce

MongeNet, a fast and optimal transport based sampler that

allows for an accurate discretization of a mesh with bet-

ter approximation properties. We compare our method to

the ubiquitous random uniform sampling and show that the

approximation error is almost half with a very small com-

putational overhead.

1. Introduction

Recently, computer vision researchers have demon-

strated an increasing interest in developing deep learning

models for 3D data understanding [42, 5]. As successful

applications of those models, we can mention single view

object shape reconstruction [45, 14], shape and pose estima-

tion [22], point cloud completion and approximation [16],

and brain cortical surface reconstruction [38].

A ubiquitous and important component of these 3D deep

learning models is the computation of distances between

the predicted and ground-truth meshes either for loss com-

putation during training or quality metric calculations for

evaluation. In essence, the mainstream approach relies on

sampling point clouds from any given meshes to be able

to compute point-based distances such as the Chamfer dis-

tance [3] or earth mover’s distance [37]. While there ex-

ist in-depth discussions about these distance metrics in the

literature [13, 27], the mesh sampling technique itself re-

mains uncharted, where the uniform sampling approach is

widely adopted by most of the 3D deep learning models

[45, 31, 14]. This approach is computationally efficient

and is the only mesh sampling method available in exist-

ing 3D deep learning libraries like PyTorch3D [35] and

Kaolin [19]. However, it does not approximate the under-

lying surface accurately since it produces a clustering of

points (clamping) along the surface resulting in large under-

sampled areas and spurious artifacts for flat surfaces. For

instance, Figure 1 shows that the Voronoi Tessellation for

uniform sampled points is distributed irregularly, while Fig-

ure 2 highlights sampling artifacts in the tail and wings of

an airplane from ShapeNet.

In this paper, we revisit the mesh sampling problem and

propose a novel algorithm to sample point clouds from tri-

angular meshes. We formulate this problem as an optimal

transport problem between simplexes and discrete Dirac

measures to compute the optimal solution. Due to the com-
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Figure 2: Plane of the ShapeNet dataset sampled with 5k points. Left: Point cloud produced by MongeNet. Right: Point

cloud produced by the random uniform sampler. Note the clamping pattern across the mesh produced by the random uniform

sampling approach.

putational challenge of this algorithm, we train a neural net-

work, named MongeNet, to predict its solution efficiently.

As such, MongeNet can be adopted as a mesh sampler

during training or testing of 3D deep learning models pro-

viding a better representation of the underlying mesh. As

shown in Figure 1, MongeNet sampled points result in uni-

form Voronoi cell areas which better approximate the under-

lying mesh surfaces without producing sampling artifacts

(also exemplified in Figure 2).

To evaluate our approach, we first compare the proposed

sampling technique to existing methods, especially those

within the computer graphics community. We show that

our sampling scheme better approximates triangles for a re-

duced number of sampled points. Then, we evaluate the

usefulness of MongeNet on 3D deep learning tasks as a

mesh approximator to input point clouds using the state-

of-the-art Point2Mesh model [16]. To conduct an in-depth

analysis of our results, we detail why our method is per-

forming better in the computation of the distance between

two point clouds stemming from the same object surface.

In all tasks, the proposed approach is more robust, reliable,

and better approximates the target surface when compared

to the widely used uniform mesh sampling technique. We

demonstrate a significant reduction in approximation error

by a factor of 1.89 for results computed on the ShapeNet

dataset.

2. Related work

Sampling theory has been thoroughly studied for com-

puter graphic applications [15, 40, 28, 21], especially for

rendering and geometry processing algorithms that rely on

Monte-Carlo simulation. Uniform random sampling is sub-

ject to clamping, resulting in approximation error and a poor

convergence property. Several improvements over the basic

uniform sampling technique have been proposed; these rely

on techniques that allow the ability to enforce an even dis-

tribution of the samples. Poisson disk samplers [4] reject

points that are too close to an existing sample, thereby en-

forcing a minimal distance between points. Jittering meth-

ods [8, 7] use a divide and conquer approach to subdivide

the sampling space into even-sized strata and then draw a

sample in each. Quasi-random sequences [41, 33] are de-

terministic sequences that result in a good distribution of

the samples.

All of these samplers are very efficient, allowing the abil-

ity to sample hundreds of thousands of points within sec-

onds, and they benefit from good asymptotic properties.

However, as will be described in Section 4.1, they do not

provide an optimal approximation property when the num-

ber of samples is limited. This limited number of samples

is typical in numerous geometric deep learning applications

where less than a hundred points are sampled per triangle.

Sampling a mesh using a point cloud has recently

been proposed with elegant computational geometry algo-

rithms [30, 47, 46], generalizing the euclidean Centroidal

Voronoi Tessellation (CVT) for surfaces. However, the best

approaches have a time complexity in O(n2 log n) which

remain computationally non-affordable for computer vision

applications. Training a deep learning model requires ex-

tensive use of sampling, and faster methods are needed. In-

deed for a large number of applications [45, 17, 14], this

sampling is performed online and at each training step when

a new mesh is predicted by the neural network.

To circumvent all the previously described impediments,
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Figure 3: Two point clouds with 3K points drawn with the BNLD [33] quasi-random sequence for two different triangulations

describing the same 3D model. One would expect to have a very close distance between the point clouds, however, due to

the deterministic nature of the sampler, some artefactual patterns appear.

we propose MongeNet, a new computationally efficient

sampling method (0.32 sec for sampling 1 million points

on a mesh with 250K faces), while having good approxima-

tion properties in the sense of the optimal transport distance

between the generated point cloud and the associated mesh.

Related to our work, [24] propose a point cloud subsam-

pling technique that selects the most relevant points of an

input point cloud according to a given task, whereas [27]

propose a technique to complete sparse point clouds. Our

technique is different since we propose to produce a more

accurate and efficient point cloud estimate from a continu-

ous object like a triangular mesh.

3. Methods

The quality of mesh sampling can be grasped visually:

given a mesh, one expects that a generated point cloud

should be distributed evenly over the mesh, describing its

geometry accurately as illustrated in Figure 2, and uniform

random sampling does not meet that expectation. Our pro-

posed sampling is based on optimal transport: given a set

of points, how to optimize their positions to minimize the

quantity of energy needed to spread their masses on the

mesh. Or less formally, given a uniform density of popula-

tion, how to optimally place click-and-collect points to min-

imize the overall travel time. We coin our neural network

MongeNet in tribute to the mathematician Gaspard Monge

and his innovative work on optimal transport.

3.1. The sampling problem

To evaluate the distance between two objects, a natural

framework is to use an optimal transport distance [44, 39,

34], while representing the mesh objects and point clouds

as probability measures. Given a transportation cost c, the

distance between two probability measures µ and ν defined

on X (resp. Y ) is the solution of the following minimization

problem,

min
γ∈Π(ν,µ)

∫

X×Y

c(x, y)dγ(x, y), (1)

where Π(ν, µ) is the set of couplings of (µ, ν).

In order to consider this type of distance, one has to cast

the object of interest into probability measures. For a tri-

angular mesh T of simplexes (ti)i=1···m one can consider

the continuous measure µc carried by a union of simplexes

which is defined for any Borel set B ⊆ R
3 as,

µT
c (B) =

1

|T |
∑

ti∈T

∫

B∩ti

dH2(x), (2)

with |T | the total area of the mesh and H2 the 2-dimensional

Hausdorff measure. For discrete point clouds with points

(xi)i=1···n the discrete measure µd reads as a sum of n equi-

weighted Dirac masses with mass 1
n

,

µT
d =

1

n

∑

ti∈T

ai∑

j=1

δxj
, with xj ∼ U(ti), (3)

where ai is proportional to the area of the i-th triangle ti
with

∑

i ai = n and where U(ti) is the uniform distribu-

tion on simplex ti. Note that computing an optimal trans-

port distance between two continuous objects is practically

intractable for our applications since it requires continuous

probability density [2, 32].

To solve this problem, discretization of a continuous

mesh is performed, then, with these point cloud discretiza-

tions one can compute a fast distance. More specifically,

the number of sampled points per face is drawn according

to a multinomial distribution parameterized by the number

of queried points n. The points on the face are drawn using

the square-root parametrization [43, 23], which given the

triangle ti = (V 1
i , V

2
i , V

3
i ) reads as,

p = (1−√
u1)V

1
i +

√
uiu2V

2
i + (1− u2)

√
u1V

3
i , (4)

where p ∈ R
3 is a sampled point on the triangle ti and

u1, u2 ∼ U([0, 1]). Providing such a discretization of the

triangular mesh allows the use of fast metrics such as the

Chamfer distance (CD), earth mover’s distance (EMD), and

Hausdorff distance. The common issue of this technique

is that one has to control the discretization error stemming

from converting a continuous measure to a discrete one. For

two meshes T 1 and T 2, the distance between the two point
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clouds can be used as a proxy for the distance between the

two corresponding meshes. Indeed, the triangle inequality

for any Wasserstein metrics W yields,

W (µT 1

c , µT 2

c ) ≤
W (µT 1

c , µT 1

d ) +W (µT 2

c , µT 2

d )
︸ ︷︷ ︸

discretization errors

+W (µT 1

d , µT 2

d ). (5)

In this paper, we propose to reduce the discretization

error with our new sampling technique to better represent

continuous objects with point clouds. Notwithstanding this

property, we want to bring the reader’s attention towards the

re-meshing invariance of the proposed method. From (5),

suppose that T 1 and T 2 are two triangulation instances from

the same mesh, obtained with edge splitting or re-meshing.

The distance between the two continuous objects is null and

one would like the discretized form of this distance to be

null as well. As illustrated in Figure 3, sampled point clouds

issued from deterministic quasi-random sequences [33] can

produce distinctive results. We observed that for very struc-

tured meshes, interrelation between points and artefactual

patterns could appear, further reducing the accuracy of the

estimated distance between them.

3.2. MongeNet

MongeNet is a model intended to replace the uniform

sampling technique described in Equation (4): given the

coordinates of a triangle (2-simplex) ti = (V 1
i , V

2
i , V

3
i )

and a number of sampling points ℓ, one generates a random

sequence Sk of points lying on ti. MongeNet is trained

to minimize the 2-Wasserstein distance (optimal transport

distance (1) for the squared euclidean metric) between the

measures carried by uniform Dirac masses µ(Sk) with po-

sitions sk and the continuous measure µ(ti) carried by the

simplex ti. Without loss of generality, MongeNet approxi-

mates the solution of,

argmin
(sk)k=1···ℓ∈Rℓ×3

W 2
2 (µ(ti), µ(Sk)), (6)

with W2 the 2-Wasserstein distance. Such a problem falls

in the semi-discrete optimal transport framework. In this

formalism, one can compute the optimal transport distance

solving a convex optimization problem [29, 10, 26]. This

problem relies on a powerful geometrical tool, the Laguerre

Tesselation or power-diagram, corresponding to a weighted

version of the Voronoi tessellation. To find a sampling with

good quantization noise power [26, 12] there exist iterative

algorithms [29]. The resulting point cloud on a triangle is a

Centroidal Voronoi Tessellation (CVT) such that each Dirac

mass is placed exactly on the center of mass of its Voronoi

cell [1]. Solving this problem is time consuming and com-

putationally too expensive for most applications. Instead,

we propose to learn the optimal points position using a deep

neural network so that a point cloud with a good approxima-

tion property can be generated within a few centiseconds.

Such an optimal point sampling learned by MongeNet is

displayed in Figure 1 and 2.

Network Training. MongeNet is a feed-forward neural

network denoted as fθ, and parameterized by its learnable

parameter θ. It takes as input a triangle t, a discrete number

of output points ℓ ∈ J1, 30K, and a random noise p ∈ R ran-

domized following a standard normal distribution. It out-

puts a random sequence of ℓ points fθ(t, ℓ, p) ∈ R
3×ℓ.

As a supervised model, MongeNet is trained to mini-

mize the regularized empirical risk across a given training

set D = {(ti, Si)i=1..N} consisting in a sequence of pairs

of triangles and sampled points,

argmin
θ

N∑

i=1

30∑

ℓ=1

L(fθ(ti, ℓ, pi), Si),

with pi ∼ N (0, 1) and the loss function L defined as,

L(t, ℓ, p, S) = W ε
2 (fθ(a, ℓ, p), S)

− αW ε
2 (fθ(a, ℓ, p), fθ(a, ℓ, p

′)).

where W ε
2 is the ε-regularized optimal transport [9, 6], and

p′ ∼ N (0, 1) is an adversarial Gaussian noise input that en-

courages entropy (different point locations) in the predicted

point cloud. We minimize this loss using the Adam Opti-

mizer with batches of 32 triangles for approximately 15K

iterations until the validation loss reaches a plateau. We set

the blending parameter to α = 0.01 and the Entropic regu-

larization ε = 5 · 10−5.

Generation of the dataset. The training ex-

amples consist of 19, 663 triangles sampled with

30, 50, 100, 200, 300, 500, 1000, and 2000 points. The

optimal point configurations are obtained using blue-noise

algorithms provided in [11, 25]. In order to obtain a contin-

uous measure from the triangle coordinates, we discretize

the measure carried by each triangle using Q1 quadrilateral

finite elements on a grid of resolution 500× 500.

Generating an arbitrary number of points per face.

The current implementation of MongeNet allows the com-

putation of up to 30 points per-face. This is generally suffi-

cient for most deep-learning applications. However, since

this number can be arbitrarily large, we provide a local

refinement technique that allows sampling any number of

points per face. It amounts to splitting the largest edge of

the triangle containing more than 30 points, to obtain two

smaller triangles with a reduced area. This splitting oper-

ation is repeated until all of the faces are sampled with at

most 30 points.

Reduction to invariant learning-problem. The shape

space for triangles is a two-dimensional manifold [20],

thence up to normalization, any triangle can be parameter-

ized with 2 unknowns. We thus map all the triangles to the
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Figure 4: The query face is mapped towards the unit square

using translation, rotation and reflection (isometries) and a

uniform scaling (similarity).

unit square [0, 1]2, fixing the longest edge coordinates’s to

(0, 0) → (0, 1). This operation is depicted in Figure 4. All

the operations are angle preserving so that the inverse trans-

formations will conserve geometric optimality of the point

cloud predicted on the unit square.

Network Architecture. Given an invariant triangle rep-

resentation and a random variable sampled from a standard

Gaussian distribution, MongeNet outputs 30 sets ranging

from 1 to 30 random points. For computational efficiency,

these output sets are tensorized as a matrix with 465 rows

and 2 columns such that the i-th sampled point in the j-th

output set with j samples is in the
j(j−1)

2 + i−1 row of this

matrix. The network architecture consists of three linear

layers of 64 output neurons with a ReLU activation func-

tion and Dropout between layers. The output uses sigmoid

functions to constrain the prediction to a unit square which

is remapped to points in the input triangle using the area-

preserving parameterization with low-distortion presented

in [18]. It is then remapped to the original triangle using the

inverse of the transformation described in Figure 4.

Complexity analysis. The complexity of MongeNet is

tantamount to the evaluation of a feedforward neural net-

work. It is done rapidly on GPU and the computation

across triangles is performed by batch. MongeNet’s perfor-

mance (MN) is competitive with pytorch3D’s random uni-

form sampler (RUS), we compare their runtime in Table 1.

MongeNet’s complexity scales linearly with the num-

ber of faces to be sampled. Non-deterministic CPU-based

methods described in the next section cannot be used dur-

ing training due to their longer runtime for sampling a mesh

with more that 10k faces (> 1s).

# Faces 10k 20k 30k 40k 60k 80k

RUS 1.14 ms 1.50ms 1.53ms 1.52ms 1.53ms 1.53ms

MN 2.89 ms 5.41 ms 7.90 ms 10.5 ms 16.0 ms 21.7 ms

Table 1: Runtimes for sampling 20k points on a mesh with

an increasing number of faces and using an Nvidia RTX

3090.

4. Experiments

4.1. Comparison with pre­existing sampling meth­
ods

Figure 5: Comparison of different sampling techniques

for approximating a triangle with an increasing number of

points.

To evaluate the performance of our method, we com-

pare it to three recent sampling methods: 1) Projective

Blue-Noise Sampling (PNBS) [36] and the dart-throwing

algorithm with a rule of rejection that depends on full-

dimensional space and projections on lower-dimensional

subspaces; 2) progressive multi-jittered sample sequence

(PMJ) [7]; and 3) Blue-Noise low discrepancies sequences

(BNLD) [33], a quasi-random sequence with increased blue

noise properties. We compare these methods against the

random uniform sampling, and the sampling generated by

our model MongeNet for an isosceles triangle and for an in-

creasing number of points and 25 randomly drawn samples.

All the distances between the estimated point cloud sam-

ples and the continuous object are obtained via computing

the distance between the predicted points and 2000 points

sampled on the triangle using a semi-discrete optimal trans-

port blue-noise algorithm [10]. The results are reported in

Figure 5.

Since our method approximates the point cloud location

in the sense of optimal transport, it exhibits the best approxi-

mation error for this metric. The average 2-Wasserstein dis-
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Figure 6: Distribution of the approximation error for 500 triangles drawn uniformly random. From left to right: an approxi-

mating point cloud with 5 sampled points, 10 sampled points, and 25 sampled points.

tance was 1.89 times smaller than the random uniform sam-

pling, 1.30 times smaller than the PMJ sampling method,

and 1.25 times smaller for BNLD. The MongeNet samples

are different with each random sampling of the latent vari-

ables p, but the resulting point clouds have a similar error

of approximation. Note that due to the deterministic nature

of the BNLD sequence, there is no variance in the approx-

imation error. Of note, we are interested in the sampling

patterns for a reduced number of points (typically < 100)

whereas related works [36, 7, 33] have focused on sampling

patterns for many more points (> 10, 000).

To show the behavior for a larger variety of triangles,

we sample randomly 500 triangles uniformly into the unit

square and examine the distribution of the approximation

error for random uniform sampling, MongeNet, and its two

forerunners PMJ and BNLD. We repeat the sampling three

times using different random seeds to average the sampling

performance across a given triangle. This experiment is

summarized for 5, 10, and 25 sampled points in Figure 6.

Among all of the samplers, MongeNet proposes a triangle

sampling with on average the best approximation quality.

4.2. Approximation error quantification

We compare the approximation errors generated by sam-

pling a similar surface from the ShapeNet dataset with Mon-

geNet and a random uniform sampler. Given a 3D model

from a subset of 3200 models from the Shapenet dataset1,

we first sample 100K points using the random uniform sam-

pler. Then we re-mesh randomly 30% of the faces of the

mesh to change its simplexes. With this new remeshing we

produce a point cloud of 10K points using either the ran-

dom uniform sampler or Mongenet. We report the Chamfer

distance, the Hausdorff distance, and the F0.01 Score. We

also report the EMD distance, but due to hardware limita-

tions, this computation is performed using only 25K points

of the original model. In order to obtain more stable esti-

mates, we reproduce the experiments for 10 repetitions. In

1The list of models used for this experiment is made available at

github.com/lebrat/MongeNet/resources/meshList.txt

Figure 7 we display the average error produced in function

of the sampler method used. Points that are sampled using

MongeNet are consistently yielding a lower approximation

error. In addition, the variance of the sampling is decreased,

as depicted in Figure 8.

4.3. Mesh Reconstruction

We now evaluate MongeNet on reconstructing watertight

mesh surfaces to noisy point clouds which is a prerequisite

for downstream applications such as rendering, collision

avoidance, and human-computer interaction. More specifi-

cally, we use the Point2Mesh [16] framework as the back-

bone. It consists of a MeshCNN that iteratively deforms a

template mesh to tightly wrap a noisy target point cloud. At

each iteration, it minimizes point cloud based distances be-

tween a point cloud sampled from the template mesh and

the target point cloud. We contrast the performance of this

method when configured with the standard uniform sam-

pling and when configured with MongeNet. Point2Mesh

hyperparameters and the target noisy point clouds used in

this experiment are kindly provided by the Point2Mesh au-

thors2. Since Point2Mesh is an optimization based ap-

proach relying on random initialization, we repeat the ex-

periment 10 times and report the average and standard devi-

ation of the aforementioned metrics between the target point

cloud and a point cloud sampled with 200K points from

the produced final watertight mesh (using the same uniform

sampling technique for both methods). Table 2 presents the

results of this experiment.

Point2Mesh equipped with MongeNet sampling outper-

forms systematically the alternative technique: it improves

the Chamfer distance by a factor 1.77, the earth mover’s

distance by a factor 1.94, and increased on average the FS-

0.01 score by 0.052. We also noticed that larger differences

could be observed for more detailed input shapes. We in-

vestigated this observation by increasing the difficulty of

the reconstruction task using much more complex shapes

from the Thingi10k dataset [48]. As illustrated in Figure 9,

2https://github.com/ranahanocka/point2mesh

16669



Figure 7: Average approximation errors between two point clouds sampled from different tessellations of the same underlying

surface.

Point2Mesh with MongeNet sampling Point2Mesh with uniform sampling

Objects CHD×103 (↓) EMD×103 (↓) HD (↓) NC (↑) FS@0.01 (↑) CHD×103 (↓) EMD×103 (↓) HD (↓) NC (↑) FS@0.01 (↑)

Bull
0.095

(±0.054)
0.153

(±0.116)
0.032

(±0.009)
0.954

(±0.010)
0.879

(±0.121)
0.306

(±0.345)
0.641

(±0.885)
0.050

(±0.022)
0.929

(±0.037)
0.693

(±0.287)

Giraffe
0.637

(±0.752)
1.046

(±1.238)
0.053

(±0.028)
0.880

(±0.106)
0.675

(±0.361)
1.161

(±1.770)
1.903

(±3.002)
0.061

(±0.042)
0.863

(±0.125)
0.638

(±0.366)

Guitar
0.051

(±0.007)
0.066

(±0.010)
0.017

(±0.001)
0.981

(±0.002)
0.948

(±0.030)
0.056

(±0.008)
0.075

(±0.007)
0.018

(±0.001)
0.981

(±0.001)
0.932

(±0.027)

Tiki
0.096

(±0.012)
0.106

(±0.007)
0.028

(±0.002)
0.978

(±0.001)
0.854

(±0.031)
0.100

(±0.010)
0.103

(±0.002)
0.031

(±0.004)
0.977

(±0.002)
0.843

(±0.030)

Triceratops
0.074

(±0.024)
0.065

(±0.017)
0.021

(±0.004)
0.974

(±0.004)
0.932

(±0.058)
0.074

(±0.037)
0.066

(±0.023)
0.022

(±0.007)
0.975

(±0.004)
0.922

(±0.092)

Overall
0.191

(±0.170)
0.287

(±0.278)
0.030

(±0.009)
0.953

(±0.024)
0.858

(±0.120)
0.339

(±0.434)
0.558

(±0.784)
0.036

(±0.015)
0.945

(±0.034)
0.806

(±0.160)

Table 2: Watertight mesh reconstruction for noisy point clouds using the Point2Mesh framework configured with uniform

sampling and MongeNet. The evaluation metrics are computed between the target point cloud and a point cloud sampled

with 200K points from the final reconstructed mesh. We report the average and standard deviation of these metrics over 10

repetitions.

Figure 8: Boxplot of the standard deviation of the approxi-

mation error across repetitions in terms of Chamfer distance

and grouped by ShapeNet categories.

the reconstruction errors are located either in the parts of

Figure 9: More difficult shape from Thingi10k recon-

structed by the Point2Mesh backbone. Left: Point2Mesh

with MongeNet sampling. Right: Point2Mesh with ran-

dom uniform sampling.

the mesh with lots of fine details or in the areas with high

curvature.

We also conducted an in-depth analysis for an arduous

mesh by running Point2Mesh 16 times, while monitoring
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Figure 10: First row: Loss function and metric evolution for 16 different random initializations. In blue the Point2Mesh

method equipped with the MongeNet sampler and in red with the random uniform sampler, with translucent color the value

for each individual run and in bold the average over all the runs. Second and third row: Evolution of the optimized shape

throughout the iterations for Point2Mesh equipped with MongeNet and with the random uniform sampler respectively.

all the metrics and the training loss, which are summa-

rized in Figure 10. Across this experiment, all of the meta-

parameters remain identical with the exception of the sam-

pling technique. We noticed that for every scenario, be-

cause MongeNet provides a better representation for the

face primitives, the distance between the target point cloud

and the point cloud sample from the mesh decreased faster.

As a result, for a given optimization time, the fidelity to the

input point cloud was improved. At the end of the opti-

mization, we can observe that only the MongeNet variant

can recover the non-convex features of the hand.

5. Conclusion

In this paper, we have highlighted the limitations of the

standard mesh sampling technique adopted by most of the

3D deep learning models including its susceptibility to ir-

regular sampling and clamping, resulting in noisy distance

estimation. To address this, we proposed a novel algorithm

to sample point clouds from triangular meshes, formulated

as an optimal transport problem between simplexes and dis-

crete measures, for which the solution is swiftly learned by a

neural network model named MongeNet. MongeNet is fast,

fully differentiable, and can be adopted either for loss com-

putation during training or for metric evaluation during test-

ing. To demonstrate the efficacy of the proposed approach,

we compared MongeNet to existing techniques widely used

within the computer graphics community and evaluated the

mesh approximation error using the challenging ShapeNet

dataset. As a direct application, we also evaluated Mon-

geNet on mesh approximation of noisy point clouds using

the Point2Mesh backbone. In all these experiments, Mon-

geNet outperforms existing techniques including the widely

used random uniform sampling, for a modest extra compu-

tational cost.
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