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Abstract

Video stabilization is an essential component of visual

quality enhancement. Early methods rely on feature track-

ing to recover either 2D or 3D frame motion, which suffer

from the robustness of local feature extraction and track-

ing in shaky videos. Recently, learning-based methods seek

to find frame transformations with high-level information

via deep neural networks to overcome the robustness issue

of feature tracking. Nevertheless, to our best knowledge,

no learning-based methods leverage 3D cues for the trans-

formation inference yet; hence they would lead to artifacts

on complex scene-depth scenarios. In this paper, we pro-

pose Deep3D Stabilizer, a novel 3D depth-based learning

method for video stabilization. We take advantage of the

recent self-supervised framework on jointly learning depth

and camera ego-motion estimation on raw videos. Our ap-

proach requires no data for pre-training but stabilizes the

input video via 3D reconstruction directly. The rectifica-

tion stage incorporates the 3D scene depth and camera mo-

tion to smooth the camera trajectory and synthesize the sta-

bilized video. Unlike most one-size-fits-all learning-based

methods, our smoothing algorithm allows users to manipu-

late the stability of a video efficiently. Experimental results

on challenging benchmarks show that the proposed solution

consistently outperforms the state-of-the-art methods on al-

most all motion categories.

1. Introduction

Video stabilization removes the undesired shaky motion

and preserves the primary motion from a video, which is

a critical module to video acquisition and pre-processing.

Video stabilization methods often estimate the motion be-

tween frames at first, and then the inter-frame motion esti-

mated can be used in a smoothing algorithm for stabilizing

the input video. Traditional video stabilization methods can

be categorized into two types according to the dimensional-

ity of the motion model. The 2D-motion methods model the

tracked features with 2D transformations (e.g. affinity, ho-

mography). Earlier 2D-based approaches (such as [15, 10])

adopt full-frame 2D transformations and show promising

stabilization qualities. Nonetheless, the full-frame 2D mo-

tion would suffer from spatially variant motion (e.g. paral-

lax effect) caused by complex 3D scene structures. Some

2D-based methods [21, 19] divide the frame into grids and

extract the 2D local motion of each grid to handle paral-

lax effect. Despite the local motion models show better re-

sults than full-frame models, the local motion methods are

still challenging since it is difficult to coordinate the grid-

wise transformations to avoid the local distortions thus in-

troduced. The 3D approaches [16, 14, 8, 20] acquire 3D in-

formation to model the frame motion in 3D space by using

Structure-from-Motion (SfM) or additional sensors such as

inertial measurement unit (IMU) and depth sensors. Hence,

the 3D approach often requires expensive costs but shows

superior results in contrast to the 2D approach.

The performance of earlier 2D and 3D approaches often

rely on successful feature tracking for motion estimation.

Yet it is challenging to obtain robust and long feature tracks,

particularly from shaky videos. This restricts the perfor-

mance of early approaches. The convolution neural net-

work (CNN)-based video stabilization methods [29, 31, 35]

learn to extract the frame motion in CNN parameter space

and infer the stabilization transformation directly. Some

learning-based methods train the networks on synchronized

stable/unstable video pairs [29] to find frame transforma-

tions from ground-truth stable video directly. However, the

application would be limited by the generalization capabil-

ity as it is demanding to collect all types of unsteady videos

for training in advance. On the other hand, these prior stud-

ies are based on 2D transformation and thus they still suffer

from parallax effect and introduce distortions.

We introduce a novel 3D-based learning method for

video stabilization. To the best of our knowledge, our pro-

posed Deep3D Stabilizer is the first learning method that

handles the stabilization process with learned 3D informa-

tion. The pipeline of our method is provided in Figure 1.

The CNNs jointly learn the scene depth and 3D camera mo-

tion for the input video during test time in an optimization
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Figure 1. Pipeline of the proposed method: The pipeline consists of two stages. Firstly, the 3D geometry optimization stage estimates

the 3D camera trajectory and the dense scene depth of the input RGB sequence with PoseNet and DepthNet, respectively, via test-time

training. The optimization stage takes the input sequence and the corresponding optical flows as the guidance signal for learning the 3D

scene. Secondly, the frame rectification stage takes the estimated camera trajectory and scene depth as input to perform view synthesis

on a smoothed trajectory. The smoothing process enable users to manipulate the parameter of smoothing filter to attain different levels of

stability of the resulted video, which is then wrapped and cropped to produce the stabilized video.

framework without needing training data. Our solution only

requires input frames and the precomputed optical flow be-

tween consecutive frames as guidance signals for 3D ge-

ometry optimization. Consequently, the rectification stage

takes the optimized 3D information to perform stabilization

via smoothing the camera motion and reprojecting the in-

put frames with scene depth. Our method can model the 3D

scene structure and lead to low distortion, particularly when

dealing with the videos with parallax effect. Moreover, our

smoothing algorithm enables users to manipulate or alter

the stability of the stabilized video online, which is a criti-

cal functionality for video stabilization while is overlooked

by most previous learning-based studies since their meth-

ods are difficult to provide such freedom of manipulation.

In sum, main contributions of our approach include:

• We introduce the first 3D-based deep CNN method for

video stabilization without needing training data.

• Our approach can handle parallax effect more properly

leveraging 3D motion model.

• Our stabilization solution allows users to manipulate

the stability of a video in real-time (34.5 fps).

2. Related Works

Our approach is related to previous studies on video sta-

bilization, monocular depth estimation, and test-time train-

ing. They are briefly reviewed as follows.

2.1. Video Stabilization

Video stabilization methods can be categorized into 2D,

3D, and deep learning approaches.

The 2D-based methods, which smooth the 2D linear

transformations (e.g. affinity, homography) estimated be-

tween consecutive frames, require only a low computational

complexity in general. Grundmann et al. [10] apply a full-

frame 2D motion model and employ cinematography rules

for motion design by using L1-norm optimization. Liu et al.

[21] divide frames into grids to acquire bundled local trans-

formations for spatially variant motions. Liu et al. [22] pro-

pose pixel profiles as a novel motion model rather than tran-

ditional feature tracks so as to prevent from lost-tracking of

features; they continue to present more efficient mesh pro-

files to enable real-time processing [19] and extend the work

to video coding [18]. However, 2D approaches usually suf-

fer from tackling parallax effects as 2D transformations are

insufficient to model the entire 3D scene structure.

The 3D-based methods estimate 3D camera motions or

scene structure from videos. Liu et al. [16] utilize 3D cam-

era trajectory and sparse 3D point cloud reconstructed by

Structure-from-Motion (SfM) to guide the warping. Liu et

al. [17] utilize subspace constraints [13] on feature trajecto-

ries to enable more robust feature extraction. Goldstein and

Fattal [8] exploit epipolar geometry to enhance the length

of feature tracks. Some 3D methods utilize additional hard-

ware sensors to capture 3D information. Smith et al. [27]

and Liu et al. [20] employ light field and depth cameras for

3D projection, respectively. Karpenko et al. [14] use gyro-

scope for 3D rotation estimation. However, the 3D meth-

ods would either require expensive costs for 3D reconstruc-

tion or suffer from the robustness issue in SfM. The results

would be easily fragile due to the failure of feature tracking.

Recent works explore deep learning models for video

stabilization. Wang et al. [29] propose a supervised learn-

ing framework with inferring multi-grid 2D transforma-

tions. Xu et al. [31] apply adversarial networks to super-

vised learning with full-frame affine transformations. Zhao

et al. [35] estimate pixel-wise warping maps in a supervised

manner. These supervised methods are trained with Deep-

Stab dataset [29] that contains 61 synchronized stable and

unstable pairs of videos. However, they often suffer from
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the confined generalization capability because of the lim-

ited variation of training videos in DeepStab.

In contrast, Yu and Ramamoorthi [33] directly perform

test-time training with optical flow for stabilization but re-

quire extremely expensive computation time. They further

propose a self-supervised method trained with only unsta-

ble videos based on optical flow field [34]. Choi and Kweon

[4] train a frame interpolation network to smooth the frame

motion in a self-supervised manner. The approach exploits

the relationship between video stabilization and inter-frame

interpolation, but an issue is that the interpolation easily

yields severe distortion when the input video contains large

motion. Moreover, these methods are all based on 2D infor-

mation so that they could still suffer from parallax effect.

2.2. Monocular Depth Estimation

Besides the related works of video stabilization, our so-

lution is also related to the automatic scene depth estima-

tion with a monocular camera. Traditional depth estima-

tion relies on the disparity estimated among multi-view im-

ages. With the recent development of deep neural networks,

learning-based depth estimation methods have been intro-

duced. Eigen et al. [5] employ a coarse-to-fine model with

the ground truth depths captured by depth sensors as the

supervision signal for single-image depth estimation. How-

ever, this method relies on the known depth for training,

which restricts its applicability to unknown scene classes.

Garg et al. [6] and Gordard et al. [7] propose to solve

the problem in a self-supervised manner, which use view

synthesis with stereo training image pairs for single-image

depth estimation problem. However, the settings require

two cameras for self-supervision, which is unsuitable for

a monocular video. Zhou et al. [37] propose a jointly self-

supervised learning framework, where the monocular depth

estimation and relative pose estimation can be learned from

monocular sequences simultaneously. Further studies im-

prove the jointly learning self-supervised framework via ad-

ditional cues, such as optical flow [32, 38, 36], motion seg-

mentation [25, 2, 9] and geometric constraints [24, 1, 3].

2.3. Test­Time Training

Learning directly from the testing data has been used to

reduce the distribution difference between training and test-

ing domains. Yu and Ramamoorthi [33] treat CNN as an

optimizer to overfit a smoothing objective function to solve

the video stabilization problem. Casser et al. [2] and Chen

et al. [3] use testing sequences to fine-tune the pre-trained

models to improve the monocular depth estimation results.

Luo et al. [23] refine the pre-trained models with temporal

consistency for sequential depth estimation.

A limitation of test-time training is its expensive compu-

tation time in test phase. Our method leverages the continu-

ity of video, which propagates the learned weights for scene

reconstruction to the subsequent snippets in a video, so as

to reduce the optimization time.

3. Proposed Method

Given an unsteady sequence {It}
N
t=1 of N frames, the

goal is to synthesize steady frames {I ′t}
N
t=1. The proposed

pipeline mainly comprises two stages: 3D geometry opti-

mization and frame rectification. The 3D geometry opti-

mization stage learns the 3D geometry information includ-

ing dense scene depth {Dt}
N
t=1 and 3D camera trajectory

{Pt}
N
t=1 from {It}

N
t=1. The frame rectification stage recon-

structs the stabilized output {I ′t}
N
t=1 by smoothing {Pt}

N
t=1

and performing view synthesis with {It}
N
t=1 and {Dt}

N
t=1.

They are respectively presented in the following.

3.1. 3D Geometry Optimization

Inspired by the self-supervised framework of Zhou et

al. [37], scene depth and camera ego-motion can be jointly

trained by monocular RGB sequences. However, due to the

difference between training and testing data distributions, a

learned model on the training set often fails to be applied to

the testing video. To address this issue, we exploit test-time

training to the framework (as shown in Figure 2).

Moreover, inference of the depth and pose on separated

clips cannot retain temporal consistency for an input se-

quence. To get temporally consistent sequential estimation,

our framework contains two CNNs, DepthNet and PoseNet;

both take a snippet {It}
k+T
t=k of the input sequence with

length T at each time. The length-N sequence is divided

into multiple length-T snippets, with length-Ω overlap be-

tween nearby snippets. The networks learn the scene depth

{Dt}
k+T
t=k and camera pose {Pt}

k+T
t=k , respectively.

Consider one frame Is in {It}
k+T
t=k as a source view.

When the scene depths and camera poses are estimated, we

can use the source view to synthesize a novel target view

in {It}
k+T
t=k (t 6= s) via the re-projection of Ds with the

relative pose transformation Ps→t = PtP
−1
s . Let xt and

xs denote the homogeneous coordinates of a pixel in It and

Is, respectively. The point transformation via 3D projection

can be formulated as follows:

xt = KPs→tDs(xs)K
−1xs, (1)

where K denotes the camera intrinsic parameters. Follow-

ing this transformation, we can synthesize the entire novel

view of any t from s, and we denote the synthesized view

as Is→t. Similarly, we can also synthesize the optical-flow

map from s to t. The estimated 2D projection of 3D scene

flow (i.e. rigid flow) Fs→t from Is to It can be obtained by

Fs→t(xs) = xt − xs. (2)

Besides, via the rigid transformation Ps→t, the depth map

estimated for the source view s can be converted to the tar-

get view t as well, resulting in a synthesized depth map
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Figure 2. 3D geometry optimization framework: The Depth-

Net and PoseNet estimate dense scene depth and camera pose tra-

jectory based on a snippet of the input sequence. The loss terms

measured via 3D reprojection are used to update the parameters of

DepthNet and PoseNet via back-propagation in test-time.

Ds→t with the viewpoint of t’s frame. The synthesized

novel images (Is→t), optical-flow maps (Fs→t), and depth

maps (Ds→t) are employed for conducting the loss terms

enabling an end-to-end trainable model for simultaneous

3D scene reconstruction and camera ego-motion estimation.

Loss terms. The loss is composed of three terms: photo-

metric loss LP (t, s), geometric loss LG(t, s), and optical-

flow loss LF (t, s). The photometric loss LP (t, s) measures

the appearance difference between the synthesized Is→t and

actual frame It using an L1 component and structural simi-

larity loss [30] with a trade-off weight γ(= 0.5),

LP (t, s) =
1

|V |

∑

xt∈V

(1− γ)‖Is→t(xt)− It(xt)‖1+

γ
1− SSIMIs→t,It(xt)

2
,

(3)

where V represents the valid points successfully projected

onto the image plane of It, and |V | is the number of points.

The geometric loss proposed by Bian et al. [1] enforces

the scale consistency of depth and pose estimation among

consecutive frames. The geometric loss is formulated as:

LG(t, s) =
1

|V |

∑

xt∈V

‖Ds→t(xt)−Dt(xt)‖1
Ds→t(xt) +Dt(xt)

, (4)

where the difference of Ds→t and Dt is normalized by their

sum to make LG numerically steady in training [1].

In addition to DepthNet and PoseNet, inspired by Zhou

et al. [36], we adopt a pre-trained CNN model for the opti-

cal flow estimation (as shown in Figure 2), which can help

regularize the solutions found for depth and pose. The pur-

pose of optical-flow loss is to strengthen the supervision

on texture-less or small displacement areas, which are the

weakness of photometric loss. The optical-flow loss di-

rectly computes the difference between the estimated Fs→t

and the precomputed flow F̂s→t using pre-trained PWC-Net

[28]. We use L1 loss to build our optical flow error function,

LF (t, s) =
1

|V |

∑

xt∈V

‖Fs→t(xt)− F̂s→t(xt)‖1. (5)

Multiple source views. Single-source projection consis-

tency is fragile due to occlusion, illumination variation, etc.

Therefore, we adopt a set of source views St for the 3D

reconstruction and reprojection. When the frame interval

between the source and target views is large, the common

region between them could be small and yield easily unreli-

able reconstruction. Thus, we set the farthest frame interval

as Ω. Given the target view It, its source view are chosen

in St = {It−Ω : It+Ω} and note that Ω also serves as the

overlapping length of the neighboring snippets (Ω = 9 by

default). The loss function L(It,St) becomes

L(It,St) =
∑

si∈St

ωsi
α (λPLP (t, si) + λGLG(t, si))+

ωsi
β λFLF (t, si),

(6)

where λP , λG, λF are some constant weights. ωsi
ρ is an

exponential weight varying with the frame intervals.

ωsi
ρ =

ρ|si−t|

∑
sj∈St

ρ|sj−t|
. (7)

As for the photometric and depth losses, we use ρ = α(=
1.2) to increase the weights of the farther source views,

which benefits from the learning of 3D scene with larger

baselines. As for the optical-flow loss, since the accuracy

of precomputed flow F̂t→si is often higher for small frame

intervals but tends to collapse for the farther views, we use

β(= 0.85) to emphasize the flow influence of closer frames.

Finally, the optimal depths {D∗
t }

k+T
k and camera poses

{P ∗
t }

k+T
k are obtained by minimizing the overall loss:

{D∗
t , P

∗
t }

k+T
k = argmin

{Dt,Pt}
k+T

k

1

T

k+T∑

t=k

L(It,St). (8)

Snippet coherence. To enforce the temporal consistency of

the sequential snippets, for each snippet {It}
k+T
t=k , we freeze

the depth and pose estimated already in the overlapping area

of the previous snippet (i.e. {D∗
t , P

∗
t }

k+Ω
t=k ), as shown in

Figure 3. The optimization framework computes the loss of

{Dt, Pt}
k+T
t=k+Ω with {D∗

t , P
∗
t }

k+Ω
t=k fixed, so as to enhance

the temporal consistency of depth and poses. The test-time

training with snippet coherence is thus formulated as:

{D∗
t , P

∗
t }

k+T
k+Ω = argmin

{Dt,Pt}
k+T

k+Ω

1

T

k+T∑

t=k

L(It,St). (9)

Parameter propagation. Unlike 2D optical-flow based

testing-time training methods (e.g. [33]) for video stabi-

lization, the 3D depth map employed in our approach of-

ten holds strong temporal continuity in a video, and thus
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Figure 3. Illustration of overlapping snippets: An input se-

quence {It}
N

t=1 is sequentially divided into length-T snippets with

Ω frames overlap. For a current snippet (except for the first one),

the 3D depth and pose estimations of the overlapping area (gray

with ×) are frozen as the optimal {D∗, P ∗} estimated for the

previous snippet. The learning framework only updates the non-

overlapping {D,P} (green) to enforce the temporal coherence.

Figure 4. Convergence speeds comparison: The convergence

curves averaged on all snippets (except for the first snippet) are

shown for different parameter initialization strategies. Among

them, parameter propagation shows the fastest convergence speed

compared to training from scratch and ImageNet [26] pre-trained

weights, which increases the test-time training speed better.

the previously estimated depth is easily transferable to the

next snippet and serves as good initialization for better opti-

mization. In our test-time training, the snippets are learned

one by one according to their sequential order, and the op-

timal estimation {D∗
t , P

∗
t }

N
t=1 are obtained through only a

single-round process of the image sequence {It}
N
t=1. For

the first snippet, both DepthNet and PoseNet are initialized

with ImageNet [26]. Afterwards, the trained parameters of

the current snippet are propagated to the next snippet for

initializing the optimization with fewer iterations to con-

verge. Note that the optical-flow maps between consecutive

frame pairs [33] of an unsteady video would not have such

continuity property to be exploited. As shown in Figure 4,

training with parameter propagation shows a far faster con-

vergence speed and a further loss descent, compared with

training from scratch or ImageNet pre-trained weights. We

also show the speed comparison with the test-time video

stabilization method [33] in the experiments.

Figure 5. Example of camera trajectory smoothing: (a) Input

video. (b) Depth D∗ of (a). (c) The 3D model of the input video re-

constructed by {D∗

t , P
∗

t }
N

t=1. The green/blue paths represent the

original/smoothed camera trajectories in 3D model, respectively.

(a) input I (b) I ′ w/o p.p (c) I ′ w/ p.p

(d) loss map L (e) depth D∗ (f) smoothed D̃

Figure 6. Visual comparison tackling dynamic objects: The in-

put (a) contains two dynamic pedestrians, yielding large values in

the loss map L and unreliable estimate of D∗ (cyan boxes in (d)

and (e)). The resulted (b) synthesized with D∗ contains distortions

in dynamic area (red box). Post-processing D∗ to obtain D̃ with

an adaptive smoothing filter based on L. (c) synthesized with D̃

eliminates the distortions. The blue, red and green boxes present

the details of moving pedestrians in (a), (b) and (c), respectively.

3.2. Frame Rectification.

Once we obtain the solutions of depths and camera

poses of the entire sequence, each stabilized frame I ′t is

synthesized with It and a compensated warp field F ′
t which

is computed by the depth D∗
t and a smoothed camera pose

P ′
t . The smoothed camera pose {P ′

t}
N
t=1 (as illustrated in

Figure 5) is typically obtained with a Gaussian filter. Our

approach thus enables users to manipulate the stability by

adjusting the smoothness degree (σ of Gaussian) of the

trajectory. To our best knowledge, most previous learning-

based methods [29, 31, 34, 35] do not enable the freedom

of manipulation since their models are one-size-fits-all for

inferring transformation directly. Hence, when the users

hope to change the smoothness degree, they need to retrain

the entire networks for finding the new solution.

Post-processing tackling dynamic objects. The 3D opti-

10625



mization framework assumes the scene of input videos is

static. Thus the networks will produce unreliable results

on moving-object regions, yielding artifacts in stabilized

videos (e.g. Figure 6e). Some recent joint depth and pose

learning methods improve the outcomes based on optical

flow [32, 38] or motion segmentation [2, 25, 9]. Yet these

additional techniques would be either unreliable enough or

increase heavily computational costs in test-time training.

To tackle this issue, we perform spatially variant smooth-

ing based on the loss map obtained. As with test-time train-

ing, the map of loss L (Eq. 6) is available in our approach.

We adaptively smooth the depth map {D∗
t }

N
t=1 with a spa-

tially variant filter to obtain {D̃t}
N
t=1, where the smoothing

degree is varying with the sites in the loss map (the larger

is the loss value, the larger is the smoothing degree and

vice versa). The adaptively smoothed map {D̃t}
N
t=1 is then

employed for the view synthesis. As the large-loss areas

are often caused by the dynamic objects since they violate

the rigid-motion constraint, adopting a stronger smoothing

tends to fit planar warping to these areas, so as to alleviate

the artifacts. An illustration is given in Figure 6.

3.3. Implementation Details

We realize DepthNet and PoseNet using ResNet18 [12].

The optimization framework is implemented in PyTorch

with Adam, where β1 = 0.9, β2 = 0.99, and learning

rate = 2 × 10−4. The input frames are downsampled to

192× 128 with the purpose of enlarging the snippet length

T (= 80 as default). For each input unsteady video, we op-

timize the first snippet for 300 forward-backward iterations

and 100 iterations for each of the subsequent snippets. The

Gaussian filter in rectification stage is set with σ = 12 and

window size 59 as default for the following experiments.

4. Experiments

We compare our Deep3D Stabilizer with several state-of-

the-art methods on NUS dataset [21], which contains 144

short unsteady videos of 6 categories based on the cam-

era motion and scene types: regular, large parallax, crowd,

running, quick rotation and zooming. We use publicly avail-

able codes of the state-of-the-art method in the experiments.

The stabilizer of commercial software Adobe Premiere Pro

CC 2020 is known as the traditional 3D-based method [17]

using subspace constraints. Bundled [21] divides frames

into grids to extract local homography transformations in

offline processing. DIFRINT [4] performs learning-based

frame interpolation on unsteady frames without cropping

in offline. As for online stabilization methods, including

MeshFlow [19] and StabNet [29], which aim to stabilize

streaming videos and do on-the-fly thus cannot refer to the

future frames. MeshFlow [19] computes pixel profiles as

2D local motion. StabNet [29] uses a pre-trained feed-

forward network to infer grid-wise 2D transformations. We

conduct both visual and quantitative comparisons.

Visual comparison. We highly encourage readers to see

visual comparisons in supplementary video1 since it is dif-

ficult to compare the visual quality of stabilized videos in

thumbnails. As shown in Figure 7, we visualize the stabil-

ity of resulted videos with optical flow tracking. Examples

1 and 2 are videos with parallax effects. Bundled [21] uses

grid-wise homography transformation and the different mo-

tions of parallax effects in a single cell cause the wrong mo-

tion estimation and shear in resulted video. MeshFlow [19]

derives local distortion in Example 2 because their grid-

based transformation does not coordinate the spatial con-

tinuity of warping with neighboring grids. Our method es-

timates the frame motion in 3D motion model with dense

depth maps to tackle parallax effect properly. Example 3

contains horizontal rotation motion. Adobe [17] and Stab-

Net [29] show horizontal overcropping due to the large ro-

tation. On the other hand, as DIFRINT [4] uses frame in-

terpolation with nearby frames, the result suffers from se-

vere local distortion in rotation. Example 4 also contains

multiple moving pedestrians. DIFRINT [4] produces se-

vere distortions in the pedestrians on the frame boundaries.

Our method smooths the warping of non-rigid objects spa-

tially in the adaptive filtering of post-processing to prevent

from distortion. Example 5 is captured in running with

severely shakes. Our method shows the best stability with

the smoothest motion trajectory.

Quantitative comparison. We evaluate the the results on

NUS dataset [21] following the metrics proposed by Liu

et al. [21]. Specifically, the metrics include three aspects:

cropping ratio, global distortion and stability.

The cropping ratio measures the view preservation from

input to output caused by warping and cropping. We com-

pute the homography Ht between the input frame It and

output frame I ′t. The region that It have been warped onto

I ′t by Ht indicates the preserved view Vt. The cropping ra-

tio of the entire stabilized video is the average ratio of the

preserved area, 1
N

∑N
t=1 |Vt|. The score ranges from 0 to 1

and the larger represents the better view preservation.

The global distortion metric measures the distortion in

output videos caused by non-isotropic scaling transforma-

tion from input to output, which can be extracted from the

affine part of Ht by SVD decomposition [11]. The distor-

tion score of the entire stabilized video, ranging from 0 to 1,

is determined by the worst frame. The larger value indicates

the better preservation of the shape in the input video.

The cropping-ratio and global-distortion metrics above

prefer invariant images. The original image It gets the high-

est scores on these metrics, and thus they are only circum-

stantial. As for stability metric, we follow the idea of Liu

et al. [21] to perform frequency analysis on estimated mo-

tion of a video. The assumption is that low frequency part

1Supplementary video: https://youtu.be/pMluFVA7NDQ
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Input Deep3D(ours) Adobe [17] Bundled [21] DIFRINT [4] MeshFlow[19] StabNet [29]

shaky overcropping shear local distortion

Figure 7. Visual comparison of the state-of-the-art methods: The artifacts are noted below thumbnails. The magenta paths on the

thumbnails indicate the optical flow motion of the resulted videos. Smoother paths represent the more steady results. To visualize the

cropping loss of each result, we rescale each video to the input scale. The distortion and shear are pointed out by yellow and red arrows,

respectively. Zoom in for a better (more detailed) visualization.

of the estimated motion represents the dominant motion of

a video. By using an off-the-shelf optical flow estimation

network (PWC-Net [28]) to extract the motion of resulted

video, we measure the SNR value to represent the stability

score of the video, where the energy of the lowest 5% fre-

quency components and the rest of the energy are treated as

the signal and noise, respectively. A larger value indicates a

more stable result. Note that there is a trade-off between the

stability and cropping metrics, while one is larger, the other

is low. Since a stabilized video often yields poor content

preservation when pursuing high stability, the stability met-

ric is often the main metric on experimental comparison.

The quantitative comparisons to state-of-the-art methods

are shown in Table 1. As can be seen, our method per-

forms the best (gets rank-1) on the stability metric for all

categories except the regular category. Since the regular

category contains simpler scene and motion types, many

approaches perform averagely well on this category. De-

spite the stability score of our method is slightly lower than

that of Bundled [21] and MeshFlow [19] in this category,

our approach provides more steady videos. DIFRINT [4]

shows the highest score in cropping ratio and global distor-

tion metrics since they utilize frame interpolation to keep

the view content, whereas resulting in the worst stability.

For parallax and crowd categories that contain paral-

lax effects and dynamically moving human in the videos

respectively, our method achieves the best stability score

while still holds very well cropping and global distortion

effects. It means that our method can produce more steady

videos with smaller content distortion. In contrast, 2D Grid-

based methods especially MeshFlow [19] and StabNet [29]

introduce much larger distortion.

As for running category, Bundled [21] provides less

cropping loss but with poor stability. Again, our method

shows the highest stability and distortion scores with fairly

well cropping value. Our approach provides a freedom of

online manipulation, as they are trade-offs to each other.

Furthermore, MeshFlow [19] shows the second highest sta-

bility but has the most distorted effects. In general, our

method is more favorable to preserve the original shape of

the videos with severe shaky motion.

For quick rotation and zooming categories, our method

also achieves the least distortion effects comparing to frame

interpolation-based DIFRINT [4] and the best stability.

In sum, our method is able to provide not only the best

visual quality results for almost all categories but also the

flexibility of adjustable stability. As for learning-based

methods, StabNet [29] shows the worst results in overall

due to the difficulty of generalization. DIFRINT [4] uses

a novel frame interpolation method to preserve the view

content and shape but the stability is restricted.
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Category Metric Input Adobe [17] Bundled [21] DIFRINT [4] MeshFlow[19] StabNet [29] Deep3D

Regular

Cropping - 0.70(3) 0.67(4) 0.98(1) 0.67(4) 0.54(6) 0.79(2)
Distortion - 0.94(5) 0.95(3) 0.98(1) 0.95(3) 0.82(6) 0.97(2)
Stability 11.08 14.27(4) 16.31(1) 13.14(6) 15.72(2) 13.85(5) 15.53(3)

Large

Parallax

Cropping - 0.60(4) 0.74(3) 0.98(1) 0.55(5) 0.46(6) 0.78(2)
Distortion - 0.83(4) 0.91(3) 0.94(1) 0.75(5) 0.71(6) 0.93(2)
Stability 14.49 16.07(4) 16.16(3) 15.33(5) 16.68(2) 15.07(6) 16.81(1)

Crowd

Cropping - 0.53(4) 0.70(2) 0.98(1) 0.50(5) 0.41(6) 0.70(2)
Distortion - 0.86(4) 0.89(3) 0.94(1) 0.78(5) 0.65(6) 0.93(2)
Stability 16.71 18.45(3) 18.25(4) 17.63(5) 18.76(2) 17.58(6) 18.80(1)

Running

Cropping - 0.41(5) 0.67(2) 0.96(1) 0.44(4) 0.41(5) 0.50(3)
Distortion - 0.85(3) 0.85(3) 0.89(1) 0.80(5) 0.77(6) 0.89(1)
Stability 10.30 14.85(3) 13.14(4) 12.50(6) 15.62(2) 12.88(5) 15.81(1)

Quick

Rotation

Cropping - 0.38(6) 0.70(2) 0.98(1) 0.39(4) 0.39(4) 0.58(3)
Distortion - 0.85(3) 0.86(2) 0.83(4) 0.41(6) 0.67(5) 0.87(1)
Stability 19.51 18.05(6) 20.44(2) 20.12(3) 19.01(4) 18.13(5) 21.91(1)

Zooming

Cropping - 0.48(5) 0.61(3) 0.98(1) 0.52(4) 0.47(6) 0.62(2)
Distortion - 0.87(4) 0.93(2) 0.89(3) 0.84(5) 0.71(6) 0.95(1)
Stability 17.09 18.28(5) 20.19(3) 19.06(4) 20.47(2) 17.25(6) 20.90(1)

Table 1. Quantitative comparison of the state-of-the-art methods: The scores are averaged over each category. The higher value of

cropping ratio, global distortion and stability the better. The subscript of each value indicates the ranking in the methods compared.

Metric w/o LG and LF w/o LF full

Cropping 0.57 0.62 0.66

Distortion 0.87 0.89 0.92

Stability 16.95 17.35 18.29

Table 2. Ablation study on the loss terms.

Methods Runtime

online
(streaming)

MeshFlow [19] 25 ms

StabNet [29] 118 ms

offline

Bundled [21] 392 ms

Yu and Ramamoorthi [33] 1610 ms

DIFRINT [4] 67 ms

Yu and Ramamoorthi [34] 570 ms

Deep3D (Ours) 670 ms

– optimization stage 641 ms

– rectification stage 29 ms

Table 3. Per-frame runtime comparison.

Ablation study. We conduct an ablation study of the loss

terms (LP , LG, LF ) on entire NUS [21] (shown in Table 2).

The LG and LF are the objectives of geometric regulariza-

tion to acquire consistent 3D estimations and prevent from

distortion. With the aids of both LG and LF , the results

show considerably improvements in all metrics.

Runtime comparison. We analyze the runtime of the pro-

posed method on NUS [21] and compare with the state-of-

the-art methods. The time is measured on an RTX2080Ti

GPU. Table 3 summaries the runtime comparison. Despite

our method takes a longer period on the optimization stage

in contrast to some other offline methods, we simply use

parameter-propagation that leverages the scene continuity

of input video to give more than twice times speedup in

contrast to the test-time training method [33]. Moreover,

the rectification stage takes only 29 ms per-frame (34.5 fps)

so that our algorithm enables real-time stability manipula-

tion to users.

5. Conclusions and Future Work

We propose Deep3D Stabilizer, a novel 3D-based self-

supervised method for video stabilization, The depths and

camera poses of a video are estimated by a 3D optimiza-

tion framework without pre-training data. The rectification

stage incorporates the estimated 3D geometry to perform

smoothing for generating a stable video. To our knowledge,

this is the first study on learning-based stabilizer leveraging

3D cues. Our method can handle parallax effect and severe

camera shakes, while attaining high stability and low distor-

tion. Experimental results reveal that our Deep3D Stabilizer

outperforms the state-of-the-art methods in general.

Our future directions include tackling the undesired

intra-frame effects (e.g. motion blur, rolling shutter) and

performing frame extrapolation outside the cropped area

of the stabilized videos to further enhance the visual quality.
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