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Abstract

Weakly supervised semantic segmentation produces a

pixel-level localization from a classifier, but it is likely to

restrict its focus to a small discriminative region of the target

object. AdvCAM is an attribution map of an image that is ma-

nipulated to increase the classification score. This manipula-

tion is realized in an anti-adversarial manner, which perturbs

the images along pixel gradients in the opposite direction

from those used in an adversarial attack. It forces regions ini-

tially considered not to be discriminative to become involved

in subsequent classifications, and produces attribution maps

that successively identify more regions of the target object.

In addition, we introduce a new regularization procedure

that inhibits the incorrect attribution of regions unrelated

to the target object and limits the attributions of the regions

that already have high scores. On PASCAL VOC 2012 test

images, we achieve mIoUs of 68.0 and 76.9 for weakly and

semi-supervised semantic segmentation respectively, which

represent a new state-of-the-art. The code is available at:

https://github.com/jbeomlee93/AdvCAM .

1. Introduction

Semantic segmentation involves the allocation of a se-

mantic label to each pixel of an image. It is an essential task

in image recognition and scene understanding. Deep neu-

ral networks (DNNs) have facilitated tremendous progress

in semantic segmentation [8, 22]; but they require a large

number of training images annotated with pixel-level la-

bels. Preparing such a training dataset is very expensive:

pixel-level annotation of images containing an average of

2.8 objects takes about 4 minutes [4] per image, and a single

large (2048×1024) image depicting a complicated scene

requires more than 90 minutes for pixel-level annotation [9].

The need for pixel-level annotation is addressed by

weakly supervised learning, in which a segmentation net-

work is trained on images with less comprehensive anno-
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Figure 1: Conceptual description of image manipulation

methods for weakly supervised semantic segmentation: (a)

erasure [21, 57, 63]; (b) FickleNet [29]; and (c) AdvCAM.

(d) Examples of successive attribution maps obtained from

iteratively manipulated images.

tations that are cheaper to obtain than pixel-level labels.

Weakly supervised methods can use scribbles [54], points [4],

bounding boxes [26, 51], and class labels [2, 6, 29, 48] as

annotations. Labeling an image with class labels takes about

20 seconds [4], making class labels the cheapest option. In

addition, many public datasets are already annotated with

class labels [10, 12], and automated web searches can also

provide images with class labels [20, 30, 47] although the ac-

curacy of such labels may be low. These considerations make

class labels the most popular form of weak supervision.

Most weakly supervised segmentation methods that use

class labels depend on attribution maps obtained from a

trained classifier [46, 64]. Such a map identifies the image

regions on which the classifier concentrated. However, these

important, or discriminative, regions are relatively small,

and most attribution maps do not represent the whole re-

gion occupied by a target object, which makes those attribu-

tion maps unsuitable for training a semantic segmentation

network. Therefore, many researchers have tried to extend
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regions to cover more of a target object, by manipulating

images [33, 50, 57] or feature maps [21, 29, 63].

One popular method for manipulation is erasure: the clas-

sifier is forced to find new regions of the target object from

which discriminative regions previously located have been

removed. Erasure is effective, but it requires modification

of the network, often by adding additional layers [21, 63],

or additional training steps [57]. Another difficulty is the

provision of a reliable termination condition for the iterative

erasure; the erasure of discriminative region of an image can

cause the DNN to misclassify that image. If the image from

which the discriminative region has been erased crosses the

decision boundary as shown in Figure 1(a), an erroneous

attribution map may be generated. An alternative method

for manipulation is a stochastic perturbation shown in Fig-

ure 1(b). FickleNet [29] diversifies attribution maps from an

image by applying random dropout to the feature maps of a

DNN and aggregates them into a unified map.

We propose a new manipulation method for extending

the discriminative regions of a target object. Our method

is based on adversarial attack [16, 28], but with a benign

purpose. Adversarial attack finds a small perturbation of an

image that pushes it across the decision boundary to change

the classification result. By contrast, our method operates

in an anti-adversarial manner , which is the reversal of ad-

versarial attack. It aims to find a perturbation that pushes

the manipulated image away from the decision boundary,

as shown in Figure 1(c). This manipulation is realized by

adversarial climbing, in which an image is perturbed along

pixel gradients which increase the classification score of the

target class. The result is that non-discriminative regions,

which are nevertheless relevant to that class, gradually be-

come involved in the classification, so that the CAM of the

manipulated image identifies more regions of the object. Fig-

ure 1(d) shows examples of CAMs obtained by applying this

manipulation technique iteratively.

Ascending the gradient ensures that classification score

increases, but the repetitive ascending may cause irrelevant

areas, such as parts of the backgrounds or regions of other

objects, to be activated together or the attribution scores of

some part of the target object to be increased dramatically.

We can address these problems by introducing regularization

terms that suppress the scores of other classes and limit the

attribution scores of the regions that already have high scores.

The attribution maps obtained from images that have been

iteratively manipulated in this way can be used as pseudo

ground-truth masks to train a semantic segmentation network

in a weakly and semi-supervised manner.

Our method is a post-hoc analysis of the trained classifier,

and can be used to improve the performance of existing

methods without modification, resulting in new state-of-the-

art performance on the PASCAL VOC 2012 benchmark in

both weakly and semi-supervised semantic segmentation.

The main contributions of this paper are three-fold:

• We propose AdvCAM, an attribution map of an image

that is manipulated to increase the classification score,

allowing it to identify more regions of an object.

• We empirically demonstrate that our method improves

the performance of several methods of weakly super-

vised semantic segmentation without modification or

re-training of their networks.

• Our technique produces significantly better perfor-

mance on the Pascal VOC 2012 benchmark than ex-

isting methods, in both weakly and semi-supervised

semantic segmentation.

2. Related Work

2.1. Weakly Supervised Learning

Existing weakly supervised semantic segmentation meth-

ods aim to find the whole region occupied by a target object

by obtaining an improved initial seed which contains a good

approximation of the region occupied by the object, and

growing that region so that more of the object is identified.

Obtaining a High Quality Seed: Several methods have

been proposed to improve the quality of the initial seeds

obtained from classifiers. Wang et al. [56] use equivariance

regularization during the training of their classifier so that

the attribution maps obtained from differently transformed

images are equivariant to those transformations. Chang et

al. [6] improve feature learning by using latent semantic

classes that are sub-categories of annotated parent classes,

which can be pseudo-labeled by clustering image features.

Fan et al. [13] and Sun et al. [53] capture information shared

between several images by considering cross-image seman-

tic similarities and differences. Wei et al. [58] and Lee et

al. [32] consider the target object in several contexts by

combining multiple attribution maps from differently dilated

convolutions or from different layers of a DNN.

Growing the Object Region: Some researchers expand

an initial CAM [64] seed using a method analogous to re-

gion growing by examining the neighborhood of each pixel.

Semantic labels are propagated from regions which can con-

fidently be associated with the target object to regions which

were initially ambiguous. SEC [27] and DSRG [23] start

with a initial CAM seed containing ambiguous regions, and

allocates pseudo labels to those ambiguous region during the

training of the segmentation network. PSA [2] and IRN [1]

extend the object region to semantically similar areas by a

random walk. BEM [7] synthesizes a pseudo boundary from

a CAM and then uses a similar propagation with PSA [2].

2.2. SemiSupervised Learning

In semi-supervised learning, a segmentation network is

trained using a small number of images with pixel-level anno-

tations, together with a much larger number of images with
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weak annotations or none at all. Cross-consistency training

(CCT) [42] involves the training of a segmentation network

with unlabeled, or weakly labeled, images by enforcing an

invariance of the predictions over different perturbations,

such as injecting random noise. Souly et al. [52] improve

feature learning by using images synthesized by generative

adversarial network [15]. Hung et al. [24] adopt adversarial

training scheme that reduces the distribution gap between

predicted segmentation maps and ground-truth maps.

2.3. Adversarial Attack

Methods of adversarial attack attempt to fool a DNN

by presenting it with manipulated input with the intent

to deceive. Adversarial attack can be applied to classifica-

tion [16, 40], semantic segmentation [3], and object detec-

tion [60]. Deceptive attribution maps can also be produced

by adversarial image manipulation [11] or model parameter

manipulation [19]. The aim of such attacks is to replace an at-

tribution map with a spurious map, which highlights another

location in the same image, without significantly changing

the output of the DNN. Those methods are interested in

manipulating the image to cause the neural network’s unin-

tended behavior. By contrast, we are interested in finding

the proper manipulation of the input image, so the resulting

attribution map can cover the target object better.

3. Proposed Method

We look more closely at adversarial attack methods and

class activation map in Section 3.1. In Sections 3.2 and 3.3,

we introduce AdvCAM and explain how we generate pseudo

ground truth for weakly supervised semantic segmentation.

Finally, we show how to train a semantic segmentation net-

work with generated pseudo ground-truth in Section 3.4.

3.1. Preliminaries

Adversarial Attack in more detail: An adversarial attack

aims to find a small pixel-level perturbation that can change

the output from a DNN. In other words, given an input x,

it finds the perturbation n satisfying NN(x) 6= NN(x + n),
where NN(·) is the output of the neural network. A repre-

sentative method [16] of constructing n is to consider the

normal vector to the decision boundary of NN, which can be

realized by finding the gradients of NN with respect to x. A

manipulated image x′ can then be obtained as follows:

x′ = x− ξ∇xNN(x), (1)

where ξ determines the extent of the change to the image.

This process can be understood as gradient descent.

Class Activation Map (CAM): It identifies the region of an

image which a classifier has used. A CAM is computed from

the class-specific contribution of each channel of the feature

map to the classification score. It is based on a convolutional

neural network that has global average pooling (GAP) before

the last classification layer. A class activation map CAM(x)
from an image x can be computed as follows:

CAM(x) = w
⊺

c f(x), (2)

where wc is the weights of the final classification layer for

class c, and f(x) is the feature map of x prior to GAP.

A CAM bridges the gap between image-level and pixel-

level annotations. However, the regions obtained by a CAM

are usually much smaller than the full extent of the target ob-

ject, since the small discriminative regions provide sufficient

information for classification.

3.2. AdvCAM

3.2.1 Adversarial Climbing

AdvCAM is an attribution map obtained through adversarial

climbing, which is an anti-adversarial technique that manip-

ulates the image so as to increase the classification score of

that image, with the result that the classifier identifies more

regions of objects. This is the reverse of an adversarial attack

based on Eq. 1, which manipulates the image to reduce the

classification score. Inspired by PGD [28], iterative adversar-

ial climbing of the initial image x0 can be performed using

the following relation:

xt = xt−1 + ξ∇xt−1yt−1
c , (3)

where t (1 ≤ t ≤ T ) is the adversarial step index, xt is

the manipulated image at the t−th step, and yt−1
c is the

classification logit of xt−1 for class c.
This process makes the previously non-discriminative

yet relevant features become more involved in the classifi-

cation. Thus, the CAMs obtained from successive images

manipulated by the iteration can be expected to identify an

increasing amount of the region of the target object. We pro-

duce a localization map A which encapsulates the results

of the iteration by aggregating the CAMs obtained from the

manipulated images at each iteration t, as follows:

A =

∑T

t=0
CAM(xt)

max
∑T

t=0
CAM(xt)

. (4)

3.2.2 How can Adversarial Climbing Improve CAMs?

The connection between a classification logit yc and a CAM,

i.e. yc = GAP(CAM) [63], infers that adversarial climbing

increases yc, and thus the CAM. In this process, features

involved in classification are enhanced. To provide a better

understanding how adversarial climbing generates a denser

CAM, we consider two questions: 1© Can non-discriminative

features be enhanced? 2© Are those enhanced features class-

relevant from a human point of view?

1© Can non-discriminative features be enhanced?:

One might think that changing a pixel with a large gradi-

ent primarily enhances discriminative features. This pixel
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Figure 2: Distributions of the pixel amplification ratio sit for

i ∈ RD and i ∈ RND for 100 images, (a) without regulariza-

tion and (b) with regularization.

change affects many features due to the receptive field. How-

ever, not all the affected features are necessarily discrimi-

native. We support this analysis empirically. We define the

discriminative region RD = {i|CAM(x0)i ≥ 0.5} and the

non-discriminative region RND={i|0.1<CAM(x0)i<0.5},

where i is the location index. The pixel amplification ra-

tio sit is CAM(xt)i/CAM(x
0)i at location i and step t. Fig-

ure 2(a) shows that adversarial climbing makes both si∈RD

t

and si∈RND

t grow, but enhances non-discriminative features

more than discriminative ones, resulting in a denser CAM.

2© Are those enhanced features class-relevant from a

human point of view? We now consider whether the high-

lighted non-discriminative features are class-relevant from

a human point of view. Moosavi et al. [41] argued that a

loss landscape that is sharply curved with respect to input

makes a NN vulnerable to adversarial attack. Researchers

have subsequently shown that a flattened loss landscape, ob-

tained by reducing the curvature of the loss surface [41] or

encouraging the loss to behave linearly [44], can improve

the robustness of a NN. Systems which are robust in this

sense have been shown to produce features that align bet-

ter with human perception and operate in a easier way to

understand [25, 45, 55].

By the same token, we can expect that images manipu-

lated by adversarial climbing will produce features that align

with human perception well because the curvature of loss

surface affected by adversarial climbing is small. To support

this, we visualize the loss landscape of our trained classifier,

following Moosavi et al. [41]: we obtain a manipulation vec-

tor ~n and a random vector ~r from the classification loss ℓ
computed from an image. We determine the surfaces of clas-

sification loss values computed from images, manipulated

by a vector which is interpolated between ~n and ~r using a

range of interpolation ratios. The loss landscape obtained by

adversarial climbing (Figure 3(a)) is much more flatten than

that obtained by adversarial attacking (Figure 3(b)). There-

fore, we can legitimately expect it to increase the attribution

of features relevant to the class from a human point of view,

resulting in a better CAM.

3.3. Regularization

Even if the loss surface obtained by adversarial climbing

is reasonably flat, too much repetitive adversarial manipula-

(a) (b)

Figure 3: Loss landscapes by manipulating images with

weighted sums of the normal vector ~n and a random vector

~r for (a) adversarial climbing and (b) adversarial attack. The

yellow star corresponds to the original image.

tion may cause regions corresponding to objects in the wrong

class to be activated, or increase the attribution scores of the

regions that already have high scores. We address this by

(i) suppressing the logit values associated with other classes

and (ii) restricting high attributions on discriminative regions

of the target object.

Suppressing Other Classes: In an image, objects of dif-

ferent classes can mutually increase logit values. For exam-

ple, since a chair and a dining table mainly occur together

in an image, a NN may infer an increased logit value for the

chair from the region of the table. We thus add regularization

that reduces logit values for all classes except c.
Restricting High Attributions: As mentioned in Sec-

tion 3.2.2, adversarial climbing increases the attribution

scores for both discriminative and non-discriminative re-

gions in the feature map. However, the growth of attribution

scores for discriminative regions is problematic for two rea-

sons: 1) it prevents new regions from being additionally

attributed to the classification score, and 2) if the maximum

value of the attribution score increases during adversarial

climbing, the normalized scores of the remaining area may

decrease. Please see the blue boxes in Figure 4(b).

Therefore we limit the attribution scores in regions that

already have high scores during adversarial climbing, so

the attribution scores of those regions remain similar to that

of x0. We realize this scheme by introducing a restricting

mask M that contains the regions whose attribution scores

of CAM(xt−1) are higher than the threshold τ . More specifi-

cally, M can be represented as follows:

M = 1(CAM(xt−1) > τ), (5)

where 1(·) is an indicator function. An example mask M is

shown in Figure 4(a).

We add the regularization term so that the values of the

CAM corresponding to the regions of M are forced to

equal to that of CAM(x0). With this regularization, si∈RD

t

remains fairly constant but si∈RND

t still grows during adver-

sarial climbing (Figure 2(b)). Figure 2 shows that, adversarial

climbing enhances non-discriminative features more than
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Figure 4: (a) An example image with its CAM and restrict-

ing mask M. (b) The initial CAM, and CAMs after 5, 10

and 20 steps of adversarial climbing, with and without regu-

larization.

discriminative features (< 2×), and regularization makes this

difference even larger (> 2.5×). Thus, new regions of the

target object are found more effectively, resulting in a denser

CAM (Figure 4(b)).

To apply regularization, we modify Eq. 3 as follows:

xt = xt−1 + ξ∇xt−1L, where (6)

L = yt−1
c −

∑

k∈C\c

yt−1

k

− λ
∥

∥M⊙ |CAM(xt−1)− CAM(x0)|
∥

∥

1
.

(7)

C is the set of all classes, λ is a hyper-parameter that controls

the influence of masking regularization, and ⊙ is element-

wise multiplication.

3.4. Training Segmentation Networks

Since CAM is obtained from down-sampled intermediate

features produced by the classifier, it localizes the target ob-

ject coarsely and cannot represent its exact boundary. Many

methods of generating an initial seed for weakly supervised

semantic segmentation construct a pseudo ground-truth by

modifying their initial seeds using existing seed refinement

methods [1, 2, 23]. For example, SEAM [56] and Chang et

al. [6] use PSA [2]; and MBMNet [37] and CONTA [61]

use IRN [1]. We also apply the seed refinement method to

the coarse map A. For weakly supervised learning, we use

the resulting profiles as pseudo ground-truth for training

DeepLab-v2, pre-trained on the ImageNet dataset [10]. For

semi-supervised learning, we employ CCT [42], which uses

IRN [1] to generate pseudo-ground truth masks; we replace

these with our masks, constructed as just described.

4. Experiments

4.1. Experimental Setup

Dataset: We conducted experiments on the PASCAL

VOC 2012 [12] dataset. The images in this dataset come with

masks for fully supervised semantic segmentation, but we

only used them for evaluation. In a weakly supervised setting,

we trained our network on 10,582 training images provided

by Hariharan et al. [17], which have image-level annotations.

In a semi-supervised setting, we used 1,464 training images

with pixel-level annotations and 9,118 training images with

class labels, following previous works [29, 38, 42, 58]. We

evaluated our results by calculating mean intersection-over-

union (mIoU) values for 1,449 validation images and 1,456

test images. Since the labels for test images are not publicly

available, the results for those images were obtained from

the official PASCAL VOC evaluation server.

Reproducibility: We performed iterative adversarial

climbing with T = 27 and ξ = 0.008. We set λ to 7 and τ
to 0.5. To generate the initial seed, we followed the proce-

dure of Ahn et al. [1], including the use of ResNet-50 [18].

For final segmentation, we used DeepLab-v2-ResNet101 [8]

as the backbone network. We followed the default settings

of [8] for training, which included cropping the images to

321×321 pixels. In a semi-supervised setting we used the

same settings as Ouali et al. [42].

4.2. Experimental Results

Quality of the Mask: Table 1 compares the initial seed

and pseudo ground truth masks obtained by our method and

by other recent techniques. Both seeds and masks were gener-

ated from training images of the PASCAL VOC dataset. For

initial seeds, we report the best results by applying a range of

thresholds to separate the foreground and background in the

map A, as following SEAM [56]. Our initial seeds are 6.8%

better than the original CAMs [64], which provide a base-

line, and this also outperforms the other methods. Note that

Chang et al. [6] and SEAM [56] use Wide ResNet-38 [59],

which provides better representation than ResNet-50 [18].

SEAM [56] also uses an auxiliary self-attention module that

performs pixel-level refinement of the initial CAM by con-

sidering the relationship between pixels. We apply CRF, a

widely used post-processing method, to the initial seeds of

Chang et al. [6], SEAM [56], IRN [1], and our method. With

the exception of SEAM, CRF improves the seed by more

than 5% on average, but it improves the seed of SEAM only

by 1.4%. We believe this is because the seed of SEAM is

already refined by the self-attention module. Our seed after

applying CRF is 5.3% better than that of SEAM.

We also compared pseudo ground truth masks, extracted

after seed refinement, with existing methods. Most methods

refine their initial seeds with PSA [2] or IRN [1]. For a

fair comparison, we produced pseudo ground truth masks

using both these seed refinement techniques. Table 1 shows

that our method outperforms the others by a large margin,

whichever seed refinement technique is used.

Weakly Supervised Semantic Segmentation: Table 2

compares our method with other recently introduced weakly

supervised semantic segmentation methods with various lev-

els of supervision: fully supervised pixel-level masks (P),

bounding boxes (B) or image class labels (I), with and

without salient object masks (S). All the results in Table 2
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Table 1: mIoU (%) of the initial seed (Seed), the seed with

CRF (+CRF), and the pseudo ground truth mask (Mask) on

PASCAL VOC 2012 train images.

Method Seed + CRF Mask

Seed Refine with PSA [2]:

PSA CVPR ’18 [2] 48.0 - 61.0

Mixup-CAM BMVC ’20 [5] 50.1 - 61.9

Chang et al. CVPR ’20 [6] 50.9 55.3 63.4

SEAM CVPR ’20 [56] 55.4 56.8 63.6

AdvCAM (Ours) 55.6 62.1 68.0

Seed Refine with IRN [1]:

IRN CVPR ’19 [1] 48.8 54.3 66.3

MBMNet ACMMM ’20 [37] 50.2 - 66.8

CONTA NeurIPS ’20 [61] 48.8 - 67.9

AdvCAM (Ours) 55.6 62.1 69.9

were obtained using a ResNet-based backbone [18]. With

image-level annotation alone, our method achieves mIoU

values of 68.1 and 68.0 for the PASCAL VOC 2012 val-

idation and test images respectively. This is significantly

better than the other methods under the same level of super-

vision. In particular, the mIoU value for validation images

is 4.6% higher than that for IRN [1], which is our baseline.

CONTA [61], the best-performing method among our com-

petitors, achieves an mIoU value of 66.1; but their method

depends upon SEAM [56], which is known to outperform

IRN [1]. If CONTA is implemented with IRN, the resulting

mIoU value is 65.3, which is 2.8% worse than our method.

Figure 5 presents examples of semantic masks produced by

FickleNet [29], IRN [1], and our method.

Our method also outperforms other methods using auxil-

iary salient object mask supervision [35, 36] that provides

exact boundary information of salient objects in an image, or

extra web images or videos [30, 53]. The performance of our

method is also comparable with that of methods [26, 31, 51]

that use bounding box supervision.

Semi-Supervised Semantic Segmentation: Table 3

compares the mIoU scores of our method on the PASCAL

VOC validation and test images with those of other recent

semi-supervised segmentation methods, which use 1.5K im-

ages with fully supervised masks and 9.1K images with weak

annotations. All the methods in Table 3 were implemented

on the ResNet-based backbone [18], except that daggered

(†) methods which used the VGG-based backbone [49]. We

achieve mIoU values of 77.8 and 76.9 for the PASCAL VOC

2012 validation and test images respectively, which is better

than the other methods under the same level of supervision.

Specifically, the performance of our method on the valida-

tion images was 4.6% better than that of CCT [42], which is

our baseline. Our method even outperforms Song et al. [51]

which uses bounding box labels for 9.1K images, instead of

class labels. Figure 5 presents examples of semantic masks

produced by CCT [42] and our method.

Table 2: Weakly supervised semantic segmentation perfor-

mance on PASCAL VOC 2012 val and test images.

Method Sup. val test

Supervision: Stronger than image labels

DeepLab TPAMI ’17 [8] P 76.8 76.2

SDI CVPR ’17 [26] B 69.4 -

Song et al. CVPR ’19 [51] B 70.2 -

BBAM CVPR ’21 [31] B 73.7 73.7

Supervision: Image-level tags

Li et al. ICCV ’19 [34] I, S 62.1 63.0

FickleNet CVPR ’19 [29] I, S 64.9 65.3

Lee et al. ICCV ’19 [30] I, S , W 66.5 67.4

CIAN AAAI ’20 [13] I, S 64.3 65.3

Zhang et al. ECCV ’20 [62] I, S 66.6 66.7

Sun et al. ECCV ’20 [53] I, S 66.2 66.9

Fan et al. ECCV ’20 [14] I, S 67.2 66.7

Sun et al. ECCV ’20 [53] I, S , W 67.7 67.5

IRN CVPR ’19 [1] I 63.5 64.8

SSDD ICCV ’19 [48] I 64.9 65.5

SEAM CVPR ’20 [56] I 64.5 65.7

Chen et al. ECCV ’20 [7] I 65.7 66.6

Chang et al. CVPR ’20 [6] I 66.1 65.9

CONTA NeurIPS ’20 [61] I 66.1 66.7

AdvCAM (Ours) I 68.1 68.0

P−pixel-level mask, I−image class, B−box, S−saliency, W−web

Table 3: Comparison of semi-supervised semantic segmenta-

tion methods on the PASCAL VOC 2012 val and test images.

Method Training set val test

WSSL† [43] 1.5K P + 9.1K I 64.6 66.2

MDC† [58] 1.5K P + 9.1K I 65.7 67.6

Souly et al.† [52] 1.5K P + 9.1K I 65.8 -

FickleNet† [29] 1.5K P + 9.1K I 65.8 -

Song et al. [51] 1.5K P + 9.1K B 71.6 -

Luo et al. [38] 1.5K P + 9.1K I 76.6 -

CCT [42] (baseline) 1.5K P + 9.1K I 73.2 -

AdvCAM (Ours) 1.5K P + 9.1K I 77.8 76.9

P−pixel-level mask, I−image class label, B−box, †− VGG backbone

5. Discussion

5.1. Iterative Adversarial Climbing

We analyzed the effectiveness of the iterative adversarial

climbing and regularization technique introduced in Sec-

tion 3.3 by evaluating the initial seed in terms of mIoU.

Figure 6(a) shows the mIoU of the initial seed for each ad-

versarial iteration. Initially, the mIoU rises steeply, with or

without regularization; but without regularization the curves

peaks around iteration 8.

To analyze this, we evaluate the truthfulness of the newly

localized region at each adversarial climbing iteration in

terms of the proportion of noise, which we define to be the

proportion of pixels that are classified as foreground but are
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Figure 5: Examples of predicted semantic masks for PASCAL VOC val images in weakly and semi-supervised manner.
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Figure 6: Effect of adversarial climbing and regularization on (a) the seed quality and (b) the proportion of noise. (c) Effect of

the regularization coefficient λ. (d) Effect of the masking threshold τ . (d) Effect of the step size ξ.

Table 4: Effects of AdvCAM on different methods of gen-

erating the initial seed: mIoU of the initial seed (Seed) and

of the pseudo ground truth mask (Mask), for the PASCAL

VOC 2012 training images.

Method Seed Mask

Chang et al. [6] 50.9 63.4
+ AdvCAM 53.7 +2.8 67.5 +4.1

SEAM [56] 55.4 63.6
+ AdvCAM 58.6 +3.2 67.2 +3.6

IRN [2] 48.8 66.3
+ AdvCAM 55.6 +6.8 69.9 +3.6

actually background. Without regularization, the proportion

of noise rises steeply after some iterations as shown in Fig-

ure 6(b), which means that new regions tend to be in the

regions of background. Regularization allows new regions

of the target object to be found in as many as 30 adversarial

steps, keeping the proportion of noise much lower than that

of initial CAM. Figure 7 shows examples of attribution maps

at each adversarial iteration with and without regularization.

5.2. HyperParameter Analysis

In the previous section, we looked at the effect of the

number of adversarial iterations (Figures 6(a) and (b)). We

also analyzed the sensitivity of the mIoU of the initial seed

to the other three hyper-parameters used by AdvCAM.

Regularization Coefficient λ: It controls the influence

of the masking technique that limits the attribution scores of

the regions that already have high scores during adversarial

climbing, in Eq. 7. Figure 6(c) shows the mIoU of the initial

seed for different values of λ. When λ = 0, there is no

regularization. Masking technique improves performance by

more than 5% (50.43 for λ = 0 vs. 55.55 for λ = 7). The

flattening of the curve after λ = 5 suggests that it is not

difficult to select a good value of λ.

Masking Threshold τ : It controls the size of the restrict-

ing mask M in Eq. 5, determining how many pixels’ attribu-

tion values will remain similar to that of the original CAM

during adversarial climbing. Figure 6(d) shows the mIoU of

the initial seed for different values of τ . This parameter is

even less sensitive than λ: varying τ between 0.3 and 0.7

produces less than 1% change in mIoU.

Step Size ξ: It determines the extent of the manipulation

to the image in Eq. 6. Figure 6(e) shows the mIoU of the

initial seed for different values of ξ. In our system, changes

in step size ξ are not particularly significant.

5.3. Generality of Our Method

In addition to IRN [1], we experimented with two state-

of-the-art methods of generating an initial seed for weakly

supervised semantic segmentation, namely Chang et al. [6]
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Figure 7: Examples of initial CAMs (the blue boxes) and successive localization maps obtained from images manipulated by

iterative adversarial climbing, with the regularization procedure (top) and without (bottom).
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Figure 8: Feature manifold of images with “bird" (blue) and

“cat" (green), and a trajectory of adversarial climbing for an

image of each class. The dimensionality of the feature was

reduced by t-SNE [39].

and SEAM [56]. We used the authors’ pre-trained classifier

where possible, but we re-trained the classifier of IRN [1]

since the authors do not provide pre-trained one. We also fol-

lowed their experimental settings including the backbone net-

works and mask refinement methods, i.e., we used PSA [2]

to refine the initial seed from “Chang et al. + AdvCAM"

or “SEAM + AdvCAM". Table 4 gives mIoU values for the

initial seed and the pseudo ground truth mask obtained by

combining each method with adversarial climbing. The use

of AdvCAM improves the quality of the initial seed by an

average of over 4%. Our approach does not require those

initial seed generators to be modified or retrained.

5.4. Manifold Visualization

For visualizing a trajectory of adversarial climbing at a

feature-level, we used t-SNE dimensional reduction [39]. We

collect images that contain a single class of a cat or a bird

and that are predicted by the classifier correctly. We then con-

struct a set F containing the features of those images, before

the final classification layer. We also choose a representative

image of a cat, and another of a bird, and construct a set

F ′ containing the features of those two images and their

20 manipulated images by adversarial climbing. Figure 8

presents t-SNE visualization of features in F ∪ F ′. We can

see that adversarial climbing actually pushes the features

away from the decision boundary boundary that separates

the blue and green areas. In addition, despite 20 adversar-

ial climbing steps, the manipulated features did not deviate

significantly from the feature manifold of each class.

6. Conclusion

We have shown how adversarial manipulation can be

used to expand the small discriminative regions of a target

object, so as to obtain a better localization of that object. We

manipulate images with a pixel-level perturbation, which

is obtained from the gradient computed from the output of

classifier with respect to the input image, which increase the

classification score of the perturbed image. The attribution

map of the manipulated image covers more of the target

object. This is a post-hoc analysis of a trained classifier,

and therefore no modification or re-training of the classifier

is required. This allows AdvCAM to be readily integrated

into existing methods. We have shown that AdvCAM can

indeed be combined with recent weakly supervised semantic

segmentation networks, and achieved new state-of-the-art

performance on both weakly and semi-supervised semantic

segmentation.
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