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Abstract

Weakly supervised segmentation methods using bounding

box annotations focus on obtaining a pixel-level mask from

each box containing an object. Existing methods typically

depend on a class-agnostic mask generator, which operates

on the low-level information intrinsic to an image. In this

work, we utilize higher-level information from the behavior

of a trained object detector, by seeking the smallest areas

of the image from which the object detector produces al-

most the same result as it does from the whole image. These

areas constitute a bounding-box attribution map (BBAM),

which identifies the target object in its bounding box and

thus serves as pseudo ground-truth for weakly supervised

semantic and instance segmentation. This approach signif-

icantly outperforms recent comparable techniques on both

the PASCAL VOC and MS COCO benchmarks in weakly

supervised semantic and instance segmentation. In addition,

we provide a detailed analysis of our method, offering deeper

insight into the behavior of the BBAM. The code is available

at: https://github.com/jbeomlee93/BBAM .

1. Introduction

Object segmentation is one of the most important steps in

image recognition. Advances in deep learning have greatly

improved the performance of semantic and instance segmen-

tation [8, 23] through the use of huge amounts of pixel-level

annotated training data. However, annotating with pixel-level

masks requires a lot of effort. According to Bearman et

al. [4], constructing a pixel-level mask for an image contain-

ing an average of 2.8 objects takes about 4 minutes. This

is why weakly supervised methods have been proposed, in

which segmentation networks are trained using annotations

that are less detailed than pixel-level masks, such as bound-

ing boxes [11, 31, 61], or image-level tags [1, 2, 36].

The most easily obtainable annotation is the class label.

∗Correspondence to: Sungroh Yoon <sryoon@snu.ac.kr>.

Labeling an image with class labels takes around 20 sec-

onds [4], but it only indicates that objects of certain classes

are depicted and gives no information about their locations

in the image. Moreover, class labels provide no help in sepa-

rating different objects of the same class, which is the goal

of instance segmentation.

Bounding boxes provide information about individual

objects and their locations. Bounding box annotation takes

about 38.1 seconds per image [5], which is much more attrac-

tive than constructing pixel-level masks. Many researchers

have tackled semantic segmentation [11, 31, 34, 61] and

instance segmentation [3, 27, 31, 41, 63] using bounding

box annotations as a search space in which a class-agnostic

object mask can be found by an off-the-shelf object mask

generator. These are mostly based on GrabCut [54] or mul-

tiscale combinatorial grouping (MCG) [50]. Those mask

generators operate on the low-level information of images,

such as the color or brightness of pixels, and this limits the

quality of the resulting mask. Thus, applying these mask

generators to bounding box annotations requires additional

steps such as estimating what proportion of the pixels in a

bounding-box belong to the corresponding object [34, 61],

iterative refinement of an estimated mask [11], and auxiliary

attention modules [34].

We propose a pixel-level method of localizing a target

object inside its bounding box using a trained object detector.

We make use of attribution maps obtained from the trained

object detector, which highlight the image regions that the

detector focuses on in conducting object detection. Inspired

by the perturbation methods used to explain the output of

image classifiers [10, 17, 18], we introduce a bounding box

attribution map (BBAM) which provides an indication of

the smallest areas of an image that are sufficient to make an

object detector produce almost the same result as that from

the original image. The BBAM identifies the area occupied

by the object in each bounding box predicted by the trained

object detector. Since this localization takes place at the pixel

level, it can be used as a pseudo ground truth for weakly

supervised learning of semantic and instance segmentation.

2643



The main contributions of this paper can be summarized

as follows.

• We propose a bounding box attribution map (BBAM),

which can draw on the rich semantics learned by an ob-

ject detector to produce pseudo ground-truth for train-

ing semantic and instance segmentation networks.

• Our technique significantly outperforms previous state-

of-the-art methods of weakly supervised semantic and

instance segmentation, assessed on the PASCAL VOC

2012 and MS COCO 2017 benchmarks.

• We analyze our method from various viewpoints, pro-

viding deeper insights into the properties of the BBAM.

2. Related Work

Fully supervised semantic and instance segmentation

based on pixel-level annotations is highly reliable, but the

manual annotation process is laborious. This requirement

is overcome by weakly supervised methods based on inex-

act, but easily obtainable, annotations such as scribbles [64],

bounding boxes [31, 61], or class labels [1, 36, 62]. In this

section, we briefly review some recently introduced weakly

supervised approaches that use class labels (Section 2.1) or

bounding boxes (Section 2.2). In addition, we describe some

visual saliency methods related to our method (Section 2.3).

2.1. Learning with Class Labels

A class activation map (CAM) [70] is a widely adopted

technique to obtain a localization map from class labels.

However, a CAM only identifies the most discriminative

regions of objects [36, 37], and hence the majority of exist-

ing methods that use class labels [2, 15, 24, 25, 28, 30, 36,

37, 39, 40, 59] are primarily concerned with expanding the

area of the target object activated by a CAM. For instance,

erasure methods [25, 65] iteratively find new regions of the

target object by removing discriminative regions in an im-

age. Other methods [15, 62] consider the information shared

between several images by capturing cross-image semantic

similarities and differences. Seed growing and refinement

techniques [1, 2, 28] are typically used to expand the regions

representing the target object imperfectly that are in the ini-

tial CAM, on the basis of relationships between pixels. Other

methods construct CAMs that embody the multi-scale se-

mantic context in an image [36, 39, 66]. Despite these efforts,

the information available from class labels remains limited,

so auxiliary information acquired from web images [57] or

videos [24, 37] can be used together.

2.2. Learning with Bounding Boxes

Class labels have led to significant achievements in se-

mantic segmentation, but they are inherently unhelpful in

instance segmentation, which requires the separation of dif-

ferent objects of the same class. In contrast, bounding boxes

do provide information about the location of individual ob-

jects in an image, and they are still much cheaper than con-

structing pixel-level masks [5]. Most existing methods uti-

lized a bounding box as a search space to conduct low-level

searches for object masks. They create a pseudo mask within

a box using off-the-shelf methods of mask proposal such as

MCG [50] or GrabCut [54]. These processes can be guided

by specifying the proportion of the pixels in a bounding

box that are likely to belong to the object [34, 61]. Iterative

mask refinement techniques [11] can also be applied. How-

ever, these methods are largely based on low-level informa-

tion in the image, and they ignore the semantics associated

with the bounding boxes. A rare exception is the multiple-

instance learning formulation with a bounding box tightness

prior [27]: a crossing line within a box must contain at least

one pixel of the target object. The drawback with this ap-

proach is that only a small number of pixels are contributing

to the localization of the object.

2.3. Visual Saliency Methods

Various methods have been proposed to visually explain

the predictions of deep neural networks (DNNs) [6, 17, 18,

55, 70] in a form of a saliency map. However, most studies

have been concerned with classifiers, and only a few have

looked at DNNs performing other tasks [26, 52]. In particu-

lar, there have been no attempts to explain the predictions of

object detectors, except Wu et al. [67], who embedded inter-

pretability inside the DNN, in this case Faster R-CNN [53].

However, the explanation produced by their modified DNN

is not immediately understandable because it is given as a

form of tree, and thus it is not appropriate to generate pseudo

ground truth for weakly supervised segmentation. Gradient-

based methods, such as SimpleGrad [69], SmoothGrad [60],

and Grad-CAM [56], can provide visual saliency maps of

the results from classifiers, but these methods are not easily

extended to object detectors, because of the structural differ-

ence between classifiers and object detectors. Nevertheless,

gradient-based methods have a significant bearing on our

approach, and we look at them in more detail in Section 5.

3. Method

We first provide a brief description of the operation of

object detectors in Section 3.1. In Section 3.2, we introduce

the BBAM for localizing objects in the bounding box. We

then utilize the BBAM for weakly supervised semantic and

instance segmentation in Sections 3.3 and 3.4.

3.1. Revisiting Object Detectors

Modern object detectors can be divided into two cate-

gories: one-stage [42, 44, 51] and two-stage [20, 53] ap-

proaches. We focus on two-stage object detectors such as

Faster R-CNN [53], in which the two stages are region pro-

posal and box refinement. A region proposal network (RPN)
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Figure 1: The size of the perturbation unit needs to be adjusted to the object size. (a) RoIAlign [23] produces perturbation

units of different sizes. (b) Examples of resulting BBAMs with small fixed values of s, large fixed values of s, and values of s

determined adaptively. Fixed values of s, whether large or small, tend to generate unwanted artifacts.

generates candidate object proposals in the form of bounding

boxes; but these proposals are class-agnostic and noisy, and

most of them are redundant, thereby necessitating a subse-

quent refinement step, in which classification and bounding

box regression are performed on each proposal. Since the pro-

posal boxes proposed by the RPN are of different sizes, RoI

pooling (e.g., RoIAlign [23]) is used to convert the feature

map corresponding to each proposal to a predefined fixed

size, as shown in Figure 1(a). The pooled feature map is then

passed to the classification head and also to the bounding

box regression head.

Classification head. It computes the class probability pc

of class c for each proposal and assigns the most likely class

c∗ = argmaxc p
c to the proposal.

Bounding box regression head. It adjusts the noisy

proposal to fit the object by computing the offsets tc =
(tcx, t

c
y, t

c
w, t

c
h) for each class c ∈ {1, 2, · · · , C}. The final

localization is obtained by shifting each coordinate of the

proposal using the offset tc
∗

. We refer to Ren et al. [53] for

the details of the parameterization of each coordinate.

For simplicity, we will abbreviate classification head and

bounding box regression head as cls head and box head,

respectively.

3.2. Bounding Box Attribution Map

Suppose we are given an image I and the corresponding

bounding box annotations. We also have a set of object

proposals O = {ok}Kk=1, either given or obtained by RPN,

where K is the number of proposals. For each proposal ok,

the box head f box and the cls head f cls produce box offsets

tk = f box(I, ok) and the class probability pk = f cls(I, ok),
respectively. We omit the proposal indices k for brevity.

The bounding box attribution map (BBAM) identifies

the important region in the image that the detector needs

to perform object detection. We find the smallest mask

M : Ω → [0, 1] where Ω is a set of pixels, which captures a

subset of the image that produces almost the same prediction

as the original image. A small M reduces the amount of

unnecessary information reaching the detector. The mask

specifies a subset of the image in terms of the perturbation

function Φ(I,M) =I ◦M+µ ◦ (1−M), where ◦ denotes

pixel-wise multiplication, and µ is the per-channel mean of

the training data with the same size as M. For each proposal

o, the best mask M∗ is obtained by optimizing the following

function using gradient descent with respect to M:

M∗ = argmin
M∈[0,1]Ω

λ ‖M‖1 + Lperturb, (1)

Lperturb = 1box

∥

∥tc − f box(Φ(I,M), o)
∥

∥

1

+ 1cls

∥

∥pc − f cls(Φ(I,M), o)
∥

∥

1
,

(2)

where 1box and 1cls are logical variables that have a value of

0 or 1, to control which head is used to produce localizations,

and tc = f box(I, o) and pc = f cls(I, o) are the predictions

for the original image.

Previous studies show that using a mask of the same

spatial size as the input image incurs undesirable artifacts

due to the adversarial effect [21]: even a perturbation in a

tiny magnitude can significantly change the prediction of

a DNN. This problem can be addressed by introducing a

coarse mask downsampled by a stride s [10, 17, 18, 26], so

multiple image pixels are perturbed by a single element of

M. We can then optimize M ∈ R
⌈w/s⌉×⌈h/s⌉ for the image

I ∈ R
w×h, using the perturbation function Φ(I,M) =

I ◦ M̂+ µ ◦ (1−M̂), where M̂ ∈ R
w×h is upsampled M

to a width of w pixels and a height of h pixels.

Existing methods of explaining the output of classi-

fiers [10, 17, 18] or semantic segmentation networks [26]

use a fixed value of s for all images, i.e., they fix the size of a

perturbation unit1. However, in the case of object detectors,

a perturbation unit of fixed size can result in perturbations of

different sizes to the RoI-pooled features, depending on the

size of the proposals, as shown in Figure 1(a). Figure 1(b)

shows how the size of a perturbation unit, after RoI pooling,

can fail to match the sizes of target objects: the perturbations

are too coarse for small objects and too fine for large objects.

Therefore, we use an adaptive stride s(a) where a is the

1The perturbation unit is a block of image pixels perturbed by a single

element of M.
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ratio of the area of the bounding box predicted by the object

detector to that of the image, so that we use a small stride

for a small object and a large stride for a large object.

3.3. Generating Pseudo Ground Truth

Since the BBAM is a pixel-level localization of the target

object in a bounding box predicted by the object detector, it

can be used as pseudo ground-truth for weakly supervised

semantic and instance segmentation, using the following pro-

cedure: We first train an object detector, then create pseudo

ground-truth semantic and instance masks for training im-

ages, using the BBAM of the trained object detector. These

pseudo ground-truth masks can then be used to train seman-

tic and instance segmentation networks. We will now explain

this procedure in more detail.

Creating masks. Multiple proposals on a single object

yield multiple predictions from the object detector. In order

to benefit from the diversity of these predictions, we build the

pseudo ground-truth from the BBAMs of multiple proposals.

For each ground-truth box, we generate a set of object pro-

posals O by randomly jittering each coordinate of the box

by up to ±30%. These proposals are sent to the f cls and the

f box. If the f cls correctly predicts the ground-truth class, and

the intersection over union (IoU) value associated with the

predicted box by f box is greater than 0.8, then the proposal

is added to a set of positive proposals O+ ⊂ O. We then use

a modified version of Lperturb in Eq. 1 to amalgamate all the

positive proposals into a single localization map, as follows:

Lperturb = Eo∈O+ [1box

∥

∥tc − f box(Φ(I,M), o)
∥

∥

1

+ 1cls

∥

∥pc − f cls(Φ(I,M), o)
∥

∥

1
].

(3)

In this equation both 1box and 1cls are set to 1, since the

BBAMs of f box and f cls provide complementary localization

results (see Section 5 for details). A BBAM obtained in this

way may partially cover the target object because not all

pixels of the object are considered by f box and f cls. Therefore

we refine the BBAM using CRFs [33], following previous

work [2, 31, 61]. Finally, we create pseudo instance-level

ground-truth masks by considering the pixels in each BBAM

with values greater than a threshold θ to be foreground. We

denote such a mask as T .

The threshold θ controls the size of T . However, the

proportion of pixels in each BBAM which correspond to

the foreground will vary, so it may not be appropriate to

use a fixed θ. Therefore we introduce two thresholds θfg and

θbg: pixels whose attribution values are higher than θfg are

considered to be part of the foreground, and pixels whose

values are lower than θbg are considered to be part of the

background. The remaining pixels are ignored in the loss

computations during training segmentation networks.

Refine with MCG proposals. MCG [50] is an unsuper-

vised mask proposal generator, which is commonly used in

weakly supervised instance segmentation [3, 31, 45, 71, 72].

We can use mask proposals generated by MCG to refine a

mask T . We first select the mask proposal that has the high-

est IoU with T . However, that proposal may partially cover

the target object. We therefore consider other proposals that

are completely contained within T . More formally, given

a set of MCG proposals {mi}Ki=1, the refined mask Tr is

derived as follows:

Tr =
⋃

i∈S

mi, where

S = {i |mi ⊂ T } ∪ {argmax
i

IoU(mi, T )}.
(4)

3.4. Training the Segmentation Network

We now explain the procedure that we use for training

the semantic and instance segmentation network.

Instance segmentation. We use Mask R-CNN [23], pre-

trained on ImageNet [13]. We use a seed growing tech-

nique [2, 28, 36, 37] for pseudo-labeling the pixels ignored

during training: Starting with the pixels identified by the

initial pseudo ground-truth mask, more of the ignored pixels

progressively participate in the loss computation as training

proceeds. We refer to Huang et al. [28] for more details.

Semantic segmentation. We use DeepLab-v2 [8], pre-

trained on the ImageNet [13] dataset. The pseudo labels

produced in Section 3.3 can easily be made suitable for

semantic segmentation by converting them from instance-

level to class-level. Pixels assigned to two or more object

classes are ignored during the loss computation.

4. Experiments

4.1. Experimental Setup

Dataset and evaluation metrics. We conducted exper-

iments on the PASCAL VOC [14] and the MS COCO

datasets [43]. The PASCAL VOC dataset contains 20 object

classes and one background class. Following the same pro-

tocol as other recent work on weakly supervised semantic

and instance segmentation [1, 3, 27, 61], we used an aug-

mented set of 10,582 training images produced by Hariharan

et al. [22]. The MS COCO dataset has 118K training images

containing 80 object classes. We report mean intersection-

over-union (mIoU) values for semantic segmentation. For

instance segmentation, we report average precision (APτ ) at

IoU thresholds τ ; averaged AP over IoU thresholds from 0.5

to 0.95; and the average best overlap (ABO).

Reproducibility. We used the PyTorch [49] implementa-

tion [46] of Faster R-CNN [53] and Mask R-CNN [23]. For

semantic segmentation, we used the PyTorch implementation

of DeepLab-v2-ResNet101 [47]. We set s(a) to 16 + 48
√
a

and λ to 0.007. We set θfg and θbg to 0.8 and 0.2 respectively.

To find M∗ in Eq. 1, we used Adam optimizer [32] with

a learning rate of 0.02 for 300 iterations. The experiments
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Table 1: Weakly supervised instance segmentation perfor-

mance on PASCAL VOC 2012 val images.

Method AP25 AP50 AP70 AP75 ABO

Full supervision: Instance masks

MNC CVPR ’16 [12] - 63.5 41.5 - -

Mask R-CNN ICCV ’17 [23] 77.3 69.1 49.9 41.9 65.8

Weak supervision: Image-level tags

PRM CVPR ’18 [71] 44.3 26.8 - 9.0 37.6

IAM CVPR ’19 [72] 45.9 28.8 - 11.9 41.9

Label-PEnet ICCV ’19 [19] 49.1 30.2 - 12.9 41.4

CountSeg CVPR ’19 [9] 48.5 30.2 - 14.4 44.3

IRNet CVPR ’19 [1] - 46.7 23.5 - -

Kim et al. WACV ’21 [29] 56.6 38.1 - 12.3 48.2

LIID TPAMI ’20 [45] - 48.4 - 24.9 50.8

Arun et al. ECCV ’20 [3] 59.1 49.7 29.2 27.1 -

Weak supervision: Bounding boxes

SDI CVPR ’17 [31] - 44.8 - 16.3 49.1

Liao et al. ICASSP ’19 [41] - 51.3 - 22.4 51.9

Sun et al. Access ’20 [63] - 56.9 - 21.4 56.9

Hsu et al. NeurIPS ’19 [27] 75.0 58.9 30.4 21.6 -

Arun et al. ECCV ’20 [3] 73.1 57.7 33.5 31.2 -

BBAM (Ours) 76.8 63.7 39.5 31.8 63.0

were performed on NVIDIA Tesla V100 GPUs. For MCG

mask proposals, we used the pre-computed proposals for

PASCAL VOC and MS COCO images provided by Pont-

Tuset et al. [50].

4.2. Weakly Supervised Instance Segmentation

Results on PASCAL VOC. Table 1 compares the perfor-

mance of our method with that of other recent methods of

weakly supervised instance segmentation which use image-

level tags or bounding boxes. Our method significantly out-

performs those methods. Specifically, the AP50 and AP70

values of our method are both 6.0% higher than those of the

previous best performing method which also uses bounding

box annotation [3]. We include results from two fully su-

pervised methods: MNC [12] and Mask R-CNN [23]. The

performance of Mask R-CNN [23], which is fully super-

vised, can be viewed as an upper bound on the achievable

performance of our method. We achieve 92.2% and 95.7% of

the performance of fully supervised Mask R-CNN, in terms

of AP50 and ABO respectively. Figure 2 presents examples

of instance masks produced by our method.

Results on MS COCO 2017. This is a challenging

dataset containing more objects in an image on average

than PASCAL VOC. The sizes of instances of objects are

also more diverse. Table 2 compares the performance of our

method with that of other weakly supervised instance seg-

mentation methods with various levels of supervision on MS

COCO. Our method achieves a 6.7% higher value of AP75

than the previous best performing method which uses bound-

Table 2: Comparison of instance segmentation methods with

various types of supervision on MS COCO. The results of

Hsu et al. [27] were obtained from here.

Method sup. AP AP50 AP75

MS COCO val images

Mask R-CNN ICCV ’17 [23] F 35.4 57.3 37.5

Shen et al. CVPR ’19 [58] I 6.1 11.7 5.5

Laradji et al. arXiv ’19 [35] I,P 7.8 18.2 8.8

Hsu et al. NeurIPS ’19 [27] B 21.1 45.5 17.2

BBAM (Ours) B 26.0 50.0 23.9

MS COCO test-dev images

Mask R-CNN ICCV ’17 [23] F 35.7 58.0 37.8

Fan et al. ECCV ’18 [16] I,SI 13.7 25.5 13.5

LIID TPAMI ’20 [45] I,SI 16.0 27.1 16.5

BBAM (Ours) B 25.7 50.0 23.3

F−Full, I−Image label, P−Point, B−Box, SI−Instance saliency

Table 3: Weakly supervised semantic segmentation on PAS-

CAL VOC 2012 val and test images.

Method val test

Full supervision: Semantic masks

DeepLab TPAMI ’17 [8] 76.8 76.2

Weak supervision: Image-level tags

FickleNet CVPR ’19 [36] 64.9 65.3

Chang et al. CVPR ’20 [7] 66.1 65.9

Sun et al. ECCV ’20 [62] 66.2 66.9

AdvCAM CVPR ’21 [38] 68.1 68.0

Weak Supervision: Bounding boxes

WSSL ICCV ’15 [48] 60.6 62.2

BoxSup ICCV ’15 [11] 62.0 64.6

SDI CVPR ’17 [31] 69.4 -

Song et al. CVPR ’19 [61] 70.2 -

BBAM (Ours) 73.7 73.7

ing box annotations. Since the labels for test-dev images are

not publicly available, the results for the test-dev images

were obtained from the MS COCO challenge website.

4.3. Weakly Supervised Semantic Segmentation

Table 3 compares published mIoU values achieved by

recent methods performing semantic segmentation on vali-

dation and test images from the PASCAL VOC 2012 dataset.

Since the labels for test images are not publicly available,

the results for the test images were obtained from the of-

ficial PASCAL VOC evaluation server. Our method, using

the BBAM, yields an mIoU value of 73.7 for both the val-

idation and the test images in the PASCAL VOC 2012 se-

mantic segmentation benchmark. Our method outperforms

all the methods that use image-level tags or bounding boxes

for supervision. This new state-of-the-art performance was

achieved with vanilla DeepLab-v2 [8] without any modifica-
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Figure 2: Examples of predicted instance masks for PASCAL VOC val images of IRNet [1], Hsu et al. [27], and ours.
Image Ground Truth DSRG Shen et al. BBAM (Ours)Lee et al.FickleNet

Figure 3: Examples of predicted semantic masks for PASCAL VOC val images of DSRG [28], Shen et al. [57], FickleNet [36],

Lee et al. [37], and our method.

Table 4: Effectiveness of using MCG proposals for instance

segmentation. APS , APM , and APL respectively denote the

AP values for small, medium, and large objects.

MCG AP AP50 AP75 APS APM APL

PASCAL VOC val images:
✗ 29.6 61.9 25.8 5.6 21.6 40.1
✓ 33.4 63.7 31.8 6.5 26.4 44.1

MS COCO val images:
✗ 23.5 47.9 20.3 10.4 24.9 36.5
✓ 26.0 50.0 23.9 10.8 28.5 40.3

tions to networks or additional training techniques, such as

label refinement during training [11], recursive training [31],

or fine-tuning with additional losses [61]. Figure 3 presents

examples of semantic masks produced by our method.

The concurrent method, Box2Seg [34], achieved an mIoU

of 76.4% on the PASCAL VOC validation images, but it is

based on UperNet [68], which is a more powerful segmenta-

tion network than DeepLab-v2 [47]. For a fair comparison

between Box2Seg [34] and our BBAM, we attempt to relieve

the benefit of UperNet [68] over DeepLab-v2 [8] by compar-

ing the relative performance of the weakly supervised model

to the fully supervised model. Box2Seg achieves 88.4% of

the performance of its fully supervised equivalent (76.4 vs.

86.4); but the corresponding figure for BBAM and its fully

supervised equivalent is 96.7% (73.7 vs. 76.2).

4.4. Ablation Study

MCG proposals. Table 4 shows how mask refinement

with MCG proposals improves the instance segmentation

performance of our method on the PASCAL VOC and MS

COCO datasets. Mask refinement with MCG proposals is

particularly effective on masks for medium and large objects.

The results obtained without MCG proposals offer the possi-

bility of a fairer comparison with Hsu et al. [27], which do

not use MCG proposals. Our method produces better results

than that of Hsu et al. [27] for both the PASCAL VOC and

MS COCO datasets, which are shown in Tables 1 and 2 re-

spectively. Hereinafter, to observe the contribution of each

component of our system, we report results without using

MCG proposals.

Box and cls heads. BBAM can provide a separate attribu-

tion map for each head of the object detector by controlling

the logical variables 1box and 1cls in Eq. 3. Figure 4 shows

the effect of the BBAM obtained from each head on the
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Figure 4: Effect of each head on in-

stance and semantic segmentation.

θfg θbg G AP AP50 AP75

0.2 0.2 ✗ 24.8 58.3 18.1

0.5 0.5 ✗ 28.3 59.5 24.7

0.8 0.8 ✗ 27.8 59.0 23.3

0.3 0.7 ✗ 28.1 59.5 24.0

0.3 0.7 ✓ 28.4 59.6 24.6

0.2 0.8 ✗ 28.6 60.4 24.0

0.2 0.8 ✓ 29.6 61.9 25.8

Table 5: Analysis of thresholds θfg and θbg,

and effect of the growing technique G.

Ins. Sem.

λ AP AP50 AP75 mIoU

0.001 26.6 58.7 21.1 67.9

0.003 28.1 59.9 22.8 69.7

0.005 28.7 60.2 24.3 70.8

0.007 29.6 61.9 25.8 71.4

0.010 28.7 60.4 24.4 70.7

0.020 28.3 59.6 23.7 70.3

Table 6: Effect of λ on instance (Ins.)

and semantic (Sem.) segmentation.

performance of weakly supervised semantic and instance

segmentation. Using the BBAM obtained from either the

box head (1box = 1 and 1cls = 0) or the cls head (1box = 0
and 1cls = 1) shows competent performance, but the best

performance is achieved when the two heads are used to-

gether. We attribute this to the complementary property of

the two heads, which is examined in more detail in Section 5.

Parameter sensitivity analysis. Table 5 shows the effect

of the thresholds θfg and θbg, and the seed growing technique

G. When θfg equals to θbg, all pixels are assigned to either the

foreground or the background. We see that ignoring some

pixels can improve the AP values, and the seed growing

technique further improves performance. We then studied

the effect of λ, which controls the sparsity of the BBAM,

on the performance of weakly supervised semantic and in-

stance segmentation, with the results shown in Table 6. Our

method shows similar performance on semantic and instance

segmentation over a broad range of values of λ.

5. Detailed Analysis of the BBAM

Examples of BBAMs. Figure 5 shows BBAMs for vali-

dation images from PASCAL VOC [14] and MS COCO [43].

The BBAMs have high values on the boundary and discrim-

inative parts of each object, which are informative in con-

ducting object detection.

Complementary operation of the box and cls heads.

To determine which regions of an object are important to

each head, we investigated the distribution of high-value pix-

els in the BBAM produced by each head. In Figure 6(a), C is

the set of points on the contour of the object mask, and ~xc is

its centroid. For each pixel ~x, we determine r1 = ‖~x− ~xc‖2
and r2 = min~c∈C ‖~x− ~c‖2. Letting the angle between ~x− ~xc

and the x-axis be θ, the position of the pixel ~x relative to

~xc is ~R = ( r1
r1+r2

cos θ, r1
r1+r2

sin θ). In Figure 6(b), we plot

the relative positions of all the pixels with attribution values

above 0.9 obtained from validation images of the PASCAL

VOC dataset. Pixels for which ‖~R‖2 ≈ 1 are near the bound-

ary of the object. We observed that high values attributed by

the box head mainly occur near the boundary of the object,

and those by the cls head mainly occur in the interior.

Furthermore, we observed how much the prediction of

(a)

(b)

Figure 5: Examples of the predicted boxes and correspond-

ing BBAMs. (a) BBAMs for MS COCO validation images.

(b) BBAMs for PACSAL VOC validation images. Each

BBAM corresponds to the predicted box of the same color.

each head changes when either of 1box and 1cls is set to 1

during the optimization of Eq. 1. The extent of the change

in prediction of each head can be inferred from the corre-

sponding loss in Eq. 2. Figure 6(c) shows that applying the

optimization of Eq. 1 to one of the heads increases the loss

of the other head, implying that the discriminative area of the

image necessary for each head is not sufficient for the other

head to maintain the prediction. These two observations sug-

gest that the BBAM of each head provides complementary

attributions. Examples of BBAMs obtained from each head

are presented in the Appendix.

Label noise in object detection. We also looked at the

robustness of our system against noisy box coordinate labels

in instance segmentation. Hsu et al. [27] considered the

effect of up to ±15% of label noise: we extend this to ±20%.

The validity of the bounding box tightness priors used by

Hsu et al. [27] is seriously compromised by inaccurate box

coordinates, with a considerable effect on performance, as

shown in Figure 7(a). Our method shows better robustness

than that of Hsu et al. [27], whether the noise consists of

expanded or contracted bounding box annotations.

2649



Box head Cls head

(a) (c)(b)

: ( , )
Relative 

position

= 1 = 0

= 0 = 1

Figure 6: Complementary operation of the box head and the cls head. (a) The definition of relative position. (b) Relative

positions of the highly activated pixels from each head. (c) Box and class loss curves.
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Figure 7: (a) Robustness against noisy box coordinate labels.

(b) Localization accuracy by different strides. (c) Localiza-

tion accuracy by different attribution methods.

Effectiveness of an adaptive stride s(a). As mentioned

in Section 3.2, we use an adaptive stride 16 ≤ s(a) ≤
64 to cope with feature transformation due to RoI pooling.

Figure 7(b) shows the IoU between the BBAM and ground

truth mask on PASCAL VOC validation images, along with

the results using fixed strides of 24 and 48. Figure 7(b)

shows that a small fixed stride (s=24) is ineffective with

large objects, as is a large fixed stride (s=48) with small

objects. By contrast, an adaptive stride s(a) can deal with

objects of various sizes.

Comparison with gradient-based methods. Gradient-

based attribution methods, such as SimpleGrad [69], Smooth-

Grad [60], and Grad-CAM [56] can also provide attributions

for the output of an object detector. However, since only the

subset of features associated with the imperfect proposal is

delivered to the cls and box heads, the gradients with respect

to pixels, which exist outside the proposal yet essential for

prediction, can vanish (but not completely, due to the re-

ceptive field). We provide empirical results supporting this

analysis on the PASCAL VOC validation images: (1) Fig-

ure 8 shows examples in which SimpleGrad [69] is applied

to three similar predictions from different proposals. Pixels

outside the proposal do indeed influence the predictions, but

SimpleGrad’s attributions mainly appear inside the proposal.

(2) We observed that the majority (87%) of pixels with attri-

bution values above 0.9 appear inside the imperfect proposal;

: proposal : prediction

0

+

Figure 8: Examples of SimpleGrad [69] for three similar

predictions obtained from different proposals.

the mean IoU between the set of positive proposals and the

corresponding predictions is low (i.e., 0.56). (3) Figure 7(c)

shows that attribution maps from gradient-based attribution

methods correlate poorly with ground truth masks.

6. Conclusions

We have introduced a bounding box attribution map

(BBAM), which provides pixel-level localization of each tar-

get object in its bounding box by finding the smallest region

that preserves the predictions of the object detector. Our for-

mulation is built on two-stage object detectors, but applying

our method to one-stage object detectors is straightforward

as long as they have box and cls heads. Our experiments

demonstrate that the BBAM achieves state-of-the-art perfor-

mance on the PASCAL VOC and MS COCO benchmarks in

weakly supervised semantic and instance segmentation. We

have also analyzed BBAMs from various viewpoints, and

compared our technique with other attribution methods, to

provide a deeper understanding of our approach. We expect

BBAMs to be a staple of future work on weakly supervised

semantic and instance segmentation with bounding boxes,

on a par with the CAM for class labels.
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