Blocks-World Cameras

Jongho Lee
University of Wisconsin-Madison
jongho@cs.wisc.edu

Mohit Gupta
University of Wisconsin-Madison
mohitg@cs.wisc.edu

Abstract

For several vision and robotics applications, 3D geometry of man-made environments such as indoor scenes can be represented with a small number of dominant planes. However, conventional 3D vision techniques typically first acquire dense 3D point clouds before estimating the compact piece-wise planar representations (e.g., by plane-fitting). This approach is costly, both in terms of acquisition and computational requirements, and potentially unreliable due to noisy point clouds. We propose Blocks-World Cameras, a class of imaging systems which directly recover dominant planes of piece-wise planar scenes (Blocks-World), without requiring point clouds. The Blocks-World Cameras are based on a structured-light system projecting a single pattern with a sparse set of cross-shaped features. We develop a novel geometric algorithm for recovering scene planes without explicit correspondence matching, thereby avoiding computationally intensive search or optimization routines. The proposed approach has low device and computational complexity, and requires capturing only one or two images. We demonstrate highly efficient and precise planar-scene sensing with simulations and real experiments, across various imaging conditions, including defocus blur, large lighting variations, ambient illumination, and scene clutter.

1. The 3D Revolution

We are in the midst of a 3D revolution. Robots enabled by 3D cameras are beginning to drive cars, explore space, and manage our factories. While some of these applications require high-resolution 3D scans of the surroundings, several tasks do not explicitly need dense 3D point clouds. Imagine a robot navigating an indoor space, or an augmented reality (AR) system finding surfaces in a living room for placing virtual objects. For such applications, particularly in devices with limited computational budgets, it is often desirable to create compact, memory- and compute-efficient 3D scene representations. For example, in piece-wise planar indoor scenes, a popular approach is to first capture 3D point clouds with a depth or an RGBD camera, and then estimate a piece-wise planar representation (Fig. 1).

Historically, point clouds have been the canonical representation for 3D scenes in the computer vision and robotics communities. This is not surprising because almost all depth imaging modalities capture 3D point clouds as the raw data. Indeed, there are several applications which do require dense 3D representations (e.g., CAD modeling, facial motion retargeting), for which points clouds are a good fit. However, point clouds also have limitations: First, dense point clouds are memory, compute and bandwidth intensive. Second, acquisition of point clouds by depth cameras is prone to errors in non-ideal imaging conditions including defocus, multi-path [23, 46, 43] and multi-camera interference [10, 63, 39], and ambient illumination [24, 3]. Finally, extracting piece-wise planar representation by fitting planes to a point cloud requires global reasoning, which may result in inaccurate plane segmentation, especially if the underlying point-clouds are noisy to begin with (Fig. 1).

This raises a natural question: Why capture high-resolution and noisy 3D point clouds at large acquisition costs, only to compress it later into planar representations at large computational cost? If we are going to perform downstream reasoning in terms of planes, can we design imaging modalities that directly capture compact and accurate plane-centric geometric representations of the world?

We propose Blocks-World Cameras, a class of imaging systems which directly recover dominant plane parameters for Blocks-World [57] (piece-wise planar) scenes without creating 3D point clouds, enabling fast, low-cost and accurate reconstructions (Fig. 1). The Blocks-World Cameras are based on a structured-light system consisting of a projector which projects a single pattern on the scene, and a camera to capture the images. The pattern consists of a sparse set of cross-shaped features (each with two line-segments) which get mapped to cross-shaped features in the camera image via homographies induced by scene planes. If correspondences between image and pattern features can be established, the plane parameters can be estimated simply by measuring the deformation (change of angles of the two segments) between these features [28].

For scenes with high geometric complexity (e.g., a large number of distinct dominant planes), the projected pattern must have a sufficiently high feature density, requiring multiple features on each epipolar line, leading to ambiguities. Resolving these ambiguities would require correspondence matching via computationally intensive global reasoning,
Blocks-World scenes (piece-wise planar scenes)

Scene geometry understanding

Navigation

3D floor plans

AR & VR

Figure 1. **Blocks-World Cameras**. (top) Several applications require compact 3D representations of piece-wise planar scenes. (bottom) Even for such blocks-World scenes, conventional approaches first recover dense 3D point clouds, followed by estimating planar scenes via plane-fitting. This process has large acquisition and computational costs, and is often error-prone. We propose Blocks-World Cameras for recovering dominant planes directly without creating 3D point clouds, enabling fast, low-cost and accurate Blocks-World reconstructions.

Thus defeating the purpose of Blocks-World Cameras. Is it possible to perform reconstruction while maintaining both high feature density and low computational complexity?

Scene representation with plane parameter space: We develop a novel geometric method which enables plane estimation even with unknown correspondences. For a given image feature, the set of all the candidate pattern feature correspondences vote for a set of plane hypotheses (in the 3D plane parameter space), called the plane parameter locus. Our key observation is that if the pattern features are spaced non-uniformly on the epipolar line, then the plane parameter loci for multiple image features lying on the same world plane will intersect at a unique location in the parameter space. The intersection point corresponds to the parameters of the world plane, and can be determined by simple peak finding, without determining correspondences.

Implications: Based on this observation, we design a pattern, and a fast algorithm that simultaneously recovers depths and normals of Blocks-World scenes. We demonstrate, via simulations and experiments, capture of clean and clutter-free 3D models, for a wide range of challenging scenarios, including texture-rich and texture-poor scenes, strong defocus, and large lighting variations. The computational complexity of the proposed approach is low, and remains largely the same regardless of the geometric complexity of the scene, enabling real-time performance on high-resolution images. The method requires capturing only 1 or 2 images, and can be implemented with simple and low-cost single-pattern projectors with a static mask. Furthermore, the sparsity of the projected pattern makes it robust to interreflections, a challenging problem which is difficult to solve with dense patterns.

Scope: Blocks-World Cameras are specifically tailored to piece-wise planar scenes, in applications requiring compact 3D representations consisting of a small set of planes. It is not meant to be a general-purpose technique that can replace conventional approaches. Indeed, for scenarios requiring dense geometry information for complex scenes, existing 3D imaging approaches will achieve better performance. However, the proposed technique can facilitate fast and robust dominant plane extraction, with applications in robotic navigation [66, 56], indoor scene modeling and AR.

2. Related Work

Piece-wise planar scene constraint: There is a long tradition of piece-wise planar 3D scene reconstructions, starting from the Blocks-World [57] and Origami-World [37] works nearly five decades ago. Since then, piece-wise planarity has been widely used as a prior for accurate 3D modeling [55, 49, 15, 31, 18, 7, 69], and scene understanding [29, 54, 76, 20]. In Multi-View Stereo, the planar scene constraint has been used to overcome lack of texture, repetitive structures, and occlusions [18, 64, 44, 7, 69]. Planes are popular scene primitives in SLAM [59, 66, 12, 74, 38, 36] as well, having been used for efficient and accurate 3D registration between frames [56, 66]. The planar scene constraint...
has been used for detecting junctions of indoor scenes or wireframes of urban scenes to recover scene layouts from a single RGB image [54, 76]. The Manhattan world constraint [13] which assumes the scenes to be made of axis-aligned planes has been exploited to reconstruct indoor environments such as floor-plans and room layouts [11, 40].

Plane-fitting to point clouds: A piece-wise planar scene representation can be created from the dense, and often noisy, 3D point clouds captured by conventional depth cameras, by fitting planes. For example, Hough transform [32] is a method for detecting parameterized objects such as lines and circles in images, and is easily extended to 3D planes [8, 33]. The RANdom SAmple Consensus (RANSAC) [16] has also been widely used for plane detection due to its robustness to outliers [19, 7, 67]. Other approaches for plane-fitting include region growing [52, 30, 48], as well as energy-based multi-model fitting [35, 55, 69]. These approaches can be computationally intensive especially for cluttered scenes, often requiring complex global reasoning. In contrast, Blocks-World Cameras infer the parameters of the piecewise planar scenes directly using lightweight computational algorithms, without capturing 3D point clouds.

Scene planarity in learning-based approaches: Recently, scene planarity has been used in learning-based approaches for recovering scene geometry from a single RGB image [42, 73, 41, 71]. While these learning-based approaches have started producing promising results, their generalization abilities are not well understood. Our work leverages geometric multi-view cues from a structured-light setup, and can be used in a complementary manner to improve the generalization abilities of learning-based approaches.

3. Mathematical Preliminaries

Two-view geometry of structured-light: The Blocks-World Camera is based on a structured-light system, which typically consists of a projector and a camera [45], as shown in Fig. 2 (a). We assume a pinhole projection model for both the camera and the projector, and define the camera and projector coordinate systems (CCS and PCS) centered at c_c and c_p, the optical centers of the camera and the projector, respectively. c_c and c_p are separated by the projector-camera baseline b along the x axis. The world coordinate system (WCS) is assumed to be the same as the CCS centered at c_c, i.e., $c_c = [0, 0, 0]^T$ and $c_p = [b, 0, 0]^T$ in the WCS. Without loss of generality, both the camera and the projector are assumed to have the same focal length f. We further assume a rectified system such that the epipolar lines are along the rows of the camera image and projector pattern. These assumptions (same focal length, rectified setup) are made only for ease of exposition, and are relaxed in practice by calibrating the projector-camera setup and rectifying the captured images to this canonical configuration [45].

Plane parameterization: A 3D plane can be characterized by three parameters: $\Pi = \{D, \theta, \phi\}$, where $D \in [0, \infty)$ is the shortest distance from c_c to Π, $\theta \in [0, \pi]$ is the polar angle between the plane normal and the $−z$ axis, and $\phi \in [0, 2\pi)$ is the azimuthal angle from the x axis to the plane normal (clockwise), as shown in Fig. 2 (a). The plane normal is given by: $n = [\sin \theta \cos \phi, \sin \theta \sin \phi, −\cos \theta]^T$.

4. Single-Shot Blocks-World Camera

Structured-light (SL) systems can be broadly classified in two ways. Multi-shot methods such as line stripping [62, 4, 14], binary Gray coding [34, 61] or sinusoid phase-shifting [65] require projecting multiple patterns on the scenes. These techniques can achieve high depth-precision, but are not suitable for dynamic scenes. In contrast, single-shot methods [75, 72, 58, 60] require projecting only a single pattern, enabling them to handle scene/camera motion. Furthermore, these methods can be implemented with low-cost single-pattern projectors using a static mask or a diffractive optical element, instead of a full projector that can dynamically change the projected patterns.

In this section, we present single-shot Blocks-World Cameras that can estimate both depths and surface normals of piece-wise planar scenes with a single projected pattern. These cameras have low complexity, both computationally (low-cost algorithms) and for hardware (single-shot).

4.1. What Pattern should be Projected?

The performance of a single-shot SL system is determined by the projected pattern. There are several single-shot SL patterns such as 1D color De Bruijn codes [75, 72], multiple sets of 1D stripes for all-round 3D scanning [17], sparse 2D grid of lines [60, 53], 2D color encoded grids [9, 58], grid patterns with spacings that follow a De Bruijn sequence [68], 2D pseudo-random binary code [70], and 2D random dots (e.g., MS Kinect V1). While these patterns have been designed for explicitly recovering scene depths, our goal is different: directly estimate the plane parameters.
without recovering dense depth maps. Next, we describe the design of a new pattern optimized for achieving this goal.

Pattern design principles: There are two key considerations when designing the pattern. First, for piece-wise planar scenes, a pair of corresponding patches in the projected pattern and the captured images are related via a homography (assuming the patches lie on a single plane). The homography contains sufficient information to uniquely recover the parameters of the 3D scene plane [27], and it preserves straight lines and their intersections. Second, a pattern with a sparse set of features (a small fraction of the projector pixels are on) enables robust and fast correspondence matching, potentially reduced source power with diffractive efficiency. One way to achieve this is to place a small set of identical features distributed spatially. Each feature is cross-shaped, consisting of two intersecting line-segments. For optimal performance, the segments make angles of 45° and 135° with the epipolar line (Fig. 2 (b)). See supplementary report for a detailed discussion. For sufficiently small line segments, the image features in the camera image also have cross shapes (Fig. 2 (b)). These cross-shaped features facilitate robust localization and efficient plane parameter estimation with computationally light-weight algorithms, as discussed next.

4.2. Plane from a Known Correspondence

Consider a pattern feature \(P = \{ \mathbf{u}_p, \mathbf{v}_p, \mathbf{p}_p \} \), where \(\mathbf{v}_p \) and \(\mathbf{u}_p \) are two line vectors and \(\mathbf{p}_p \) is the intersection of \(\mathbf{v}_p \) and \(\mathbf{u}_p \), as shown in Fig. 2 (b). Let the corresponding image feature \(I \) be described by \(I = \{ \mathbf{u}_c, \mathbf{v}_c, \mathbf{p}_c \} \), where \(\mathbf{v}_c \) and \(\mathbf{u}_c \) are line vectors corresponding to \(\mathbf{v}_p \) and \(\mathbf{u}_p \), and \(\mathbf{p}_c \) is the intersection of \(\mathbf{v}_c \) and \(\mathbf{u}_c \). We assume that \(P \) lies within a single scene plane, and is completely visible to the camera.

The elements in \(P \) and \(I \) are described in their own coordinate systems (PCS and CCS, respectively), i.e., for the pattern feature \(P = \{ \mathbf{u}_p, \mathbf{v}_p, \mathbf{p}_p \} \),

\[
\mathbf{u}_p = [u_{px}, u_{py}, 0]^T, \quad \mathbf{v}_p = [v_{px}, v_{py}, 0]^T, \quad \mathbf{p}_p = [p_{px}, p_{py}, f]^T.
\]

For the corresponding image feature \(I = \{ \mathbf{u}_c, \mathbf{v}_c, \mathbf{p}_c \} \),

\[
\mathbf{u}_c = [u_{cx}, u_{cy}, 0]^T, \quad \mathbf{v}_c = [v_{cx}, v_{cy}, 0]^T, \quad \mathbf{p}_c = [p_{cx}, p_{cy}, f]^T.
\]

Then, if the correspondence is known, i.e., if pairs of corresponding \(P \) and \(I \) can be identified, the plane parameters can be recovered analytically by basic geometry, as illustrated in Fig. 3. Specifically, each cross-shaped feature correspondence provides two line correspondences \(\{ \mathbf{u}_c, \mathbf{u}_p \} \) and \(\{ \mathbf{v}_c, \mathbf{v}_p \} \), which can be triangulated to estimate two 3D line vectors \(\mathbf{l}_u \) and \(\mathbf{l}_v \), respectively. The plane \(\Pi \) can be estimated from the estimates of \(\mathbf{l}_u \) and \(\mathbf{l}_v \). In particular, the surface normal \(\mathbf{n} \) of \(\Pi \) is given as:

\[
\mathbf{n} = \frac{((\mathbf{p}_p \times \mathbf{v}_p) \times (\mathbf{p}_c \times \mathbf{v}_c)) \times ((\mathbf{p}_p \times \mathbf{u}_p) \times (\mathbf{p}_c \times \mathbf{u}_c))}{\|((\mathbf{p}_p \times \mathbf{v}_p) \times (\mathbf{p}_c \times \mathbf{v}_c)) \times ((\mathbf{p}_p \times \mathbf{u}_p) \times (\mathbf{p}_c \times \mathbf{u}_c))\|}.
\]

The shortest distance \(D \) from \(\mathbf{c}_c \) to \(\Pi \) is:

\[
D = \frac{bn^T \mathbf{p}_p}{p_{px} - p_{cx}} - n^T \mathbf{c}_p.
\]

Given \(\mathbf{n} \) and \(D \), depth of \(\mathbf{p}_c \) can be computed. See the supplementary report for details and measurable plane space.

Avoiding degenerate solutions: If line correspondences \(\{ \mathbf{u}_c, \mathbf{u}_p \} \) or \(\{ \mathbf{v}_c, \mathbf{v}_p \} \) are collinear with epipolar lines, it gives a degenerate solution. To avoid this, the line segments of the features should not be aligned with the epipolar lines.

5. Plane from Unknown Correspondences

As described above, if the feature correspondences are known, the plane parameters can be estimated using Eqs. 3 and 4. One way to achieve this is to place a single feature on each epipolar line of the pattern. In this case, for each image feature, the correspondence can be computed trivially. However, this limits the maximum number of pattern features by the number of rows of the pattern. In order to maximize the likelihood of each scene plane being illuminated by a feature, we need to have a sufficiently large density of pattern features, which requires placing multiple pattern features on each epipolar line. While this approach increases the feature density, the pattern now consists of multiple identical features on each epipolar line, leading to ambiguities. Without additional information or complex global reasoning, it is challenging to find the correct feature correspondences. This presents a tradeoff: Is it possible to perform reconstruction while maintaining both high feature density and low computational complexity?
5.1. Geometric Approach to Correspondence-Free Plane Estimation

In order to address this tradeoff, we develop a novel, light-weight computational approach for estimating plane parameters without explicitly computing correspondences between image and pattern features. Let the set of pattern features on one epipolar line of the projected pattern be \(\{P_1, \ldots, P_N\} \). A subset of these features are mapped to the camera image, resulting in the set of image features \(\{I_1, \ldots, I_M\} \) (upper row of Figs. 4 (a) and (b)).

Consider one image feature, say \(I_1 \). All the \(N \) pattern features are candidate matching features. Each candidate pattern feature results in a plane hypothesis \(\Pi = \{D, \theta, \phi\} \) by triangulating with the image feature \(I_1 \). Accordingly, the set of all candidate pattern features \(\{P_1, \ldots, P_N\} \) create a set of plane hypotheses \(\Lambda_1 = \{\Pi_{11}, \ldots, \Pi_{1N}\} \), where \(\Pi_{1n} \) (\(n \in \{1, \ldots, N\} \)) is the plane parameters computed from \(I_1 \) and \(P_n \). Each plane hypothesis can be represented as a point in the 3D plane parameter space (we call this the \(\Pi \)-space), as shown in the upper row of Fig. 4 (c). Therefore, the set of plane hypotheses \(\Lambda_1 = \{\Pi_{11}, \ldots, \Pi_{1N}\} \) create a plane parameter locus in the \(\Pi \)-space. Similarly, we can create another plane parameter locus \(\Lambda_2 = \{\Pi_{21}, \ldots, \Pi_{2N}\} \) by pairing \(I_2 \) and \(\{P_1, \ldots, P_N\} \).

Observation 1. The key observation is if \(I_1 \) and \(I_2 \) correspond to scene points on the same scene plane, then two loci \(\Lambda_1 \) and \(\Lambda_2 \) must intersect. If they intersect at a unique location \(\Pi \) in the \(\Pi \)-space, then \(\Pi \) is the true plane parameters.

Voting in the plane parameter space: This is a simple, yet powerful observation, which motivates a computationally light-weight voting-based approach for plane estimation that does not require correspondence estimation. For each detected image feature, we compute its plane parameter locus as described above. The locus is the set of candidate planes that the feature votes for. We then collect votes from all the detected image features; the \(\Pi \)-space with loci from all the image features can be considered a likelihood distribution on scene planes. Fig. 5 (b) shows an example of \(\Pi \)-space. Finally, we estimate plane parameters of the dominant scene planes by identifying dominant local peaks in the \(\Pi \)-space. For a given local peak, all the image features that voted for the peak belong to the corresponding plane. For those image features, depth and surface normal values can be computed by plane-ray intersection (Fig. 5 (d)).

This approach is reminiscent of conventional Hough transform-based plane estimation, with two key differences: First, in conventional Hough transform, the planes are estimated from 3D points (each 3D point votes for candidate planes that pass through it), requiring first a 3D point cloud to be computed. In contrast, in our approach, 2D image features directly vote for candidate planes, thus avoiding the potentially expensive point cloud generation. Second, in the conventional approach, each 3D point votes for a dense set of potential planes. Coupled with a large number of 3D points, this can result in large computational and memory costs [47]. On the other hand, in the proposed approach, we use a sparse set of features, and each feature votes for a small, discrete set of candidate planes (e.g., we used < 10 in our experiments). This results in considerably, up to 2 orders of magnitude lower computational costs, especially in scenes with a small number of dominant planes.

5.2. Do Parameter Loci Have Unique Intersections?

The voting-based algorithm described above relies on an important assumption: plane parameter loci for different image features corresponding to the same world plane intersect in a unique location. If, for example, the loci for all the features on a camera epipolar line overlap at several locations, we will not be able to identify unique plane parameters. This raises the following important questions: Does this assumption hold for general scenes? What is the effect, if any, of the pattern design (e.g., the spatial layout of the features)? In order to address these, we describe two key geometric properties of the plane parameter locus.

Property 1. The parameter locus \(\Lambda_m = \{\Pi_{m1}, \ldots, \Pi_{mN}\} \) created by pairing an image feature \(I_m \) and a set of pattern features \(\{P_1, \ldots, P_N\} \) on the same epipolar line always lies on a plane parallel to the \(\phi = 0 \) plane in the \(\Pi \)-space.

Property 2. Let \(\Lambda_m = \{\Pi_{m1}, \ldots, \Pi_{mN}\} \) be the parameter locus created in the same way as Property 1. Let \(P_n \) (\(n \in \{1, \ldots, N\} \)) be the true corresponding pattern feature of \(I_m \). Let \(d_{m\mu} \) be the distance between pattern fea-
tudes P_μ and P_n on the epipolar line. Then, the locations of the elements of A_m are a function only of the set $D_\mu = \{d_{\mu n} | n \in \{1, \ldots, N\}\}$ of relative distances between the true and candidate pattern features.

See supplementary report for proofs. The first property implies that it is possible to recover the azimuth angle of the plane normal from a single parameter locus, without computing correspondences. An example is illustrated in the upper row of Figs. 4 (a-c). Since φ is constant across the locus, for the rest of the paper, we visualize parameter loci in 2D $D - \theta$ space, as shown in the upper row of Fig. 4 (d). Note that full 3D II-space is necessary when differentiating between planes with the same D and θ, but different φ.

The second, perhaps more important, property implies that if the pattern features are uniformly spaced on the epipolar line, the resulting loci will overlap significantly. This is because of the following: for a uniformly spaced pattern, the set of relative distances (as defined in Property 2) for two distinct pattern features will share several common values. Since the elements of the parameter loci (of the corresponding image features) are determined solely by the set of relative distances, the loci will also share common locations. An example is shown in the upper row of Fig. 4 (d). This is not a degenerate case; for uniformly spaced patterns, regardless of the scene, the loci will always have large overlaps, making it impossible to find unique intersections. How can we ensure that different loci have unique intersections?

Patterns with non-uniform feature distribution: The key idea is to design patterns with features that are non-uniformly spaced across epipolar lines. The lower row of Fig. 4 (a) and (b) show an example, where N pattern features $\{P_1, \ldots, P_N\}$ are non-uniformly distributed on an epipolar line, and M of them are imaged as image features $\{I_1, \ldots, I_M\}$. If this condition is met, the parameter loci do not overlap, except at the true plane parameters, as shown in the lower row of Fig. 4 (d). This enables estimation of the plane parameters even with unknown correspondences.

In our experiments, we placed 7 pattern features non-uniformly on each epipolar line. To ensure robustness against errors in epipolar line estimation, we place features on every k^{th} epipolar line on the pattern. See the supplementary report for details and the resulting patterns.

5.3. Image Feature Localization and Measurement

We localize cross-shaped image features by applying Harris corner detector [26] to the captured image, after thinning morphological operation. Although a single image is sufficient, for scenes with strong texture and lighting variations, we capture two camera frames in rapid succession, with and without the projected pattern, and take their difference. For each candidate feature location, the two line segments of the image feature $(u_c$ and v_c in Fig. 2) are extracted. For robustness against projector/camera defocus blur, we extract two edges (positive and negative gradients) from each (possibly blurred) line segment, and compute their average. The line fitting computational routine is fast since it has a closed-form solution. Image feature $I = \{u_c, v_c, p_c\}$ is then estimated from the two line segments, and their intersection point p_c.

5.4. Toward Higher Memory Efficiency

Blocks-World Cameras are memory-efficient since they do not require capturing and processing dense 3D point clouds. However, the plane parameter II-space can occupy considerably amount of memory if very small bin sizes are used. We develop a memory-efficient version of Blocks-World Camera algorithm which does not explicitly create a plane parameter voting array. The key observation is that since the Blocks-World Cameras provide a pool of plane candidates with different confidence (e.g., larger number of plane candidates for dominant planes), it is possible to estimate scene planes by finding inliers via a RANSAC-like procedure, instead of voting in the II-space. See the supplementary report for details of the algorithm and the results.

6. Experiments and Results

6.1. Validation by Simulations

We simulate the Blocks-World Camera imaging process with a ray tracing tool [1], using 3D models from an indoor dataset [2]. This allows us to compare the Blocks-World Camera reconstructions with the ground truth, as well as alternate approaches such as plane-fitting to point clouds.

Ground truth comparison: Fig. 5 (a) shows a pattern-projected scene with five dominant planes labeled as Π_1 to Π_5. Plane parameters for these planes are estimated from the II-space (Fig. 5 (b)). The image features that voted for each dominant plane are identified and segmented to form the plane boundary by their convex hull (Fig. 5 (c)). The proposed approach accurately recovers 3D scene geometry in terms of both depths and surface normals (Fig. 5 (d)).

Comparison with plane-fitting: For evaluating conventional plane-fitting approaches, we simulate a structured-light system that captures a 3D point-cloud of the scene using sinusoid phase-shifting [65]. Fig. 6 (a) shows an example scene with six dominant planes. Fig. 6 (b) and the bottom center of Fig. 1 show the captured depth map and a point cloud. We use 3D Hough transform [8] and RANSAC, two approaches which have been widely used to extract planes from point clouds. We use the randomized version of the 3D Hough transform (RHT) [8] due to its computational efficiency. Figs. 6 (c), (d), and (e) show plane segmentation results by RHT, RANSAC, and Blocks-World Cameras, respectively. To ensure fair comparisons, for plane-fitting approaches, we down-sample the point cloud such that the
number of 3D points is the same as the number of image features captured by the Blocks-World Cameras.

For RHT (Fig. 6 (c)), it is challenging to extract small, distant or noisy planes because the votes for these planes are not reliably accumulated by random selection of points. Although RANSAC achieves better plane extraction, both RHT and RANSAC result in erroneous plane segmentation results (e.g., orange and blue points on the walls in Fig. 6 (c) and (d), respectively). This is a common issue with point cloud-based approaches since each 3D point does not have local plane information. In comparison, Blocks-World Cameras achieve accurate plane segmentation since each cross-shaped image feature contains partial information on the plane it belongs to, and does not need global reasoning. See the supplementary report for implementation details for RHT, RANSAC, and the Blocks-World Cameras.

Fig. 7 shows quantitative comparison between the Blocks-World Cameras and the conventional plane-fitting approaches in terms of (a) the accuracy of the extracted plane parameters, and (b) run-time of MATLAB implementations. We used a well-optimized implementation of MSAC (M-estimator sample and consensus) for RANSAC plane-fitting. In run-time comparison, we did not include time to create the point clouds for conventional approaches. RHT estimates the plane parameters accurately, but it fails to find all dominant planes and is slow in run-time. RANSAC is fast and finds all dominant planes robustly, but less accurate in plane parameter estimation. The Blocks-World Cameras can extract the plane parameters well in terms of both accuracy and run-time even without creating the point cloud. See the supplementary report for additional discussions on the trade-off between the run-time and plane estimation accuracy while varying the sampling rate of the 3D point clouds. Comparisons with other structured-light schemes as well as alternate 3D modalities are also discussed in the supplementary report.

6.2. Blocks-World Cameras in-the-Wild

We prototype a Blocks-World Camera using a structured-light system consisting of an Epson 3LCD projector, and a digital SLR camera (Canon EOS 700D). The projector-camera baseline is 353 mm. The system is rectified such that epipolar lines are aligned along the rows of the pattern and the captured image. Using this setup, we validate the performance of Blocks-World Camera with various challenging scenes in the real world.

Scene with large defocus blur: The ability to handle defocus blur is critical for the Blocks-World Cameras when imaging scenes with large depth variations. Our image feature detection algorithm averages the detected line segments for both positive and negative edges as mentioned in Section 5.3, thereby achieving robustness to defocus blur. Fig. 8 (a) shows a scene consisting of planar objects at different distances from the camera. The camera and the projector are focused on the corner between two walls to create a large blur on the rightmost wall just to demonstrate the performance over a wide range of blurs (Fig. 8 (b)). The Blocks-World Cameras can reliably estimate the planes even with blurred features, up to a certain blur size (Fig. 8 (c, d)). For scenes with huge depth variation, the blur size can be reduced by lowering the aperture, using extended depth-of-field approaches, and diffractive optical elements.

Performance under ambient light: Fig. 9 demonstrates the performance of the Blocks-World Cameras under different ambient lighting conditions. Since our approach is based on shape features instead of intensity features, it is robust to photometric variations (photometric calibration is not required) leading to stable plane estimation under different lighting. When ambient light completely overwhelms the projected pattern, the features may not be detected. This issue can be mitigated by narrow-band illumination, spatio-temporal illumination and image coding [25, 51, 50].

Scene with specular interreflections and strong textures: Fig. 10 (a) shows a scene with a metallic elevator door under strong, directional ambient light (upper), and a picture with complicated textures (lower). The Blocks-World Cameras use geometric features which encode the scene geometry through deformation of the feature shape, and are thus robust to challenging illumination conditions resulting in accurate geometry estimation (Fig. 10 (b, c)).

Non-planar scenes: Although Blocks-World Cameras are designed for piece-wise planar scenes, their performance degrades gracefully for non-planar scenes. Fig. 11 (a) shows a cylindrical object, and the piece-wise planar ap-
Figure 6. Comparison with plane-fitting. (a) A 3D scene. (b) Depth map captured by a simulated structured-light system. (c, d, e) Plane segmentation results by randomized 3D Hough transform, RANSAC, and Blocks-World Cameras. The Blocks-World Cameras achieve more accurate plane segmentation than conventional approaches since each cross-shaped image feature contains local plane information.

Figure 7. Quantitative performance comparison. (a) Plane parameters error comparison. (b) Run-time comparison. Blocks-World Cameras can extract the plane parameters well in terms of both accuracy and run-time even without creating the point cloud.

Figure 8. Robustness to defocus blur. (a, b) A scene with varying amounts of defocus blur. (c, d) Measured plane depths and normals. Our approach is robust to defocus blur.

Figure 9. Robustness to ambient light. (a) A scene under different indoor lighting conditions. (b, c) Recovered plane depths and normals. Our shape features are robust to photometric variations.

Figure 10. Robustness to specular reflections and strong textures. (a) Scenes under challenging illumination conditions with specular reflections and strong textures. (b, c) Reconstructed plane depths and surface normals by Blocks-World Camera.

Figure 11. Approximating non-planar scene with piece-wise planar scene. (a) Cylinder scene. (b) Plane estimation with relatively small and large bin sizes of II-space, respectively.

7. Limitations and Future Work

Holes in reconstructions: Due to a sparse set of features in the pattern, the reconstructions have holes in regions where features are absent. An important next step is to develop sensor-fusion systems based on the proposed approach, by leveraging learning-based methods [42, 41] (that produce potentially inaccurate, but dense reconstructions) to generate dense, high-accuracy, hole-free reconstructions.

Non-planar geometric primitives: The proposed approach is designed for reconstructing planar surfaces. A promising line of future work is to design patterns and reconstruction algorithms for non-planar geometric primitives such as spheres, generalized cylinders [6] and geons [5]. Such a generalized Blocks-World Camera will find applications in a considerably broader set of scenarios.

Acknowledgement. This research was supported in parts by ONR grant N00014-16-1-2995, NSF CAREER Award 1943149, and Wisconsin Alumni Research Foundation.
References

[31] Thomas Holzmann, Michael Maurer, Friedrich Fraundorfer, and Horst Bischof. Semantically aware urban 3d reconstruction with plane-based regularization. In Proceedings of the

[64] Sudipta Sinha, Drew Steedly, and Rick Szeliski. Piecewise planar stereo for image-based rendering. 2009. 2

