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Abstract

We tackle the task of image retrieval with text feedback,
where a reference image and modifier text are combined to
identify the desired target image. We focus on designing an
image-text compositor, i.e., integrating multi-modal inputs
to produce a representation similar to that of the target im-
age. In our algorithm, Content-Style Modulation (CoSMo),
we approach this challenge by introducing two modules
based on deep neural networks: the content and style modu-
lators. The content modulator performs local updates to the
reference image feature after normalizing the style of the
image, where a disentangled multi-modal non-local block
is employed to achieve the desired content modifications.
Then, the style modulator reintroduces global style infor-
mation to the updated feature. We provide an in-depth
view of our algorithm and its design choices, and show
that it accomplishes outstanding performance on multiple
image-text retrieval benchmarks. Our code can be found at:
https://github.com/postBG/CosMo.pytorch

1. Introduction

Image retrieval is a crucial computer vision task that
serves as the foundation for a variety of applications such
as product search [22, 45, 61], person re-identification [69,

, 42], and internet search [61, 52]. One of the most
challenging aspects of building image retrieval systems is
the ability to understand the user’s intention accurately.
Currently, a majority of image search engines are based
on either image-to-image matching [52, 61] or image-text
matching [59, 74, 70], where a user provides a single im-
age or sentence as an input to find the most relevant images.
However, it is not straightforward to express the complex
target concept via a single image or text and design a model
representing the intended concept. Furthermore, the users
are unable to refine the retrieved results that fail to reflect
their intention effectively.

We explore a different setting of image search—image
retrieval with text feedback [66, 10]—where a reference im-

* equal contribution.

@ Similar t-shirt but
° has a different print.

(a) Example of a content modification

g f

) ‘ Similar t-shirt but
° blue instead of red.

(b) Example of a style modification

Figure 1. Examples of image retrieval with text feedback. Starting
from a reference image, the user interacts with the system by pro-
viding a text input that expresses the desired changes. Given these
inputs, the system retrieves images from a database that most ac-
curately resembles the user’s request. (a) and (b) depict examples
of content and style modifications, respectively.

age and a modifier text are used jointly as a query, as il-
lustrated in Figure 1. Here, the reference image does not
have any attribute labels, and the modifier text is a de-
scription of how the reference image should be changed to
obtain the desired results, i.e., target images. While in-
herently more complex than the standard image retrieval
setting, this approach allows users to express their con-
cepts more precisely by leveraging visual-linguistic infor-
mation. In addition, since the users can recursively refine
the search results based on previous results, the proposed
algorithm would eventually lead to substantially improved
output quality with high fidelity to input queries.

To tackle the task of image retrieval with text feedback,
we create an image-text composition module that produces
features similar to the target image features by combining
the representations of the reference image and the modi-
fier text. There are two main challenges in designing such a
composition module. First, the module should be able to se-
lectively preserve and modify the reference image features,
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i.e. determine what to maintain and what to update. Sec-
ond, the concepts conveyed in the modifier texts may range
from being specific to certain contents of the image, to be-
ing more global and stylistic changes, as illustrated in Fig-
ure 1(a) and (b), respectively. As such, the module should
be able to handle changes in both content and style.

A few works have contributed to the task of the image re-
trieval with text feedback. Most notably, TIRG [66] adopts
gating and residual modules. The gating module uses a ref-
erence image and a modifier text to produce gate values that
select what to update, while the residual module yields ad-
ditive changes to the gated image feature. Although the al-
gorithm design of TIRG [66] is intuitive, it fails to account
for the wide range of input contents and styles, and thus,
shows limited performance. On the other hand, VAL [10]
employs multiple composition modules in varying depths
of network, and each module produces the outputs that are
used for retrieval. While VAL [10] is better suited to ad-
dress the style-content issue, its use of additional modules
in multiple layers demands much more resources.

In this work, we propose a novel image-text compositor,
the Content-Style Modulator (CoSMo), which directly ad-
dresses both the content and style changes conveyed by the
modifier text. CoSMo consists of two modules: the Con-
tent Modulator (CM) and the Style Modulator (SM). In CM,
we introduce a Disentangled Multi-modal Non-local block
(DMNL), which is an extension of the Non-local block [67]
to the multi-modal setting, to effectively transform the con-
tents of the reference image feature. To ensure that DMNL
focuses on modifying contents rather than style, we first re-
move any style information by instance normalization of the
reference image features. Moreover, we implement a few
tricks in DMNL, which is imperative for stable training, es-
pecially in the multi-modal setting. In SM, we reintroduce
style information to the transformed image feature. This
module gates the channel-wise statistics of the original ref-
erence image feature, and predicts additional channel-wise
statistics based on the modifier text feature.

Overall, our contributions are summarized as follows:

* We propose a novel image-text compositor, referred to
as CoSMo, that is able to modulate both the contents
and the style of the reference image.

* We design the content modulator, which employs the
disentangled multi-modal non-local block with addi-
tional tricks to facilitate stable training. The proposed
style modulator selectively preserves style information
in the original image feature and adds new styles based
on the text input.

* We demonstrate the effectiveness of CoSMo on mul-
tiple image-text retrieval benchmarks, where we out-
perform recent state-of-the-art methods. We also pro-

vide an extensive set of ablation experiments, as well
as analysis that provide insight into our method.

2. Related Works

Image retrieval While traditional research on image
search used handcrafted features [11], recent works have
employed deep learning [52, 18, 61]. The most dominant
image search engines are based on either image-text match-
ing [59, 74, 70] or image-to-image matching [18, 52, 61],
whereby users input a single image or sentence to find the
most relevant images. Despite their simplicity, users are
unable to refine any results that incorrectly reflect their in-
tentions. Hence, many works have studied retrieval sys-
tems that take the user’s feedback in various forms, such
as spatial layouts [50, 48, 4], sketches [72, 13, 17, 57], at-
tributes [75, 49, 2], or modifier texts [20, 10, 66]. In this
paper, we focus on image retrieval with text feedback, since
natural language is the most fundamental form of interac-
tion between a user and system [20, 10].

To tackle this problem, we aim to develop a composite
module that effectively integrates both image and text repre-
sentation [10, 66, 27, 8]. To this end, TIRG [66] proposes a
residual and gating module to compose image features with
text features. While TIRG [66] is simple and intuitive, it
fails to address the aforementioned style-content problem.
To better address this issue, VAL [10] adopts multiple com-
position modules, and LBF [27] employs external off-the-
shelf modules such as RPN [56]. While both methods are
better suited for the task, using multiple composition mod-
ules or external modules requires extra resources. In con-
trast, our proposed method improves performance without
using any off-the-shelf models or numerous composition
modules by explicitly modulating the image’s content and
style to tackle the style-content problem.

Image as a combination of style and content Images
have been interpreted as a combination of contents and style
in various research areas, such as style transfer [76, 31, 16,
, 38, 37], image synthesis [77, 41, 1, 35], and domain
adaptation or generalization [7, 43, 26, 40, 60, 12]. Style is
often referred to as the channel statistics that are spatially
invariant, while contents are expressed by local features.
With this interpretation, previous works have shown that
an image style can be modified while maintaining the con-
tent information [31, 43, 26, 76, 16, 38, 33, 37]. In many
cases, the modification consists of normalization and mod-
ulation [31, 43, 60, 7]. For instance, AdaIN [31], a style
transfer method, replaces the styles from an image feature
using instance normalization (IN) [62]. Then, it modulates
the normalized feature with the channel statistics of a tar-
get image. Likewise, in domain adaptation, AdaBN [43]
first applies batch normalization (BN) [32] to an image from
the source domain to remove the domain-specific style, then
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Figure 2. Overall pipeline of CoSMo.

modulates the image using the statistics of other domains.

Although the style-content interpretation is widespread,
to the best of our knowledge, it has never been applied in
our task. Following this interpretation, we normalize the
reference image feature using IN and modulate its contents
and styles using the proposed content modulator followed
by style modulator.

Non-Local/Self-Attention mechanism The non-local or
self-attention mechanism is an effective tool to capture
long-range dependencies and context information between
features in two different locations. Ever since the self-
attention mechanism was first introduced for natural lan-
guage processing tasks [64, 0], it has been adopted in var-
ious vision tasks such as classification [29], object detec-
tion [68, 19, 9], action recognition [67]. Moreover, many
vision-language tasks such as image captioning [34, 3, 30]
or VQA [73, 15, 46, 47, 51] have adopted the attention
mechanism in various forms, e.g., co-attention and intra-
inter latent attention [39, 15, 51]. In the field of image re-
trieval with text feedback, LBF [27] applies the attention
in a form similar to co-attention, but there is limited due
to its use of an off-the-shelf RPN [56]. VAL [10] also em-
ploys the self-attention by concatenating the image and text
features in each spatial location. However, we empirically
verify that naively applying this form of self-attention to
our method may lead to training instability. Inspired by the
disentangled non-local block [71], we proposed a disentan-
gled multi-modal non-local (DMNL) block that alleviates
this instability. Hence, we utilize the DMNL as a core com-
ponent of the content modulator for more stable learning
and higher performance.

3. Proposed Method: Overview

Given an input query (I", T') based on a reference image,
I", and a modifier text, T, we aim to generate image-text
joint features that are well-aligned with the representation
of the target image I¢. Our image-text composition frame-
work consists of three major components: 1) the image en-
coder, 2) the text encoder , and 3) the image-text composi-
tor.

The image and text encoders, denoted by fime(-) and
frext(+), respectively, extract proper representations from the

multi-modal inputs as

X" = fimg(1") (M
t = fieu(T), 2

where x” € REXUHXW) and t € RV are the encoded ref-
erence image and the modifier text features, respectively.
Then, the image-text compositor, fcomp(~, -), transforms the
image feature using the modifier text representations appro-
priately, which is given by

x‘ = fcomp(xrat)- (3)

The transformed feature x° should be similar to the rep-
resentation of the target image, which is given by x! =
fimg(I'). To learn the model realizing the constraint, we
project the image-text and target features onto an embed-
ding space using a projection layer, which is given by

Vc = fproj (XC) (4)
vi = fproj (Xt)a )

and compute the loss between the two projected features us-
ing the dissimilarity based on a distance metric. To mitigate
any biases induced by the differences in vector norm, we
include /5 normalization in the final projection layer.
Following TIRG, we use a batch-based classification loss
(BBCL), which, compared to the triplet loss [25], achieves
better discriminativeness and faster convergence in com-
plex datasets [66]. Each batch consists of B pairs of query
samples—a reference image and a modifier text—and their
respective target images. The loss function is defined by

exp (H(Vc’i, vt’i))

B
1

»CBBCLZ*E —log —x —
B i=1 Zj:l exp (k(ve?, vii))

(6)

where (-, -) is an arbitrary distance metric, e.g., cosine dis-
tance. Finally, for image retrieval, we rank the distance to
the projected features of the samples in the database from a
composed image-text query feature.

Since the implementation of the encoder modules and
the loss function is straightforward, we primarily focus on
the compositor, i.e., how to effectively fuse the text and im-
age features. The next section describes the details of the
proposed compositor with the intuition of our design choice.

4. Compositor Design

The proposed compositor contains two distinct
modules—Content Modulator (CM) and Style Mod-
ulator (SM)—following the content-style interpreta-
tion [31, 43, 16, 33]. As their names imply, CM and SM
modulate content and style of an input image based on the
corresponding text input.
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Figure 3. Unstable training of the naive multi-modal non-local
block. We run three independent runs for each sub-dataset in

FashionlQ and observe that the training loss often diverges mid-
training.

Figure 2 illustrates the overall pipeline to generate the
image-text joint feature x°. In the compositor, we first
calculate the underlying style information represented by
(pxr, oxr ) and remove it from the image feature x” by ap-
plying instance normalization, which is given by

X" — pxr

Oxr

z" = IN(x") = @)
Then, the contents and style are modified based on the text
via CM followed by SM.

4.1. Content Modulator

The Content Modulator (CM) takes the image feature af-
ter instance normalization, z", and text feature, t, as its in-
puts and fuses them to generate a transformed feature o”,
which is given by

0" =CM(z",t) = convix1(y") + 2", 8)

where convy i (-) denotes a 1 x 1 convolution, and y" €
REX(HXW) s the output feature map of the Disentangled
Multi-modal Non-Local block (DMNL), in which the non-
local block [67] is appropriately redesigned to better suit
our task. The residual connection allows the CM to modify
the input feature, rather than completely replacing it with
the output of DMNL. Additionally, by providing instance
normalized image features, we allow the content modula-
tor to focus solely on modifying the contents of the image,
rather than the style.

4.1.1 Multi-modal Non-Local Block

We first outline the multi-modal non-local block
(MNL) [67, 10]. We employ the MNL to capture the

long-range dependencies between two positions of visual-
linguistic features using the pairwise relationships. Unlike
the original non-local block [67], MNL takes z" and t and
outputs a composed image-text feature, y; € R®, which is
given by
yi =Y w(z}, 2}, t)g([z], t), ©)
jeQ

where z] and z} are the C-dimensional vector obtained
from z" at the ¢ and j™ locations, respectively, t € RY
is the encoded text feature, 2 indicates the set of all loca-
tions, and [+, | denotes the concatenation of two vectors.

As presented in Eq. (9), two functions make up the MNL
block. The value function, denoted by g(-) is implemented
by a simple multi-layer perceptron (MLP) while w(-, -, -) is
the similarity function, which is given by

exp(qlk;)
>scqexp(al’ks)’

where 1(-) is the softmax function. Note that q; € RM

indicates a query and k; € R is a key, which are further
defined by

w(z], 2}, t) = ¥(a] k;) = (10)

q; = W[z, t] = Wy z] + W t,
k; ZW}C[Z;,'G] =W, z" + Wy, t, (11

where W, and W, are learnable parameters.

Demystifying the similarity function To better under-
stand the similarity function, we unravel the query-key dot
product as
q;Tk] :(quzz + WQtt)T ' (VV]CZZ7T + Wktt)
= (Wq.2))" (Wr.2}) + (W, t)" (W 2])
Aj B,
+ (W 2)) (Wi, t) + (W, )T (Wi, t), (12)

where (W,_z0)T (W, zg) = A; and (W, t)T (W, z;")
= Bj, for simplicity. When a softmax function is applied to
Eq. (12), the last two terms are cancelled, which leads to

w(zgv Z§7t) = ¢(QTk])

=¥ (4;+ B))

=AY (4;) - ¥ (B)

= Aiws (27, 25) - we(t, 25), 13)
where \; is a normalization constant. Refer to our supple-
mentary document for details about the derivation. Here
we observe that the similarity function, w(, -, ), can be de-
composed into the pixel-wise self-attention and the text-
pixel cross-attention, denoted by wy(+,-) and w.(-,-), re-
spectively.
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Figure 4. Difference between the three attention blocks according to the tricks introduced in 4.1.2. Starting from the multi-modal non-local
(MNL) block (a), we replace the multiplication interaction with an additive one (b). Finally, we replace W, with W, in the text-pixel

cross-attention (c).

Instability of the MNL block In practice, naive applica-
tion of the MNL block to our task results in unstable train-
ing as presented in Figure 3. This is partly because the gra-
dients with respect to the pixel-wise self-attention and the
pixel-text cross-attention are highly interdependent, which
is derived from Eq. (13) as follows:

oc
Ows

oL
= A5t We,

 Hw

oL _ )\jﬁﬁ

— — 14
Ow, 0w (19

*Wsy

where L is an arbitrary loss function. Note that w, and w,
often output values close to zero, which hinders gradient
flows on its counterpart. This is particularly exacerbated in
our task setting, where w, and w, are functions for different
input modalities.

4.1.2 Disentangled Multi-modal Non-Local block

We alleviate this gradient entanglement issue by employing
the following two tricks. First, we replace the multiplica-
tive interaction between w, and w, with an additive one, as
introduced in [71]. Specifically, we update Eq. (13) as
W(zf, 25, t) = i (ws(z,2]) + we(t, z})) .

1%

5)

By doing so, the gradients of wy and w, are no longer inter-
dependent as shown below:

oL oL

By MO0

oL oL

. 0w

(16)

The second trick is related to further disentangling any
shared parameters between the image and text features. In
particular, the key projection parameter Wy,_ is used in
both the pixelwise self-attention and the text-pixel cross-
attention terms (Figure 4(b)). With similar motivations

to the first trick, we replace Wy,_ in the text-pixel cross-
attention with a new key projection matrix, W, :

W, (t, Z;) =1 ((tht)T(szr)) .

; (17

Then, the final similarity function for our DMNL block is
given by
Woe (21,25, 8) = Ni (ws(2],25) + wi(t,2})) . (18)
Our DMNL block, illustrated in Figure 4(c), is an ef-
fective means of combining text and image features while
maintaining stability in training. As with the attention
block [64], the DMNL block can be implemented with nu-

merous heads and can also be stacked multiple times to im-
prove performance.

4.2. Style Modulator

The Style Modulator (SM) applies affine transformations
to individual channels of o", the output of our CM module.
It calculates the affine parameters, v € R¢ and 3 € R® by
the following operations:

7 = sigmoid (¢, (t)) - oxr + f5(t),
p = sigmoid (¢p(t)) - pixr + f5(t), (19)
where ¢, f : RN — R are simple linear transformations.
Note that px» and oy are channel-wise statistics obtained
from the reference image feature, x", and encode its origi-
nal style information [31, 43]. Two gating functions based
on the text feature, ¢, and ¢g, selectively preserve certain
styles in the original feature while discarding others. Then,
f+(+) and f3(-) inject new style information based on the
text feature.
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Method Dress Toptee Shirt Average
R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50
Relationship [58] 15.44 38.08 21.10 44.77 18.33 38.63 18.29  40.49
MRN [36] 12.32 32.18 18.11 36.33 15.88 34.33 15.44 3428
FiLM [55] 14.23 33.34 17.30 37.68 15.04 34.09 15.52  35.04
TIRG [66] 14.87 34.66 18.26 37.89 19.08 39.62 17.40  37.39
VAL (single-level) [10] - - - - - - 20.53  42.57
VAL (multi-level) [10] 21.12 42.19 25.64 49.49 21.03 43.44 22.60  45.04

Ours

| 25.64 2021 5030 +010 | 2921 +012  57.46 +0.16 | 24.90 x025  49.18 +027 | 26.58

52.31

Table 1. Results on FashionlQ using ResNet-50.

The resulting affine parameters are employed to modu-
late the channel-wise statistics of o” by the following equa-
tion, which corresponds to updating the style of the refer-
ence image:

x¢ =~0" + . (20)

5. Experimental Results

We demonstrate the effectiveness of the proposed ap-
proach, CoSMo, by evaluating on several datasets. Tables 1,
2, and 3 present our main results, where we measure the Re-
call@K performance on the validation set of each dataset.
All compared methods in each table adopt the same base
encoders, unless stated otherwise. We run all experiments
three times independently and report the averages with the
maximum deviations from the averages. Furthermore, we
provide qualitative results in the supplementary material.

5.1. FashionlQ

The FashionlIQ [2 1] dataset is a commonly used bench-
mark for image retrieval with natural language feedback.
It consists of 77,684 fashion product images that are split
into three distinct categories: Dress, Toptee, and Shirt. The
dataset is organized by triplets, with a reference image, a
target image, and a pair of relative captions that describe
the differences between the two images. For simplicity, we
refer to the reference image and the relative caption as a
query pair. Across the three sub-datasets, there are around
18,000 query pairs to train on. On FashionlQ, we adopt
ResNet-50 [24] as the base image encoder.

One detail we are obligated to point out is that in our ex-
periments, we use a slightly different evaluation split than
the one defined by the original authors of the datastet [21].
We follow the evaluation method of VAL [9], where the
evaluation split is defined by the union of reference and tar-
get images. Thus, compared to the original evaluation split,
there are fewer test images, which leads to slightly higher
performance than the original version. We evaluate with
this reduced test set for fair comparison with other meth-
ods, including VAL. Additionally, we present results using
the original evaluation split in our supplementary material.

Table 1 presents our results on the FashionlQ dataset,
which are based on the reduced evaluation split. Com-
pared to TIRG, on average, CoSMo achieves significantly
improved performance—about 10% and 15% points for Re-
call@10 and Recall@50 metrics, respectively. Even when
comparing to single-level VAL, we observe around 6% and
10% points better accuracy. Finally, we find it remarkable
that CoSMo, despite being a single-level method, outper-
forms multi-level VAL by a significant margin, more than
3% points for Recall@ 10 and 7% points for Recall@50, on
all three subcategories.

5.2. Shoes

The Shoes [5] dataset was originally proposed for at-
tribute discovery, but has been additionally labeled for
dialog-based interactive image retrieval [20]. It consists of
10,000 training queries and 4,658 validation examples. We
employ ResNet-50 as the image encoder.

According to our observation, the results on the Shoes
dataset have similar patterns with the ones on FashionIQ
as presented in Table 2, albeit a slightly lower margin of
increase. While the proposed approach is slighly behind
multi-level VAL on the Recall@ 10 metric, it still outper-
forms multi-level VAL by 0.23% and 2.11% points on Re-
call@1 and Recall@50, respectively. We recognize the sig-
nificance in these results since the results on VAL are out-
side our range of uncertainty in both metrics.

5.3. Fashion200K

The Fashion200K [23] is a large-scale dataset with over
200,000 fashion images crawled from multiple websites.
While each image is labeled with various types of informa-
tion including product information, review, and bounding
boxes for clothes, we only utilize the raw images and their
corresponding description. The description themselves are
alist of attributes, such as “multicolor french lace crew neck
lace dress” or “black crepe tie front dress”. Following [66],
we convert these attributes into relative descriptions in an
online-fashion (see supplementary material for additional
information). Since retrieval is performed by matching the
target attribute rather than the target image as in the Fash-
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Shoes Fashion200k

Method R@1 R@10 R@50 Method R@l  R@I0  R@30
Relationship [58] 12.31 45.10 71.45 Param Hashing [53] 12.2 40.0 61.7
MRN [36] 11.74 41.70 67.01 Show and Tell [65] 12.3 40.2 61.8
FiLM [55] 10.19 38.89 68.30 Relationship [58] 13.0 40.5 62.4
TIRG [66] 12.60 45.45 69.39 FiLM [55] 129 39.5 61.9
VAL (single-level) [10] 14.20 46.65 - MRN [36] 13.4 40.0 61.9
VAL (multi-level) [10] 16.49 49.12 73.53 TIRG [66] 14.1 42.5 63.8
Ours H 16.72 +020 4836 +o0.12  75.64 + 041 LBF [27] 17.8 48.4 68.5

VAL (single-level) [10] 15.6 44.8 -

Table 2. Results on Shoes using ResNet-50. VAL (multi-level) [10] 21.2 49.0 68.8
Ours [233:05 504=02 69.3:02
JVSM* [8] [ 190 52.1 70.0

ionlQ and Shoes datasets, multiple correct answers may ex-
ist. In total, the training split contains around 172,000 im-
ages and the test set contains 33,480 queries. For fair com-
parison with previous works, we use ResNet-18 as our im-
age encoder on Fashion200K.

The results on Fashion200K further validate the effec-
tiveness of CoSMo in this task. As mentioned earlier, Fash-
ion200K is evaluated by matching the target features, and,
consequently, the target image is not unique. The over-
all scores on Fashion200K are quite high, despite its much
larger size and greater diversity compared to the FashionIQ
and Shoes datasets.

Our results on Fashion200K are shown in Table 3. Here,
we outperform TIRG by roughly 7%, 8%, and 6% points
on the Recall@1, Recall@10, and Recall@50 metrics re-
spectively. We also outperform LBF [27]—a method that
employs an off-the-shelf region proposal network [56]—
by a significant margin as well. We also show improve-
ments over multi-level VAL, although we point out that
VAL uses MobileNet-v1 [28]° as their base image encoder.
Finally, compared to JVSM [&], we observe stronger per-
formance on Recall@1, but slightly weaker performance on
Recall@10 and Recall@50. However, we note that JVSM
employs additional label information during training.

5.4. Implementation Details

We evaluate CoSMo using two different image encoders,
fimg: ResNet-18 and ResNet-50. Specifically, fin, is given
by the output from layer 4 of the backbone networks. For
ResNet-50, this layer will output a feature map with 2,048
channels, and for ResNet-18, there are 512 channels. The
final projector, furj, consists of a Global Average Pooling
layer followed by a linear layer, which projects onto a 512-
dimensional vector. The output vector is ¢ normalized and
scaled by a factor of 4 for more efficient training.

Our text encoder, fiex, is composed of an embedding
layer and an LSTM, followed by a single linear layer. Thus,

OWhile the difference in model architectures may play a role in overall
results, we note that MobileNet-vl and ResNet-18 have almost identical
scores on both ImageNet Top1 and Top5 error rates.

Table 3. Results on Fashion200k using ResNet-18. *JVSM uses
additional labels during training.

we first embed the text into a 512-dimensional vector, trans-
form it using an LSTM with 1,024 hidden neurons, and fi-
nally obtain t € R%'2 by the projection.

To train our model, we use a rectified Adam [44] opti-
mizer with a base learning rate of 2 x 10~4, which decays
once after 30 epochs by a factor of 10. We train for a total
of 80 epochs, with a batch size of 32 on ResNet-50 and 128
on ResNet-18. Our framework of choice is PyTorch [54].

6. Analysis

We conduct in-depth analyses to help us better under-
stand the inner workings of CoSMo and its two modules.

Role of CM and SM  To measure the contributions of CM
and SM, we conduct ablation experiments on each module.
To evaluate the CM only version, we remove the IN layer to
retain style information. By the design update, the DMNL
blocks are responsible for modifying both the contents and
style, which is challenging for a module designed to mod-
ify the contents only. To test the SM only case, we simply
remove the content modulator.

The results of these ablations are presented in rows 4 and
5 of Table 4. As depicted in the table, SM only demon-
strates stronger performance than TIRG and comparable
performance to single-level VAL (see Table 1 for compar-
isons) despite lacking any non-local mechanism. Moreover,
we observe that CM only shows even better performance
than multi-level VAL on the FashionlQ dataset. Thus, the
each module functions can be used as an effective stand-
alone composition module. However, using CM and SM to-
gether demonstrates even stronger performance, which im-
plies that explicitly tackling the style-content issue is rea-
sonable for this task.

Effects of the two tricks in DMNL (4.1.2) Figure 3 illus-
trates the training instability resulting from a naive imple-
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FashionlQ Shoes
R@10 R@50 | R@1 R@I10
MNL N/A N/A N/A N/A
Ours (Wy,,—W,, Only) || 24.66 50.52 | 1476  46.65
Ours (Mul—Add Only) || 25.61 5092 | 15.50 47.13

Method

Ours (SM only) 2040 4583 | 12.44 43.10
Ours (CM only) 2324  46.15 | 1471 4532
Ours 26.58 5231 | 16.72 48.36

Table 4. Trick ablation studies on FashionlQ and Shoes using
ResNet-50. The score for FashionlQ is the average across all three
sub-datasets.
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(d) fg w/ Style keywords

(c) fs w/ Content keywords

Figure 5. t-SNE visualizations with the predictions of f., and fg,
given two different types of text inputs. For (a) and (c), we in-
put modifier texts from that contain content-related keywords:
short, strap, long, print, sleeve. For(b)and(d),
we input text that contain style-related keywords: red, black,
blue, green, brown.

mentation of MNL. We proposed two tricks used to allevi-
ate the issue in 4.1.2. To further highlight the importance of
these tricks, we conduct some ablations with the FashionIQ
dataset [21]. As seen in the first three rows of Table 4, us-
ing either of the two tricks helps stabilize training and ex-
hibits substantial improvement on Recall@10 over multi-
level VAL [10]. Note that, when removing both tricks, we
were unable to train the model to convergence due to the
instability. These results imply that the gradient entangle-
ment causes unstable training and that the proposed DMNL
alleviates this issue significantly.

Behavior of SM To verify whether SM works as in-
tended, we visualize the outputs of f, and fz from
Eq. (19). We select a set of style-related keywords (red,

Multi-Heads Ablation Number of DMNLs Ablation

1 2 3
Number of DMNLS

(b) DMNLSs Stack Ablation

[
Number of Heads

(a) Multi-Head Ablation

Figure 6. Effect of multi-heads and multi-layers on FashionlQ. The
values indicate average scores across all three sub-datasets.

black, blue, green, brown) and randomly sam-
ple 300 modifier texts containing each of the words from
the FashionlIQ dataset. Similarly, we randomly sample from
a set of content-related words (short, strap, long,
print, sleeve) as well. Then, we visualize the out-
puts of f, and f3 from each set of modifier texts using t-
SNE [63]. As depicted in Figure 5, SM produces more dis-
criminative features for both f., and fs given style-related
modifiers (Figure 5(b,d)), as compared to those of content-
related modifiers (Figure 5(a,c)).

Effects of hyperparameters The proposed method has
only two hyperparameters: the number of stacked DMNL
blocks and the number of heads in each of them. We test
the dependency of our compositor on these two hyperpa-
rameters by varying each of them separately. When varying
the number of heads (Figure 6(a)), we observe that the per-
formance gets saturated after 8 heads. With smaller number
of heads, the model is not effective to capture the various se-
mantics in the modifiers, and thus, results in weaker perfor-
mances. Additionally, in Figure 6(a), we observe that using
just one DMNL block is sufficient to outperform the state-
of-the-art methods, and that using 3 or more DMNL blocks
leads to suboptimal results due to over-parametrization.

7. Conclusion

In this work, we proposed a novel approach to image re-
trieval with text feedback. Our algorithm, CoSMo, is based
on the idea of independently modulating the content and
style of a reference image based on the given modifier text.
Through our experiments and analysis, we demonstrated
outstanding performance on multiple benchmarks and pro-
vided insights into the inner-workings of our image-text
compositor. We hope that our work will influence future
works to explore content and style modulation - not just in
this specific task, but also in other tasks that require com-
bining image and text features.

Acknowledgements This work was partly supported by
Samsung Advanced Institute of Technology and Korean
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