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Abstract

In this paper, we present DRANet, a network architecture

that disentangles image representations and transfers the

visual attributes in a latent space for unsupervised cross-

domain adaptation. Unlike the existing domain adaptation

methods that learn associated features sharing a domain,

DRANet preserves the distinctiveness of each domain’s

characteristics. Our model encodes individual representa-

tions of content (scene structure) and style (artistic appear-

ance) from both source and target images. Then, it adapts

the domain by incorporating the transferred style factor

into the content factor along with learnable weights spec-

ified for each domain. This learning framework allows bi-

/multi-directional domain adaptation with a single encoder-

decoder network and aligns their domain shift. Addition-

ally, we propose a content-adaptive domain transfer mod-

ule that helps retain scene structure while transferring style.

Extensive experiments show our model successfully sepa-

rates content-style factors and synthesizes visually pleasing

domain-transferred images. The proposed method demon-

strates state-of-the-art performance on standard digit clas-

sification tasks as well as semantic segmentation tasks.

1. Introduction

The use of deep neural networks (DNN) has led to sig-

nificant performance improvements in a variety of areas,

including computer vision [6], machine learning [13], and

natural language processing [7]. However, problems re-

main, particularly domain gaps between data, which can

significantly degrade model performance. Extensive efforts

have been made to generalize the models across domains

using unsupervised domain adaptation [1, 38, 23, 36, 9, 32,

37, 21, 2, 15, 39]. Unsupervised domain adaptation attempts

to align the distribution shift in labeled source data with un-

labeled target data. Various strategies have been explored

to bridge the gap across domains, for example, by feature

learning and generative pixel-level adaptation.

*Corresponding author.

(a) Traditional domain adaptation [9, 15]

(b) Linear feature separation [42] and domain adaptation

(c) Our feature separation and domain adaptation (DRANet)

Figure 1. Illustration of DRANet and the competitive methods (do-

main adaptation [9, 15], representation disentanglement [42]. Note

that E, S, and G are an encoder, a separator, and a generator.

Feature-level methods [38, 23, 32, 36, 9, 32, 37] learn

features that combine task-discrimination and domain-

invariance, where both domains are mapped into a com-

mon feature space. Domain invariance typically involves

minimizing some feature distance metric [38, 23, 32]

or adversarial discriminator accuracy [9]. Pixel-level ap-

proaches [21, 2] perform a similar distribution alignment,

not in a feature space but in the raw pixel space by

leveraging the power of Generative Adversarial Networks

(GANs) [14, 24, 28, 30, 4]. They adapt source domain im-

ages so that they appear as if drawn from the target domain.
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Some studies [15, 35, 39] incorporate both pixel-level and

feature-level approaches to achieve complementary bene-

fits.

Recently, the field of study has been further advanced by

learning disentangled representations into the exclusive and

shared components in a latent feature space [3, 12, 22, 45].

They demonstrate that representation disentanglement im-

proves a model’s ability to extract domain invariant features,

as well as the domain adaptation performance. However,

these methods still focus on the associated features between

two domains such as shared and exclusive components, so

they require multiple encoders and generators specialized in

individual domains. Moreover, the network training relies

heavily on a task classifier with ground-truth class labels, in

addition to domain classifiers.

To tackle these issues, we propose DRANet, a single

feed-forward network, that does not require any ground-

truth task labels for cross-domain adaptation. In contrast to

previous approaches in Fig. 1-(a) that map all domain im-

ages into a shared feature space, we focus on extracting the

domain-specific features that preserve individual domain

characteristics in Fig. 1-(c). Then, we disentangle the dis-

criminative features of individual domains into the content

and style components using a separator, which are later used

to generate the domain-adaptive features. Unlike the previ-

ous feature separation work [42], which linearly divides la-

tent vectors into two components in Fig. 1-(b), our separa-

tor is tailored to disentangle latent variables in a nonlinear

manifold. Our intuition behind the network design is that

different domains may have different distributions for their

contents and styles, which cannot be effectively handled by

the linear separation of latent vectors. Thus, to handle such

difference, our network adopts the non-linear separation and

domain-specific scale parameters that are dedicated to han-

dle such inter-domain difference.

To the best of our knowledge, DRANet is the first ap-

proach based solely on the individual domain characteris-

tics for unsupervised cross-domain adaptation. It enables

us to apply a single encoder-decoder network for a multi-

directional domain transfer from fully unlabeled data. The

distinctive points of our approach are summarized as fol-

lows:

• We present DRANet, which disentangles image rep-

resentation and adapts the visual attributes in a latent

space to align the domain shift.

• We propose a content-adaptive domain transfer mod-

ule that helps to synthesize realistic images of com-

plex segmentation datasets, such as CityScapes [5] and

GTA5 [29].

• We demonstrate that images synthesized by our ap-

proach boost the task performances and achieve state-

of-the-art performance on standard digit classification

tasks as well as semantic segmentation tasks.

2. Related Work

2.1. Unsupervised Domain Adaptation

Feature-level domain adaptation methods typically align

learning distribution by modifying the discriminative rep-

resentation space. The strategy is to guide feature learn-

ing by minimizing the difference between the feature space

statistics of the source and target. Early deep adaptive ap-

proaches minimize some measurements of domain shift

such as maximum mean discrepancy [38, 23] or correlation

distances [32]. Recent works [9, 36, 37] learn the represen-

tation that is discriminative of source labels while not be-

ing able to distinguish between domain using an adversar-

ial loss inspired by the work [1]. The domain-invariant fea-

tures are discovered using standard backpropagation train-

ing with minimax loss [9], domain confusion loss [36], or

GAN loss [37].

Another approach to unsupervised domain adaptation is

the generative pixel-level domain adaptation, which syn-

thesizes images with the content of source images and the

style of target images using the adversarial training [14].

Liu and Tuzel [21] accomplish to learn the joint distribution

of source and target representations by weight sharing, us-

ing a specific layer responsible for decoding abstract seman-

tics. Bousmalis et al. [2] use GANs to learn transformations

in the pixel space from one domain to another. Hoffman et

al. [15] adapt representations both at the pixel and feature

levels while enforcing both structural and semantic consis-

tency using a cycle-consistency loss. Ye et al. [39] also in-

corporate both pixel and feature-level domain classifiers to

calibrate target domain images whose representations are

close to those of the source domain.

2.2. Disentangling Internal Representation

The separation of style and content components in a la-

tent space has been widely studied for artistic style trans-

fer [33, 8, 11, 42, 43]. Tenebaum and Freeman [33] show

how perceptual systems can separate the content and style

factors, and propose bilinear models to solve these two fac-

tors. Elgammal and Lee [8] introduce a method to sepa-

rate style and content on manifolds representing dynamic

objects. Gatys et al. [11] show how generic feature repre-

sentations learned by a CNN manipulate the content and

style of natural images. Zhang et al. [43] propose a neural

network representing each style and content with a small

set of images, while separating the representations. Zhang

et al. [42] bimodally divide feature representations into the

content and style components.

Among the studies on domain adaptation, the search for

approaches to disentangling internal representations has re-

cently grown in interest. Bousmalis et al. [3] learn to ex-

tract image representations that are partitioned into two

subspaces: private and shared components and show that
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Figure 2. Overview of our model. (Left) Image translation blocks involving an encoder E, a separator S, and a generator G. The source

and target images IX , IY are the input, and the reconstructed images I ′X , I ′Y and domain transferred images IX→Y , IY →X are the output.

(Right) The training losses involving reconstruction LRec, consistency LCon, perceptual LPer , and adversarial LGAN loss.

the modeling of unique features helps to extract domain-

invariant features. Gonzalez-Garcia et al. [12] attempt to

disentangle factors that are exclusive in both domains, and

factors that are shared across domains. Liu et al. [22]

propose a cross-domain representation disentangler that

bridges the information across data domains and transfers

the attributes. Zou et al. [45] introduce a joint learning

framework that separates id-related/unrelated features for

person re-identification tasks. We discuss the major differ-

ences between our work and the listed works in Sec. 1.

3. DRANet

3.1. Overview

The overall pipeline of our method is illustrated in Fig. 2.

Our framework can be extended to domain transfer across

three domains, as shown in Fig. 3, although the exam-

ple only shows two domain case for simple illustration.

The networks consist of an encoder E, a feature sepa-

rator S, a generator G, two discriminators of the source

and target domains DX , DY , and a perceptual network

P . In the training phase, we learn all of the parameters

of these networks, as well as the feature scaling factors

wX→Y , wY→X which compensate for the distribution of

two domains. Given the source and target images IX , IY ,

the encoder E extracts the individual features FX ,FY that

later pass through the generator G to reconstruct the origi-

nal input images I ′X , I ′Y . The separator S disentangles each

feature FX ,FY into the components of scene structure and

artistic appearance, which in this paper we call the con-

tent CX , CY and the style SX ,SY , respectively. Then, the

transferred domain features FX→Y ,FY→X are synthesized

with the learnable scale parameters wX→Y , wY→X . The

generator G maps the original features FX ,FY and the

transferred features FX→Y ,FY→X into their image space

I ′X , I ′Y , IX→Y , IY→X , respectively. The pretrained percep-

tual network P , extracts perceptual features to impose the

constraints on both content similarity and style similarity.

We use two discriminators, DX , DY , to impose the ad-

versarial loss on both domains. In the test phase, just the

encoder E, the separator S, the generator G, and domain

weights w are used to produce domain transferred images

IX→Y , IY→X given source and target images IX , IY . With

the single feed-forward network E-S-G, our method en-

ables the bi-directional domain transfer of input images.

3.2. Disentangling Representation and Adaptation

In this subsection, we describe the motivation for the de-

sign of our separator S. We first extract the individual image

features FX ,FY using the weight-shared encoder:

FX = E(IX), FY = E(IY ). (1)

The separator disentangles these features into scene struc-

ture and artistic appearance factors. We hypothesize that

the nonlinear manifold learning is still necessary to map

each domain-specific representation into the content or style

spaces as demonstrated in [8]. Thus, we learn a non-linear

projection function S that separates the features FX into

content CX and style SX factors, as follows:

CX = wXS(FX), SX = FX − wXS(FX), (2)

where wX is the weight parameter that normalizes the dis-

tribution of content space, which helps to compensate for

the distribution shift. The content component is obtained us-

ing the non-linear function and the learnable feature scaling

parameters, while the style component is defined by sub-

tracting content components from the whole feature. The

target representation FY is also passed through the same

separator S, and outputs the target content and style CY ,SY ,
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Figure 3. Tri-directional domain adaptation results from our single

network. DRANet keeps the content of source images and trans-

fers the domain of target images.

but for simplicity here we only denote the source domain

case.

The disentangled representation is used to transfer the

domain of features across domains as follows:

FX→Y = wX→Y CX + SY , FY→X = wY→XCY + SX ,

where wX→Y =
wY

wX

, wY→X =
wX

wY

.

(3)

In our implementation, we directly learn the relative scale

parameters wX→Y , wY→X along with all model param-

eters. Finally, we pass all representations involving the

domain adaptive features FX→Y ,FY→X and the original

source and target features FX ,FY through the generator G

to project them into image space as follows:

IX→Y = G(FX→Y ), IY→X = G(FY→X),

I ′X = G(FX), I ′Y = G(FY ),
(4)

where IX→Y , IY→X are the domain adapted images and

I ′X , I ′Y are the reconstructed images.

3.3. ContentAdaptive Domain Transfer (CADT)

Style transfer tends to struggle with the complex scenes

containing various objects, such as a driving scene. This is

because those images are composed of different scene struc-

ture, as well as various object composition. To tackle this

problem, we present a Content-Adaptive Domain Transfer

(CADT). The key idea of this module is to search the tar-

get features whose content component is most similar to the

source features. Then, the domain transfer is conducted by

reflecting more style information from more suitable target

features. To achieve this, we design a content similarity ma-

trix for the database in a mini-batch, as follows:

Hrow = σrow

(

CX · C⊤
Y

)

=







C11 · · · C1b
...

. . .
...

Cb1 · · · Cbb






,

CX , CY ∈ R
B×N ,

(5)

where σrow is the softmax operation in the row dimension.

The size of the content factors CX is defined by the batch

size B and the feature dimension N . The matrix Hrow con-

tains information about the level of similarity between com-

ponents in the mini-batch. Based on the similarity matrix,

we build a content-adaptive style feature as follows:

ŜY = HrowSY ,where SY ∈ R
B×N . (6)

More visually pleasing results can be expected than when

using the normal transferring method because the content

features are more likely to be stylized by the scenes con-

taining similar structure and object composition. We em-

pirically demonstrate this in Fig. 8. To apply the content-

adaptive domain transfer in the opposite direction, the con-

tent similarity matrix is simply obtained:

Hcol =
(

σcol

(

CX · C⊤
Y

))⊤
, (7)

where σcol is the softmax in the column direction.

3.4. Training Loss

We train our network with an encoder E, a separator S,

and a generator G by minimizing the loss function Ld while

the discriminator Dd tries to maximize it:

min
E,S,G

(

∑

d∈{X,Y }

max
Dd

Ld

)

, (8)

where the domain d is either a source or target domain

X,Y . The overall loss of our framework consists of the re-

construction LRec, consistency LCon, perceptual LPer, and

adversarial LGAN loss with the balancing term αi:

Ld = α1L
d
Rec + α2L

d
GAN + α3L

d
Con + α4L

d
Per. (9)

The followings are the details of each loss.

Reconstruction Loss. We impose an L1 loss to learn

E and G that minimizes the difference between input image

Id and the reconstructed image I ′d:

Ld
Rec = L1(Id, I

′
d), where I ′d = G(E(Id)). (10)

Adversarial Loss. We apply two discriminators

Dd∈{X,Y } to evaluate the adversarial loss on the source and

target domain, respectively. The following is the adversarial

loss for the domain adaptation of X to Y :

LY
GAN = Ey∼pdata(Y )

[logDY (y)]

+ E(x,y)∼pdata(X,Y )
[log(1−DY (IX→Y (x, y))] .

(11)
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(a) Source and target images (b) Domain transferred images

Figure 4. Various domain transferred examples from MNIST to

MNIST-M. (a) Top-left image is source image of digit 2 and the

others are target images. (b) Domain transferred images.

We impose the same adversarial loss LX
GAN for the adap-

tation of Y to X as well. We apply spectral normaliza-

tion [25] to all layers in G and D, and use PatchGAN Dis-

criminator [17] with the hinge version of adversarial loss

[20, 34, 26, 41] for driving scene adaptation.

Consistency Loss. The consistency loss attempts to

retain the content and style components after re-projecting

the domain transferred images into the representation space

denoted as:

LX
Con = L1

(

CX , CX→Y ) + L1(SX ,SY→X),

LY
Con = L1

(

CY , CY→X) + L1(SY ,SX→Y ),
(12)

where the content CX→Y , CY→X and style SX→Y , SY→X

factors are extracted by passing the domain transferred im-

ages IX→Y , IY→X , respectively, through the same encoder

E and separator S. This loss explicitly encourages the scene

structure consistency and artistic appearance consistency

before and after domain adaptation.

Perceptual Loss. Conventionally, the GT class labels

in (semi-)supervised training are provided as the semantic

cues guiding the representation disentanglement. However,

our framework trains disentangling representations without

any labeled data. To learn the disentangler in an unsuper-

vised manner, we impose a perceptual loss [18] which is

widely known as a typical framework for style transfer, de-

fined as:

LX
Per = LX

Content + λLX
Style,

LY
Per = LY

Content + λLY
Style,

(13)

where LX
Content,L

Y
Content are the content losses, and

LX
Style,L

Y
Style are the style losses defined as:

LY
Content =

∑

l∈LC

‖Pl(IX)− Pl(IX→Y )‖
2
2,

LY
Style =

∑

l∈LS

‖G(Pl(IY ))− G(Pl(IX→Y ))‖
2
F ,

(14)

where the set of layers LC , LS are the subset of the per-

ceptual network P . The weight parameter λ balances the

Figure 5. Content similarity between MNIST and MNIST-M.

two losses, and G is the function that builds a Gram Matrix,

given the features of each layer l [10]. We also apply batch-

instance normalization [27] for better stylization. Details of

architecture are described in the supplementary materials.

4. Experiments

We evaluate DRANet for unsupervised domain adapta-

tion on digit classification in Sec. 4.1 and driving scene seg-

mentation in Sec. 4.2. We compare our bi-/tri-directional

domain transfer results against multiple state-of-the-art un-

/semi-supervised domain adaptation methods. We also con-

duct an extensive ablation study to demonstrate the ef-

fectiveness of each proposed module in Sec. 4.3. For the

evaluations, we use the standard split of training and test

sets the same as the existing unsupervised domain adapta-

tions [2, 39]. We train a task-classifier using stylized source

training sets produced by DRANet and evaluate its perfor-

mance on the target domain test sets. We describe the train-

ing details in the supplementary materials.

4.1. Adaptation for Digit Classification

Unlike existing domain adaptation methods, where a

single model is responsible for domain transfer in one

direction, our single model is able to deal with multi-

directional domain adaption. We demonstrate the versatil-

ity of DRANet by transferring images across the multiple

domains using three digit datasets: MNIST [19], MNIST-M

[9], and USPS [16]. We train our model for bi-directional

domain adaptation (MNIST to MNIST-M or USPS, and

its opposite direction) as shown in Fig. 2. We also train

the adaptation model tri-directionally (MNIST to MNIST-

M and USPS, and their opposite directions) and show the

results in Fig. 3. Note that we have not explicitly transferred

the domain between MNIST-M and USPS during training,

but the results show that DRANet is also applicable for the

adaptation between them.

As shown in Tab. 1, our model, either trained for two

or three domains, outperforms all the competitive meth-

ods [39, 15, 2, 21, 37, 3, 9]. The results also show that

our model even achieves higher performance than the model
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Method MNIST to USPS USPS to MNIST MNIST to MNIST-M MNIST-M to MNIST

Source Only 80.2 44.9 62.5 97.8

DANN [9] 85.1 73.0 77.4 -

DSN [3] 91.3 - 83.2 -

ADDA [37] 90.1 95.2 - -

CoGAN [21] 91.2 89.1 62.0 -

pixelDA [2] 95.9 - 98.2 -

CyCADA [15] 95.6 96.5 - -

LC + CycleGAN [39, 44] 97.1 98.3 - -

Ours (Bi-directional) 98.2 97.8 98.7 99.3

Ours (Tri-directional) 97.6 96.9 98.3 99.0

Target Only 97.8 99.1 96.2 99.1

Table 1. Result comparison of DRANet to state-of-the-art methods on domain adaptation for digit classification. We report the performance

from both bi-directional and tri-directional domain adaptation. Note that ours(bi-directional) and ours(tri-directional) use two models

(MNIST-USPS, MNIST-MNISTM) and a model (MNIST-USPS-MNISTM), respectively to evaluate all four domain adaptation tasks.

(a) GTA5 original images

(b) Transferred images using (a) GTA5 content and (c) CityScapes style.

(c) CityScapes original images

(d) Transferred images using (c) CityScapes content and (a) GTA5 style.

Figure 6. Domain adaptation results from our single DRANet in driving scenes. (a), (c) Original images. (b), (d) Transferred images.

trained only on target except for the experiment of USPS to

MNIST. This is because DRANet augments as many images

as the number of target images using one source image as

shown in Fig. 4. DRANet-based data augmentation makes

the classifier even more robust than the target-only model.

Moreover, we show the content similarity matrix in Fig. 5

that reveals how well our model disentangles the represen-

tation into content and style components. We use 10 images

with similar content from MNIST and MNIST-M each, and

observe the confusion matrix has the highest diagonal val-

ues. We also observe that both higher values around 50% for

both samples of digit one. The results show that our model

disentangles the representation of content and style while

maintaining each domain’s characteristics.

4.2. Adaptation for Semantic Segmentation

To show the applicability of DRANet on the complex

real-world scenario, we use GTA5 [29] and Cityscapes [5],

which contain driving scene images with dense annotations.

We train our model using 24966 images in GTA5 and 2975

images in Cityscapes train set, and we train DRN-26 [40]

with 19 common classes for synthetic to real adaptation.

The results in Fig. 6 show that our model generates styl-

ized images following the artistic appearance of target im-

ages while keeping the scene structure of source images.

We also evaluate the domain adaptation performance on

semantic segmentation. The quantitative results in Tab. 2

show that our model achieves state-of-the-art performance
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Source only 42.7 26.3 51.7 5.5 6.8 13.8 23.6 6.9 75.5 11.5 36.8 49.3 0.9 46.7 3.4 5.0 0.0 5.0 1.4 21.7 47.4 62.5

CyCADA [15] 79.1 33.1 77.9 23.4 17.3 32.1 33.3 31.8 81.5 26.7 69.0 62.8 14.7 74.5 20.9 25.6 6.9 18.8 20.4 39.5 72.4 82.3

LC [39] 83.5 35.2 79.9 24.6 16.2 32.8 33.1 31.8 81.7 29.2 66.3 63.0 14.3 81.8 21.0 26.5 8.5 16.7 24.0 40.5 75.1 84.0

Ours (without CADT) 83.5 33.7 80.7 22.7 19.5 25.2 28.6 25.8 84.1 32.8 84.4 53.3 13.6 75.7 21.7 30.6 15.8 20.3 19.5 40.6 75.6 84.9

Ours (with CADT) 85.0 35.8 82.0 26.4 21.6 27.0 29.2 28.1 84.2 34.0 81.9 53.6 15.9 73.6 21.1 31.0 16.7 17.2 22.8 41.4 76.4 85.7

Target only 97.3 79.8 88.6 32.5 48.2 56.3 63.6 73.3 89.0 58.9 93.0 78.2 55.2 92.2 45.0 67.3 39.6 49.9 73.6 67.4 89.6 94.3

Table 2. Result comparison of DRANet to state-of-the-art methods on domain adaptation for semantic segmentation. We also report the

performance of DRANet with and without Content-Adaptive Domain Transfer (CADT).

(a) Test images (CityScapes)

(b) Source prediction.

(c) Our prediction

(d) Ground Truth

Figure 7. Semantic segmentation results for GTA5 to CityScapes. Note that we do not use any GT segmentation labels for training DRANet.

in all three main metrics for semantic segmentation: mIoU,

fwIoU, and pixel accuracy. Among the 19 segmentation la-

bels, our method outperforms the competitive methods in

14 categories. Especially, the accuracy of sky labels is im-

proved by a large margin. We believe that our model de-

signed for maintaining the scene structure allows to stably

generate domain transferred images as shown in Fig. 6, and

leads the performance improvement as shown in Fig. 7.

4.3. Ablation Study

Representation Disentangler We design our separa-

tor incorporating two key ideas: one is the non-linearity of

feature mapping and the other is domain normalization fac-

tor. To show the effectiveness of these key contributions,

we set four experiment settings with/without non-linearity

and normalization factors in our framework. We evaluate

DRANet in each set for two bidirectional domain trans-

fer tasks (one between MNIST and USPS, the other be-

tween MNIST and MNIST-M). We compare the classifi-

cation results of each case in unsupervised domain adap-

tation. As shown in Tab. 3, our model involving both non-

linearity and normalization factors shows the best perfor-

mance among four different settings. In the adaptation task

between MNIST and MNIST-M, all model, even without

non-linearity and normalization factor, produces the reason-

able performance because both datasets contain the same

content representation. Note that MNIST-M is one variation

on MNIST proposed for unsupervised domain adaptation,

which replaces the background of images while maintain-

ing each MNIST digit [9]. However, there is a large gap in

each case for adaptation between MNIST and USPS, which

have obviously different content representation. The model

without both components results in poor classification per-

formance of one side. This means the model can only adapt

either directional domain adaptation (MNIST to USPS or

USPS to MNIST), like what the existing methods do. The

model with either non-linearity or normalization improves

the performance while our model with both factors achieves
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(a) Source image (GTA5) (b) Ours: CADT using all image in (d) (c) DT using the rightmost image in (d)

(d) Target images (CityScapes) in a minibatch and their content similarity with the source image in (a)

Figure 8. Comparison on image synthesis using Content-Adaptive Domain Transfer (CADT) and normal Domain Transfer (DT).

Non- Normal- MNIST USPS to MNIST to MNIST-M

linearity ization to USPS MNIST MNIST-M to MNIST

11.2 87.1 97.0 99.0

X 90.7 90.2 97.7 99.1

X 96.6 90.9 97.3 98.9

X X 98.2 97.8 98.7 99.3
Table 3. Ablation study on the separator design to verify the ef-

fectiveness of the non-linearity in representation disentanglement

(Non-linearity) and distribution scale parameters (Normalization).

the best among the other settings. We empirically demon-

strate that non-linear mapping affords better representation

disentanglement and the drastic performance improvement.

As the advantages of non-linear mapping function of fea-

tures proven in [31], we believe that the non-linearity is

considerably responsible for clear separation of representa-

tions. We also show the normalization factor further boosts

the adaptation performance. We can conclude that both fac-

tors play an important role in representation disentangle-

ment as well as in an unsupervised domain adaptation.

Content-Adaptive Domain Transfer This subsection

shows two advantages of our CADT for domain adapta-

tion. One is that it prevents the model to be trained with

bad training samples and the other is that it encourages the

model to generate better-stylized images. During the early

phase of training, the separator is not able to clearly disen-

tangle the content and style components, which means each

separation does not solely involve its identical information.

Consequently, the model generates content-mixed images

at the early training stage, and it might disturb the train-

ing by fooling discriminator, especially in the case the two

images have quite different content. These strengths can be

observed in Fig. 8 that shows the comparison of the results

from the model with/without CADT trained with less than

1000 iterations. Fig. 8-(a) is a source image (GTA5), and

Fig. 8-(d) contains multiple target images (Cityscapes) in

one minibatch. The bottom-right digit indicates the content

similarity with source image. We show the domain trans-

ferred images with/without CADT in Fig. 8-(b),(c), respec-

tively. The result in Fig. 8-(c) is generated by adapting the

domain of rightmost target image in Fig. 8-(d), which has

the lowest similarity. The results show the normal domain

transfer causes the significant artifact in the early stage of

training while the proposed CADT reasonably synthesizes

the image. It means that CADT helps to disentangle the rep-

resentation even at just a few iterations. We also show that

the general performance improvement by CADT in Tab. 2

by comparing the domain adaptation results with/without

CADT. The table demonstrates the effectiveness of our

content-adaptive domain transfer.

5. Conclusion

In this paper, we present a new network architecture

called DRANet which disentangles individual feature repre-

sentations into two factors, content and style, and transfers

domains by applying the style features of another domain.

In contrast to conventional methods which focus on the as-

sociations of features among domains, we learn the distinc-

tive features of each domain, then separate the features into

two components. This design enables us to transfer the do-

mains multi-directionally with our single model. In addi-

tion, our method does not require any class labels for adapt-

ing domains. Another contribution of this work is to propose

a content-adaptive domain transfer method to synthesize

more realistic images from the complex scene structures.

Extensive experiments show that our model synthesizes vi-

sually pleasing images transferred across domains, and the

synthesized images boost the performance of the classifica-

tion and semantic segmentation tasks. We also demonstrate

that the proposed method outperforms the state-of-the-art

domain adaptation methods despite the absence of any la-

beled data for training.
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